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Abstract—Satellite-based time-series crop monitoring at the sub-
field level is essential to the efficient implementation of precision
crop management. Existing spatiotemporal image fusion tech-
niques can be helpful, but they were often proposed to generate
medium-resolution images. This study proposed a high-resolution
spatiotemporal image fusion method (HISTIF) consisting of fil-
tering for cross-scale spatial matching (FCSM) and multiplicative
modulation of temporal change (MMTC). In FCSM, we consid-
ered both point spread function effect and geo-registration errors
between fine and coarse resolution images. Subsequently, MMTC
used pixel-based multiplicative factors to estimate the temporal
change between reference and prediction dates without image clas-
sification. The performance of HISTIF was evaluated using both
simulated and real datasets with one from real Gaofen-1 (GF-1) and
simulated Landsat-like/Sentinel-like images, and the other from
real GF-1 and real Landsat/Sentinel-2 data on two sites. HISTIF
was compared with the existing methods spatial and temporal
adaptive reflectance fusion model (STARFM), FSDAF, and Fit-FC.
The results demonstrated that HISTIF produced substantial re-
duction in the fusion error from cross-scale spatial mismatch and
accurate reconstruction in spatial details within fields, regardless
of simulated or real data. The images predicted by STARFM
exhibited pronounced blocky artifacts. While the images predicted
by HISTIF and Fit-FC both showed clear within-field variability
patterns, HISTIF was able to reduce the spectral distortion more
significantly than Fit-FC. Furthermore, HISTIF exhibited the most
stable performance across sensors. The findings suggest that HIS-
TIF could be beneficial for the frequent and detailed monitoring of
crop growth at the subfield level.
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spatiotemporal fusion, subfield monitoring.
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I. INTRODUCTION

MODERN crop production is moving toward precision
planting, efficient management, intelligent decision-

making, and quantitative implementation at field or even subfield
levels [1]–[3]. Subfield-level (within-field) crop monitoring is
essential to precision farming, which requires frequent crop
growth information at high-spatial resolution for mid-season
management [4]. Satellite sensors such as MODIS, VEGETA-
TION, PROBA-V, VIIRS, and Sentinel-3 provide daily obser-
vations of the globe, but their kilometric resolution is far from
the requirement of subfield-level crop monitoring [5], [6]. The
mid-resolution satellite imagery with weekly or bi-weekly re-
visit frequency, such as Sentinel-2, Landsat, and ASTER, has the
potential in monitoring crop growth status over critical growth
stages [5], [7], [8], but it is typically difficult to use the imagery
for mapping smallholder farms [9]. Those are the main crop
management units in many Asian and African countries such
as India, China, and Ethiopia, where the size of a typical field
(<1 ha) is often smaller than the pixels of the mid-resolution
images [9]–[11]. To this end, high spatial resolution images
(<5 m) are desired to overcome the issue of mixed pixels.
Although high-resolution satellite imagery is increasingly avail-
able in recent years from such satellites as IKONOS, WorldView,
Quickbird, SkySat, PlanetScope, and Chinese Gaofen (GF), the
use of these data for mapping croplands has still been limited
by the low revisit frequency or high cost in image purchasing
[12]–[15]. Therefore, the images from current satellite sensors
for subfield-level crop monitoring still have to compromise
between spatial and temporal resolutions.

Spatiotemporal fusion approaches represent a feasible al-
ternative for generating high spatial and temporal resolution
images by blending temporally frequent but spatially coarse
imagery (hereafter referred to as “coarse image”) and spatially
fine but temporally less frequent imagery (hereafter referred to
as “fine image”). Table I summarizes a list of representative
spatiotemporal fusion methods. Most fusion methods tend to
predict both phenological and land cover changes. However, it
is preferable to use the methods designed with specific purposes
(e.g., mapping or monitoring a specific land cover type) over the
generic ones [16]–[18].

For subfield-level crop monitoring, it is essential to consider
the phenological change within fields rather than land cover
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TABLE I
SUMMARY OF REPRESENTATIVE SPATIOTEMPORAL IMAGE FUSION METHODS

aNote: This is not an exhaustive list of spatiotemporal image fusion methods but a representation of the most popular ones in the literature. DHF = Decametric Hectometric
Fusion, ESTARFM = Enhanced STARFM, FSDAF = Flexible Spatiotemporal DAta Fusion, RASTFM = Robust Adaptive Spatial and Temporal Fusion Model, SPSTFM =

Sparse-representation-based SpatioTemporal reflectance Fusion Model, STAARCH = Spatial Temporal Adaptive Algorithm for mapping Reflectance Change, STARFM = Spatial
and Temporal Adaptive Reflectance Fusion Model.
bSince all methods require at least one coarse image at prediction time for the input data, the table above only lists the additional data required. “One pair” means the pair of coarse
and fine images acquired quasi-synchronously.

change during the growth season of a specific crop. The internal
structure of farmlands might accidentally change due to natural
hazards (e.g., debris flow) or chronically change due to human
activities (e.g., urbanization), but in those extreme cases crop
growth monitoring would become land cover monitoring. In
fact, crops within fields often exhibit different growth status
due to variations in crop variety, sowing or planting date, soil
condition, and management measure. Therefore, predicting phe-
nological changes is the key to monitoring crop growth dynamics
in a growing season, particularly the within-field variability.
Although some of the existing fusion methods are considered
specifically suited for capturing phenological changes, such as
the widely used spatial and temporal adaptive reflectance fusion
model (STARFM) [19], the semi-physical model [20], and the
Enhanced STARFM (ESTARFM) [21], they do not consider the
within-field variability with particular attention. Recently, Liu
et al. [18] modified ESTARFM by further classifying the paddy
rice pixels into four groups based on phenology periods from
a time series of coarse images. Similar to its original version,
this modified ESTARFM algorithm still depends strongly on
the classification accuracy and it is affected adversely by the
misclassification errors [18]. Likewise, the STARFM-like meth-
ods [22]–[26] and some spatial unmixing-based fusion methods
[27], [28] are all classification-based (see Table I). They typically
used unsupervised or supervised classification maps to obtain
the spatial information [19], [21], [29], which leads to the low
spectral variability within each class [16]. To overcome this
weakness, Amorós-López et al. [16] used a soft clustering to
provide the land-cover class proportions for crop monitoring,
but their algorithm requires a time series of fine images.

Besides the problem with subfield representation, the existing
methods have another intrinsic issue for subfield-level crop
monitoring. They lack full consideration of the fusion error

from cross-scale spatial mismatch, which is caused by geo-
registration errors and point spread function (PSF) calibration er-
rors [15], [27], [30]. Since the majority of spatiotemporal fusion
methods operate at pixel level [31], they are highly sensitive to
the geo-registration errors between coarse and fine images [32].
In contrast, the feature-level fusion [31] (also termed as object-
oriented) methods are less sensitive to the misregistration, such
as the sparse-representation-based spatiotemporal reflectance
fusion model (SPSTFM) [3] and the one-pair learning model
[14]. However, the feature-level methods focus on the shape
change rather than the spatial details [30]. In addition to the
geo-registration errors, the PSF effect of multiple sensors could
also affect the exact match between coarse and fine images [33],
[34], but it is often overlooked by the existing fusion methods
[16], [27], [35]. It is worth considering the PSF effect from
using multiple sensors because the images to be fused are often
acquired from sensors with differences in band configuration,
instantaneous field of view and orbit height. Since even a mi-
nor mismatch would produce a significant bias in the fusion
[15], [23], [27], [30] more attention needs to be paid to both
geo-registration errors and PSF calibration errors for improved
spatiotemporal fusion.

In consideration of the aforementioned limitations, this study
proposes a high-resolution spatiotemporal image fusion (HIS-
TIF) model for subfield-level crop monitoring. The goal is to
predict frequent high-resolution images over the field sites of
major crops. The algorithm consists of two stages, including
filtering for cross-scale spatial matching (FCSM) and multi-
plicative modulation of temporal change (MMTC). FCSM aims
to correct the spatial scale mismatch between coarse and fine
images by considering both misregistration and PSF effects.
MMTC reconstructs subfield variability by accommodating the
temporal changes pixel by pixel at fine resolution without



JIANG et al.: HISTIF: A NEW SPATIOTEMPORAL IMAGE FUSION METHOD FOR HIGH-RESOLUTION MONITORING OF CROPS 4609

Fig. 1. Technical flowchart of the HISTIF method. (1) Coarse images are resampled to the fine resolution with the nearest neighbor interpolation. (2) Image pair
at t0 is used to determine the parameters of the cross-scale spatial matching filter (SMF) in band bn, including (a) filter size (FWHMx, FWHMy), (b) rotation (θ)
and (c) shift (shiftx, shifty). These parameters are optimized through a cost function. (3) Resampled coarse images are convolved with the SMF from (2) to produce
spatially reconstructed images. (4) Pixel-wise multiplicative modulation factor (MMF) is calculated from the convolved coarse images at t0 and t1. (5) Fine image
at t0 is multiplied by the MMF pixel by pixel to produce the fine image in band bn at t1.

classification. Unlike the existing specifically tailored meth-
ods, HISTIF requires minimal input data with only one fine
image. We evaluated its performance using two mid- and high-
resolution images datasets from different sensors and compared
it with three traditional or newly published methods in the
literature.

II. METHODS

A. Principle and Implementation of HISTIF

The HISTIF method needs one image pair acquired at ref-
erence time t0 and one coarse image at prediction time t1 as
input (see Fig. 1). The ultimate task of HISTIF is to predict the
fine image at t1 based on the three available images. Before the
implementation of HISTIF, all input images should be calibrated
to surface reflectance for monitoring temporal changes in crop
status. They should be reprojected to the same coordinate sys-
tem. To preserve the spectral integrity of the original images, we
used the nearest neighbor interpolation to resample the coarse
images to fine resolution. All of the geo-referenced images are
finally cropped to the same area. Let C(bn, t0) and C(bn, t1) be
the preprocessed coarse images in band bn (n = 1, 2, 3, and 4
represents the blue, green, red, and NIR bands, respectively) at
t0 and t1, respectively. F(bn, t0) and F(bn, t1) are the fine images
in band bn at t0 and t1, respectively. The HISTIF method consists
of two steps: FCSM and MMTC.

B. Filtering for Cross-Scale Spatial Matching (FCSM)

In the nearest-neighbor resampled images, all the fine-
resolution pixels that fall within a coarse-resolution pixel have
the same spectral values. The solution to the blocky artifacts
problem is to apply a spatial filter to the resampled images.
The most commonly used filter is created by searching for
spectrally similar pixels belonging to the same class in a moving
window and assigning weights to the selected pixels [19]. Since
this traditional filtering is based on the assumption of regular
within-class change occurring from t0 to t1, it is highly sensi-
tive to the classification accuracy [18] and the geo-registration
error between two images [32]. As a result, it could lead to
over-smooth predictions. Therefore, we proposed the FCSM not
only to remove blocky artifacts, but also to correct the sensor
PSF effect and geo-registration errors between coarse and fine
images.

The sensor PSF is often composed of several components,
including the optical PSF, the detector PSF, the image motion
PSF, and the electronic PSF [36]. Given that the last two PSFs can
be neglected [37], the equivalent PSF for the GF-1 instrument
can be modeled as the first two PSFs (i.e., the detector PSF and
the optical PSF) approximated with a 2-D Gaussian function by
following the main PSF modeling strategy as described in the
following [38]:

PSF(x, y) =
G(x) ·G(y)∑
G(x) ·G(y)

(1)
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with

G(x) = e−X2/2σ2
x , G(y) = e−Y 2/2σ2

y (2)

where X and Y are the distances to the PSF center in East-West
(x) and North-South (y) dimensions, respectively. σx and σy are
the standard deviations of x and y derived from the full width
at half maximum (FWHM) of the Gaussian function G(x, y) as
follows:

σx =
2
√

2 ln(2)

FWHMx
, σy =

2
√

2 ln(2)

FWHMy
. (3)

To account for the difference in imaging direction between
the two sensors, we constructed the cross-scale spatial matching
filter (SMF) by multiplying the PSF by the rotation matrix

SMF(FWHMx,FWHMy, θ) = PSF ·

⎡
⎢⎣ cosθ sinθ 0

−sinθ cosθ 0

0 0 1

⎤
⎥⎦
(4)

where θ is the angle (in degree) relative to the North by rotating
the PSF in a counterclockwise direction around its centroid [see
Fig. 1(b)].

To reduce the geo-registration errors between coarse and fine
images, the SMF is shifted in both East-West and North-South
dimensions as measured by shiftx and shifty [see Fig. 1(c)]. The
shifted filter is then convolved with the coarse image as follows:

∧
C SMF(bn, t0) = C(bn, t0)⊗ SMF(bn) (5)

where
∧
C SMF(bn, t0) is the filtered version of the resampled

image in band n at t0. As a result of the convolution, the blocky
artifacts in C(bn, t0) could be eliminated and the cross-scale
spatial mismatch between image pairs could be reduced.

The SMF could be determined by three sets of parameters,
including the size (FWHMx, FWHMy), the rotation (θ) and the
shift (shiftx, shifty). To avoid the subjective parameterization
procedures as requested in most of the existing fusion methods,
the implementation of FCSM could be automated by only setting
up the initial values. These parameters could be estimated by
automatically optimizing the cost function defined below as
the root mean square error (RMSE) between the filtered image
∧
C SMF(bn, t0) and the original fine image for each band F(bn,
t0) at t0

RMSE =

√√√√∑
(
∧
CSMF(bn, t0)− F (bn, t0))

2

N
. (6)

For computational efficiency purposes, the particle swarm
optimization (PSO) was used to estimate the five parameters.
PSO is a stochastic optimization algorithm and does not require
the optimization problem be differentiable. In addition to high
computational efficiency, the main advantages of the PSO al-
gorithm also include simple concept, easy implementation, and
robustness to control parameters, when compared with other
mathematical algorithms and heuristic optimization techniques.
For more descriptions of PSO, readers are referred to relevant
references [39]–[42]. Given that there are five parameters in

HISTIF, the spatial dimension of PSO should be set to 5. In
this study, we set the ranges of size, shift, and rotation as 5,
20–180 m, 0–50 m, and 0°–90°, respectively. The maximum
number of iterations was set to 100, but the optimization process
would stop automatically if there was no significant change after
50 iterations.

Suppose the differences in PSF effect and observation geom-
etry between two sensors are constant from t0 to t1, then the
coarse image at t1 (C(bn, t1)) can also be convolved with the
SMF generated from the image pair at t0 to produce the filtered
image at t1

∧
C SMF(bn, t1) = C(bn, t1)⊗ SMF(bn) (7)

where
∧
C SMF(bn, t1) is the filtered coarse image in band n at t1.

C. Multiplicative Modulation of Temporal Change (MMTC)

The second stage aims to accommodate the temporal changes
in reflectance caused by crop phenology between the images
at two resolutions. In order to characterize both between-class
heterogeneity and within-field variability, the proposed method
quantifies the temporal changes per pixel rather than per class
as done in the fusion methods that need land-cover maps as the
input [21]. The pixel-wise changes for band bn in coarse images
from t0 to t1 can be represented by the multiplicative modulation
factor (MMF)

MMF(bn) =

∧
CSMF(bn, t1)
∧
CSMF(bn, t0)

. (8)

A multiplicative factor was chosen instead of an additive
factor, because the addition operator as used in many fusion
methods would inevitably produce negative values when apply-
ing linear functions to model the spectral changes from t0 to t1.
This way the MMF carries all the true information about tem-
poral changes from the coarse images at two dates. Suppose the
pixel-level temporal changes in reflectance are regular from t0
to t1 and consistent on different scales [20], then the reflectance
of the fine image in band bn at t1 could be determined through
the MMF.

According to (7) and (8), the fine image in band bn at t1 can
be predicted from a coarse image at t1 and one image pair at t0
as follows:

F (bn, t1) =
C(bn, t1)⊗ SMF(bn)

C(bn, t0)⊗ SMF(bn)
× F (bn, t0). (9)

III. EXPERIMENTS

A. Study Sites and Image Data

Simulated imagery represents an ideal situation without sen-
sor differences and serves as a basic test for validating the pro-
posed method. Real images from currently operational satellite
instruments could be employed to address the complicated fac-
tors in real-world applications and to evaluate the practicability
of HISTIF. Therefore, both simulated and real datasets were used
in this study. The real images were acquired over two study sites,
with one large agricultural area (Site 1 in Fig. 2) and one small
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Fig. 2. Test subset images of Site 1 for t0 and t1 at fine and coarse resolutions. The Sentinel-like and Landsat-like reflectance images were simulated from the
corresponding GF-1 data, so t0 and t1 of them are the same as those of GF-1 on Site 1 in Table II. All false-color images are displayed with NIR-red-green as
RGB. The statistical assessments of the real GF∼Sentinel and GF∼Landsat datasets are listed in Table VIII in the Appendix.

Fig. 3. Test images of Site 2 at fine and coarse resolutions for the wheat site.
(a) and (b) are the GF-1 images acquired on (a) 12 March 2015 and (b) 22
April 2015, respectively. (c) and (d) are the corresponding Landsat-8 images
acquired on 10 March 2015 and 27 April 2015, respectively. All false-color
images are displayed with NIR-red-green as RGB. The statistical assessments
of the GF∼Landsat dataset are listed in Table VIII in the Appendix.

cropland (Site 2 in Fig. 3). The selection of study sites was based
on the following facts:

1) the site was mainly covered by crop fields;
2) the croplands experienced obvious changes in reflectance

between the two dates due to crop growth; and

3) the spectral variations within fields (i.e., at subfield level)
were significant.

The simulated dataset includes fine images from real GF-1
data at t0 and t1 and corresponding simulated of Sentinel-like and
Landsat-like images on Site 1. Simulated coarse images were
obtained by averaging 2-m GF-1 surface reflectance images to
10 m (Sentinel-like) and 30 m (Landsat-like) resolutions. As a
result, the image pairs were in the same size and each coarse pixel
contained corresponding GF-1 pixels completely (i.e., 5×5 and
15×15 GF-1 pixels were exactly contained by one Sentinel-like
and one Landsat-like pixel, respectively).

GF-1 satellite is the first in the series of Chinese High Res-
olution Earth Observation System launched in April 2013. It
was equipped with two panchromatic/multispectral (PMS) and
four wide-field-of-view (WFV) cameras. The WFV/GF-1 was
designed as high temporal resolution of 4 days but low spatial
resolution of 16 m. The PMS/GF-1 instrument acquired 2 m res-
olution panchromatic images and 8 m resolution multispectral
images in blue, green, red, and near-infrared bands, but its revisit
time is 41 days and the frequency of acquiring cloud-free images
could be even lower. Because of the high spatial resolution and
open data policy, the images from the PMS/GF-1 (hereafter
refer to GF-1) were used as the fine images in this study. The
panchromatic and multispectral images were calibrated from
digital number to radiance then to reflectance using the Fast
Line-of-Sight Atmospheric Analysis of Spectral Hyper-cubes
model. The reflectance images were geometrically corrected
using the rational polynomial coefficient ortho-rectification and
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TABLE II
DATA USED FOR EVALUATING HISTIF AND EXISTING METHODS

the associated digital elevation model file. After atmospheric
and geometric corrections, the panchromatic and multispectral
images were pansharpened using the Nearest Neighbor Diffu-
sion algorithm to create 2 m resolution multispectral images. All
of these operations were performed in ENVI 5.3.

The coarse images of real data were acquired from the
Operational Land Imager (OLI) on Landsat 8 and the multi-
spectral instrument on Sentinel-2A/B. The surface reflectance
products of Landsat-8 OLI Level-2 Data are freely available
via the United States Geological Survey and were downloaded
for subsequent analysis. For the Sentinel-2 images, the product
of top-of-atmosphere reflectance (Level-1C)1 was transformed
to the surface reflectance with the Sen2Cor processor released
by the European Space Agency. To ensure image pairs were
well co-registered, we first resampled the GF-1 images to 10
and 30 m, corresponding to the spatial resolution of Sentinel-2
and Landsat-8, respectively. Then, the coarse image was geo-
rectified to the resampled image with ground control points.
For the spatiotemporal fusion of GF-1 PMS and Landsat-8 OLI
images (hereafter referred to as GF∼Landsat fusion) and the
fusion of GF-1 PMS and Sentinel-2 images (hereafter referred
to as GF∼Sentinel fusion), this study only used the blue, green,
red, and NIR bands (Bands 1, 2, 3, and 4 in GF-1 PMS; Bands 2,
3, 4, and 5 in OLI; Bands 2, 3, 4, 8 in Sentinel-2) (see Table II).

The two selected sites are located in Jiangsu province, which
is part of the Yangtze-Huai Plain and one of the major crop
production regions in China. The major crops in this region are
winter wheat and rice, which are planted in a rotation cropping
system. The Site 1 (117.53°E, 34.12°N) occupies 6×6 km2,
corresponding to 3000×3000 pixels for GF-1 images, 600×600
pixels for Sentinel-2 images, and 200×200 pixels for Landsat-8
images. The GF-1, Sentinel-2, and Landsat-8 images were ac-
quired quasi-synchronously at reference time t0 (4 to 6 February)
and prediction time t1 (9 to 11 March), roughly from tillering
stage to jointing stage, in the winter wheat season of 2018
(see Table II). For visual assessment of the fusion performance,
we selected two typical subset images on Site 1 (see Fig. 2).
Although Sentinel-2 images can record the rough distribution

1[Online]. Available: https://scihub.copernicus.eu/

of the farmland, the outline is very blurry and the real Sentinel-2
images are more blurred than the simulated Sentinel-like ones
(see Fig. 2). Landsat-8 images with 30 m resolution cannot
capture the spatial detail between and within fields. The Site 2
(119.094°E, 33.396°N) covers a spatial area of 1050 by 1050 m,
corresponding to 525 by 525 pixels for GF-1 and 35 by 35 pixels
for Landsat. The GF-1 images were acquired on March 12, 2015
(t0) and April 22, 2015 (t1), and the two Landsat-8 images were
acquired quasi-synchronously on March 10, 2015 (t0) and April
27, 2015 (t1) (see Table II). According to Fig. 3, it is clear that
Site 2 experienced strong phenological changes in reflectance
between the early jointing and heading growth stages of winter
wheat. The spectral variation within wheat fields was significant
due to the difference in genetic type and sowing date, especially
in March [see Fig. 3(a)]. For both sites, temporal changes were
regular as observed on GF∼Sentinel and GF∼Landsat image
pairs with different scale differences (see Figs. 2, 3, and 12).

B. Comparison and Evaluation

As the major step of HISTIF, the SMF process should be
evaluated for validating the stability over time. We used the
image pair of real data at t0 as the reference data to optimize the
parameters of SMF. In order to verify the assumption of stable
SMF performance over the time interval, we also adjusted the
parameters of SMF at t1. Furthermore, the SMFs at both t0 and
t1 were applied to predict the fine image at t1, respectively.

The performance of HISTIF was compared with three spa-
tiotemporal image fusion methods, STARFM [19], flexible spa-
tiotemporal data fusion (FSDAF) [43], and Fit-FC [29]. The
STARFM is a typical fusion method for phenological change
prediction and is usually used as the benchmark for evaluation
of a new image fusion method [29], [30], [44]. The FSDAF
is suitable for heterogeneous landscapes and mainly designed
for applications related to land cover changes. The Fit-FC is a
recently developed method for characterizing both phenological
and land-cover changes. In addition, these three algorithms can
be implemented using only three available input images (i.e., one
image pair at t0 and one coarse image at t1) and are available in
open source codes. Therefore, the three fusion algorithms were
considered as reference methods and compared with the HISTIF
method. All the parameters of STARFM, FSDAF, and Fit-FC
were determined by following the corresponding instructions
and the trial-and-error tests.

For performance evaluation, the fine images predicted by all
four methods were compared visually with the true observation
from GF-1 at t1. Each band of predicted images was compared
quantitatively using the correlation coefficient (CC), the RMSE,
and the mean absolute difference (MAD)

CC =

∑
(x− x) · (y − y)√∑

(x− x)2 ·∑ (y − y)2
(10)

RMSE =

√
(x− y)2

n
(11)

MAD =
|x− y|

n
(12)

https://scihub.copernicus.eu/
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TABLE III
OPTIMAL PARAMETERS OF SMF FOR EACH BAND AT REFERENCE AND PREDICTION TIMES

aNote: E, S, and N represent shifts to the east, the south, and the north, respectively.
bRMSE is the root mean square error in SMF between the predicted image and the corresponding fine observation image.
cRMSE’ represents the RMSE between the predicted image based on SMF at t0 and the fine-resolution observation image at t1.
dΔRMSE is the difference between RMSE and RMSE’.

where x and y are observed and predicted values, respectively,
and n is the number of pixels. The ideal value of CC is 1. The
linear relationship between predicted and actual reflectance is
stronger when the CC value is greater. The value of RMSE
and MAD closer to 0 indicates more accurate prediction and
better performance of spatiotemporal fusion algorithm. Fur-
thermore, pixel-wise comparisons between predicted and actual
reflectance for each band were shown in density plots.

IV. RESULTS

A. Stability of SMF Across Time

Table III shows the calibration details of the SMF at both
t0 and t1 for the real datasets. In all cases, the shapes of SMF
characterized by FWHM were mostly unsymmetrical. The op-
timal FWHM was no less than 10 or 30 m, i.e., beyond one
Sentinel-2 or no less than 10 or 30 m, i.e., beyond one Sentinel-2
or Landsat-8 pixel. The shifts of SMF for all bands on Site 1 were
in the northeast and east direction in the case of GF∼Landsat
fusion and GF∼Sentinel fusion, respectively. Conversely, the
shifts of SMF on Site 2 were in the southeast direction for
GF∼Landsat fusion. The optimal rotation angle varied from 46°
to 62° for GF∼Landsat fusion on the two sites, while the rotation
angles for GF∼Sentinel fusion on Site 1 were relatively constant
between different bands (from 35° to 39°). When replacing the

SMF at t1 with the optimal SMF at t0, the RMSE between the
SMF predicted image and the GF-1 image at t1 (RMSE’) were
still low and the differences in RMSE (ΔRMSE) were minimal
in all cases. Given that the maximum value of ΔRMSE was
as small as 0.0004, the SMF could be regarded stable across
time. Therefore, it is feasible to characterize the spatial scale
relationship between the available Landsat-8/Sentinel-2 image
and the unknown GF-1 image at t1 using the SMF obtained from
the available image pair at t0.

B. Test on Simulated Data Over a Large Area (Site 1)

Figs. 4 and 5 show the predicted fine images at t1 from simu-
lated datasets (both GF∼Sentinel and GF∼Landsat) of subset 1
and subset 2 on Site 1, respectively. Generally, the predictions for
the simulated GF∼Sentinel fusion for all the four methods were
more accurate than those for the simulated GF∼Landsat fusion.
The predicted images by the four methods were closer to the
observation image, and the spatial details in the subset images
were clearer. For the simulated GF∼Landsat fusion, the pre-
dicted images by STARFM and FSDAF exhibited some blurry
patches, and the spatial heterogeneity within fields were unclear
[e.g., the areas marked with white dashed ellipses in Figs. 4(e)
and (f) and 5(e) and (f)]. On the contrary, the images predicted
by Fit-FC [see Fig. 4(g)] and HISTIF [see Figs. 4(h) and 5(h)]
were visibly close to the original image GF(t1). However, some
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Fig. 4. Comparison of the predicted fine images with the four fusion methods (STARFM, FSDAF, Fit-FC, and HISTIF) for both simulated and real fusion and the
observation image GF(t1) of subset 1 on Site 1. All false-color images are displayed with NIR-red-green as RGB. The white dashed ellipses denote the outlying
areas in the predicted images. The density scatters of the whole images predicted by the four methods are shown in Figs. 13–15 in the Appendix.

negative values were unexpectedly predicted by Fit-FC in the
simulated GF∼Landsat fusion [see Figs. 13(c), (g), (k), and (o)].

In Table IV, the statistical assessments for the simulated
GF∼Landsat and GF∼Sentinel fusions show differences in pre-
diction accuracy of the four methods. Generally, HISTIF yielded
higher accuracy than the other three. Although STARFM and
Fit-FC achieved the same MAD (0.0085) for the red band as
HISTIF did in the simulated GF∼Landsat fusion, the MAD
values of HISTIF were the lowest for blue and NIR bands.
The lowest mean RMSE was also seen for HISTIF in the
simulated GF∼Sentinel fusion, which was 19%, 10%, and 10%
lower than the RMSE values for STARFM, FSDAF, and Fit-FC,
respectively.

C. Test on Real Data Over a Large Area (Site 1)

Compared to the predicted images from the simulated
datasets, the predictions for the real datasets were much poorer
for STARFM, FSDAF, and Fit-FC (see Figs. 4 and 5). On the
contrary, the predicted images by HISTIF appeared close to
the actual GF-1 observations regardless of simulated or real
datasets (see Figs. 4 and 5). In the predicted images of HISTIF

on subset 1 [see Fig. 4(l) and (p)], clear objects could be
seen around the wheat fields, including bare soil, greenhouses,
buildings, irrigation channels, and roads. Conversely, the image
predicted by STARFM [see Fig. 4(i) and (m)] appeared blurry
and exhibited unclear boundaries at the junction of fields and
other surface features. Moreover, spectral distortion appeared
noticeably in the STARFM predictions. For example, the area
denoted by the white arrow in Fig. 4(i) should be light red but is
predicted inaccurately as green; the area with arrow in Fig. 4(m)
should be mixed gray and red but is predicted inaccurately as
black. This problem also appeared in the predicted images by
STARFM on subset 2, especially near the border of the farmland
[see Fig. 5(i) and (m)]. Compared to STARFM, predictions
by the FSDAF [see Fig. 4(j) and (n), and Fig. 5(j) and (n)]
and Fit-FC [see Fig. 4(k) and (o) and Fig. 5(k) and (o)] were
improved but blurry field boundaries still existed with some
noticeable noises (e.g., the areas marked with white dashed
ellipses). With respect to the fusion performance for the area
with within-field variability, the STARFM prediction was the
blurriest. The within-field variability in the FSDAF and Fit-FC
predicted images were clearer. However, the predicted images of
FSDAF have some mottled features, such as the area marked by
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Fig. 5. Comparison of the predicted fine images with the four fusion methods (STARFM, FSDAF, Fit-FC, and HISTIF) for both simulated and real fusion and
the observation image GF(t1) of subset 2 on Site 1. All false-color images are displayed with NIR-red-green as RGB. The white dashed ellipses denote the outlying
areas in the predicted images. The density scatters of the whole images predicted by the four methods are shown in Figs. 13–16 in the Appendix.

TABLE IV
STATISTICAL ASSESSMENT OF BANDWISE PREDICTIONS WITH THE FOUR SPATIOTEMPORAL IMAGE FUSION METHODS FOR THE SIMULATED DATA ON SITE 1

Note: Bold values indicate the best accuracy by row.
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TABLE V
STATISTICAL ASSESSMENT OF BANDWISE PREDICTIONS WITH THE FOUR SPATIOTEMPORAL IMAGE FUSION METHODS FOR THE REAL DATA ON SITE 1

Note: Bold values indicate the best accuracy by row.

Fig. 6. Comparison of the predicted fine-resolution images with the four image fusion methods (a. STARFM, b. FSDAF, c. Fit-FC, and d. HISTIF) with the
observation image (e) for Site 2 (NIR-red-green bands as RGB). The middle (f)–(j) and bottom (k)–(o) rows represent the subset images of areas outlined in (a)–(e)
with yellow and green squares, respectively. The white dashed ellipses and arrows denote the outlying areas in the predicted images.

arrows in Fig. 5. Moreover, the spectral information was poorly
estimated by Fit-FC. For example, the marked field in Fig. 5(k)
was inaccurately predicted as shown in white patterns in GF(t1).
Generally, the predicted values of HISTIF were more strongly
correlated to the actual GF-1 data than those of the other three
methods (see Figs. 4, 5, 15, and 16).

The statistical assessment (see Table V) also demonstrates
that the accuracy of HISTIF was generally higher than that
of STARFM, FSDAF, and Fit-FC. For the real GF∼Landsat
fusion, only the RMSE of Fit-FC in green band (0.0144) was
smaller than that of HISTIF (0.0148) and HISTIF yielded the

lowest mean RMSE (0.0162). For the real GF∼Sentinel fusion,
although FSDAF achieved the lowest MAD for the blue band of
the whole image (0.009), the MAD values of HISTIF were the
lowest for green, red, and NIR bands. The accuracy of Fit-FC
prediction was relatively worse than that of the other methods.

D. Test on Real Data on Small Farms (Site 2)

Fig. 6 presents the fine image at t1 predicted by the four
spatiotemporal fusion methods using real datasets on Site 2.
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Fig. 7. Density plots of the actual and predicted values in four bands for the winter wheat site with the four spatiotemporal image fusion methods. Panels (a)–(d),
(e)–h), (i)–(l), and (m)–(p) are the plots for blue, green, red, and NIR band, respectively. The four columns from left to right correspond to the image fusion methods
STARFM, FSDAF, Fit-FC, and HISTIF, respectively.

It is apparent that the predicted image by HISTIF [see Fig. 6(d)]
is closer to the actual observation from GF-1 [see Fig. 6(e)]
than those predicted by STARFM, FSDAF, and Fit-FC [see
Fig. 6(a)–(c)]. In the subset images [see Fig. 6(f)–(j)], there
are bare soil, irrigation canals, and roads intersected around the
fields. The image predicted by STARFM is blurry [see Fig. 6(k)].
At the junction of fields and other surface features, different
objects seemed to be mixed and led to unclear boundaries.
With respect to the FSDAF prediction, it has even more blurred
boundaries [e.g., the areas marked with white dashed ellipses
in Fig. 6(g)]. In contrast, the predicted images from Fit-FC [see
Fig. 6(h)] and HISTIF [see Fig. 6(i)] present much clearer field
boundaries. However, the color of Fit-FC prediction is visually
darker than the original GF-1 image with some noticeable noises
[see Fig. 6(h)]. Therefore, HISTIF has better performance in
the distinction of between-class heterogeneity. As for the fu-
sion performance in the area with within-field variability [see
Figs. 6(k)–(o)], we can clearly identify that the image predicted
by HISTIF contains more spatial and spectral details than the
other three predictions. The STARFM prediction is the most
blurred [see Fig. 6(k)]. Compared with the STARFM prediction,
the FSDAF predicted image is clearer but with mottled features
[see Fig. 6(l)]. Moreover, the spectral information is obviously

misestimated by STARFM, FSDAF, and Fit-FC. For example,
the fields are inaccurately predicted as a mix of red and cyan
[the area denoted by arrows in Fig. 6(k)–(m)] as opposed to the
red color in Fig. 6(n)–(o).

As shown in the density plots in Fig. 7, the values predicted
are generally significantly closer to actual values for HISTIF
than for the other methods. Its distribution is approximately a
spindle along 1:1 line with the large red cluster, which represents
the highest density of data points [see Fig. 6(d), (h), (l), and (p)].
Moreover, the range of red cluster exactly corresponds to the
values of wheat pixels. However, STARFM, FSDAF, and Fit-FC
overestimate the values for all bands especially in blue, green,
and red bands. The data points of the Fit-FC prediction are the
most discrete [see Figs. 6(c), (g), (k), and (o)].

The statistical assessment for each band on Site 2 is listed
in Table VI. Generally, the mean RMSE for HISTIF is 0.0139
with a decrease by 47.5%, 49.1%, and 45.7% when compared
with STARFM, FSDAF, and Fit-FC. Although the CC value
of STARFM in NIR band is the highest compared with that
of the other methods in the NIR band, it is only 0.058 larger
than the CC value of HISTIF. The Fit-FC produced the lowest
CC with a mean value around 0.6794. STARFM, FSDAF, and
HISTIF yielded better accuracies and the mean CCs are 0.7721,
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TABLE VI
STATISTICAL ASSESSMENT OF BANDWISE PREDICTIONS WITH THE FOUR

SPATIOTEMPORAL IMAGE FUSION METHODS FOR THE REAL DATA ON SITE 2

Note: Bold values indicate the best accuracy by row.

0.7557, and 0.8109, respectively. For all bands, the MAD values
of HISTIF are the lowest.

V. DISCUSSION

A. Correction of the Cross-Scale Spatial Mismatch

To produce frequent fine images, many spatiotemporal fusion
methods have been developed by blending temporally sparse
fine images and frequent coarse images from different sensors.
Because of the differences in system design and observation
scale, the PSF and geometric discrepancies between two types
of satellite data would influence the final fusion performance
[15], [27], [30]. However, previous algorithms either ignored the
two issues causing cross-scale spatial mismatch, or considered
only one of them [27], [35].

To overcome this limitation, HISTIF considers both PSF
effect and misregistration in the step of FCSM. In Table III, we
can see that the shape of PSF is not a typical square or rectangle,
which is in agreement with previous studies [35], [38], [45].
The difference in imaging direction between the two sensors
was corrected by the rotation angle (θ). The geo-registration
error was refined by shifting the coarse image in both East-West
and North-South dimensions. The SMF of GF∼Sentinel fusion
needed to be shifted eastward, although the shifty were 0 for
all bands (see Table III). That suggested that there were still
geo-registration errors even though the co-registration of image
pairs had been performed during data preprocessing. Wang et al.
[23] also suggested that additional geometric correction should
be done especially for improving the performance of the spectral
similarity-based fusion methods. The nonzero shift values in
HISTIF indicated that the SMF should be moved along a distance
and direction, rather than the image. Moreover, the optimal shifts
relied strongly on the other parameters (i.e., FWHMx, FWHMy,
and θ) and vice versa. Therefore, the parameters obtained from
FCSM could not be separated from HISTIF and applied directly

to images to be fused or other methods. The results demonstrated
that we were able to correct the cross-scale spatial mismatch
by combining the five parameters (FWHMx, FWHMy, shiftx,
shifty, θ) in HISTIF.

Those five parameters for the filter were optimized based on
the image pair at t0 and then applied to the coarse image at t1,
based on the assumption that the sensor difference was constant
between t0 and t1. Although the optimal parameters at the two
times were unequal (see Table III), the prediction accuracies of
SMF at t0 and t1 only exhibited a marginal difference (ΔRMSE)
of 0.00013 on average. This confirmed the stable performance of
the proposed SMF across time, which means that the cross-scale
spatial mismatch can be corrected at t1 with the SMF derived
from the image pair at t0.

B. Characterization of Within-Field Variability

The farmland landscape often exhibits both between-class
heterogeneity caused by the alternate distribution of different
cover types and within-field variability caused by the differ-
ence in growth conditions within the same crop cover [46]. To
improve spatial details, the two methods FSDAF and Fit-FC
evaluated in this study adopt different solutions. FSDAF uses a
thin plate spline interpolation to improve the image prediction
accuracy, but it is only based on the spatial dependence of the
coarse pixels [43]. The predicted images of FSDAF exhibited
oversmoothness within fields, some flecks, and border effects
(see Figs. 4–6). In agreement with previous studies [30], this
research implies that FSDAF is not applicable to the areas
where the within-class variability is small. However, we found
that FSDAF could capture more spatial and spectral details
within fields when the scale difference between coarse and fine
images became smaller (e.g., the GF∼Sentinel fusion results
in Figs. 4–6). Fit-FC uses spectrally similar pixels from the
neighborhood and has the number of classes set up based on
the size of objects to enhance spatial details [29]. Thus, it is
expected to reveal greater within-field variability than STARFM
and FSDAF. According to the visual assessment (see Figs. 4–6),
the predicted images of Fit-FC showed more spatial details
and clearer boundaries than those of STARFM and FSDAF.
However, Fit-FC unexpectedly yielded poor estimation of some
spectral information especially for the real GF∼Landsat fusion
on Site 1 with negative values (see Fig. 13).

The combination of MMTC and FCSM in HISTIF could
improve within-field heterogeneity and spectral accuracy. How-
ever, neither FCSM nor MMTC could be omitted in order to
obtain the best performance. Our results show that HISTIF could
benefit from the application of SFM in the step FCSM. If using
the multiplicative factor without running FCSM, the predicted
images would exhibit faint blocky artifacts (see Fig. 8) due to the
pixel boundaries of the coarse image [20]. As a result, the spatial
details within fields would decrease sharply and the between-
class heterogeneity would be smoothed to lose clear boundaries
(see Fig. 8). On the contrary, the use of SFM could enhance the
predicted images because SFM considers the sensor PSF and
performs deblurring. Kwan et al. [47] also found that the PSF
as a convolution matrix could present the blur of hyperspectral
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Fig. 8. Comparison of the predicted subset 1 images without and with using FCSM for the real GF∼Landsat fusion (a) and (b) and the real GF∼Sentinel fusion
(c) and (d). (e) represents the original GF-1 subset image at t1.

bands and enhance the super-resolution performance. Based on
the output from FCSM, the implementation of MMTC would
further improve the spectral reconstruction accuracy of HISTIF.
Instead of class-based processing, the MMF of temporal changes
is directly calculated per pixel between t0 and t1. As a result, even
the minor within-field variability can be reconstructed and the
boarder effect could be eliminated (see Figs. 4–6). Compared
to linear operations used to quantify temporal changes in most
pixel-based methods, MMF can avoid negative predictions of
pixel values. For example, STARFM fills negative values as
–9999 (see Fig. 16), and Fit-FC has no strategy to deal with
this problem (see Fig. 13). Based on the ratio form of MMF
(8), there are no negative predictions in HISTIF as long as the
values from the input images are valid. However, a bias term
needs to be considered in future work to improve the correction
of differences between the images at two dates [13], [48].

C. Universality of HISTIF Across Sensors and Sites

In this study, we used both simulated and real datasets from
different sensors (i.e., GF∼Landsat and GF∼Sentinel) to evalu-
ate the fusion performance of HISTIF. The scale factor between
Landsat-8 (30 m) and GF-1 (2 m) pixels is 15 and that between
Sentinel-2 (10 m) and GF-1 (2 m) pixels is only 5 (see Table II).
As the scale factor varied, the FCSM parameters in HISTIF
were different for the two datasets. According to Table III, all
the parameters of FCSM in HISTIF for GF∼Sentinel fusion
were smaller than those for GF∼Landsat fusion. For example,
the shifts of SMF in GF∼Sentinel fusion (2 to 3 GF-1 pixels
of shiftx and 0 of shifty) were much smaller than those in
GF∼Landsat fusion (10 to 15 and 4 to 5 GF-1 pixels of shiftx
and shifty, respectively) on Site 1. That suggested a smaller scale
difference between coarse and fine images yielded a lower scale
mismatch. Furthermore, it implied that FCSM could be adaptive
to different datasets through the automatic determination of the

five parameters. Without using FCSM, the applicability and
accuracy of HISTIF would be greatly reduced, especially for
the fusion with a large-scale difference between coarse and fine
images.

In the relevant studies on FSDAF [43], Fit-FC [29], and other
fusion methods [12], [49], the input coarse images were not real
observations from satellites but simulated by spatial aggregation
from the fine images. In those ideal situations, there was no
sensor difference between coarse and fine images but only scale
difference. Therefore, those studies lack evaluations of method
performance in practical applications. In Fig. 9, we could see
sharp decreases in the CC values from the real datasets for
STARFM, FSDAF, and Fit-FC, and the RMSE and MAD values
from the real datasets for those three methods increased dramati-
cally, especially for Fit-FC. Regardless of simulated or real data,
the performances of HISTIF were better than that of STARFM,
FSDAF, and Fit-FC on both simulated and real data. In terms of
different sensors, the CC, RMSE, and MAD values for HISTIF
were similar in both real GF∼Sentinel fusion and GF∼Landsat
fusion. However, performances of Fit-FC evaluated by RMSE
and MAD based on the real GF∼Sentinel data were much worse
than those in GF∼Landsat fusion. This may be due to overfitting,
given that GF∼Sentinel data can provide more spatial details
than GF∼Landsat data. In addition, common learning-based
methods, such as SPSTFM [3] and one-pair learning [14], are not
suitable for the dataset with a large-scale difference [43], [50].
Therefore, HISTIF can reconstruct within-field spatial details
accurately and is stable across sensors.

We note that the parameters are different among bands and
between sites (see Table III). Specifically, the SMF parameters
are marginally different across bands (see Table VII). For exam-
ple, the differences of the FWHM and shift are almost less than
one pixel (i.e., 10 m for Sentinel-2 and 30 m for Landsat-8) in
the three datasets (see Table VII). The slight difference might
be caused by the spectral variation on each band. In recent test
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Fig. 9. Comparison of (a) the correlation coefficient (CC), (b) the root mean square error (RMSE), and (c) the mean absolute difference (MAD) between the
simulated and real data.

TABLE VII
MINIMUM, MAXIMUM, AND DIFFERENCE OF THE PARAMETERS OF SMF

Note: E, S, and N represent shifts to the east, the south, and the north, respectively, and
the bold values indicate the best accuracy by row.

over a large number of Sentinel-2 and Landsat-8 scenes globally,
Yin et al. [51] suggested that the very accurate estimations of
either the widths or shifts of PSF are not very important and
we could transfer the parameters from one band to another.
Although we also found that the cost function is fairly flat around
the minimum, we still suggested optimizing the parameters of
each band when applying HISTIF. In terms of different sites,
the FWHM and rotation angles of SMF are similar but the shift
appears more scene-dependent. Therefore, the effect of the pixel
shift needs to be inferred on a scene by scene basis.

D. Advantages and Limitations of HISTIF and User Guide

For practical applications, the two major advantages of HIS-
TIF are the minimal input requirement and high computational
efficiency. In the growing season of either wheat or rice in recent
five years, the number of available PMS/GF-1 high-resolution
images (only one or two) was much smaller than that of available
Landsat-8 and Sentinel-2 images (see Fig. 10). Therefore, the

minimal input requirement of HISTIF could reduce the purchas-
ing cost of high-resolution images and increase the practicability
of spatiotemporal fusion. Moreover, consisting of only two steps
with efficient processing, the HISTIF is advantageous in terms
of computational efficiency. Some algorithms require trail-and-
error experiments to define the optimal parameters (e.g., the
size of moving window, the number of similar pixels, and the
bands for determining the similar pixels). The fusion realization
would fail if the parameters were inappropriate for the study area.
Specifically, the computational efficiency of the STARFM-like
methods would degrade dramatically when the size of moving
window and the extent of study area increase. As for HISTIF, the
SMF parameters in the first step were optimized automatically
by employing the PSO algorithm. Due to the stability of SMF
across time, the SMF could be calibrated only once over a
set of image pairs before triggering the fusion algorithm. The
second step is efficient since it only demands the time to traverse
the entire image pixel by pixel. A comparison of the average
runtimes between the four methods indicates that the single
runtime was around 5 min for STARFM and HISTIF and tens of
times longer for Fit-FC and FSDAF (see Fig. 11). Although the
type of programming language has an impact on computational
efficiency, the decisive factor for algorithm efficiency is the
technical principle. If the time for parameterization is considered
in practical use, the computational efficiency for Fit-FC and
FSDAF will be even lower.

The new spatiotemporal fusion method was designed specif-
ically for subfield-level crop monitoring and evaluated over
crop sites with phenological changes between the two dates.
Therefore, the land cover changes over the two dates were not
considered. Although the use of MMF rather than an additive
factor in HISTIF can eliminate negative prediction and yield
better results in this study, HISTIF could be sensitive to sharp
changes in spectral values (e.g., from small surface reflectance
of farmlands to large values of greenhouses in the visible bands).
Therefore, it is necessary to validate the application of HISTIF in
the farmland area experiencing pronounced land cover changes
and it is worthwhile to test the Index-then-Blend rather than
Blend-then-Index blending strategy in the future [50], [52].
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Fig. 10. Availability of PMS/GF-1, Landsat 8 and Sentinel-2 imagery for the study site in the recent five years. The growing season of winter wheat is from DOY
(day of the year) 1 to 180, representing by a pale pink background. The growing season of paddy rice is from DOY 180 to 310 with a light blue background.

Fig. 11. Average runtimes of STARFM, FSDAF, Fit-FC and HISTIF for
3000×3000 pixels of one image pair with four bands on the same computer.
Central processing unit (CPU): Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80
GHz 2.80 GHz (2 processors); installed memory (RAM): 128 GB; system type:
64-bit operating system, x64-based processor; operating system: Windows 10
Education. FSDAF was run in ENVI IDL 5.1, and both Fit-FC and HISTIF were
run in MATLAB 2016a. STARFM was run in Ubuntu using C.

Since the step of MMTC operates pixel by pixel, the accuracy
of the previous step FCSM is crucial. If the information of the
image pair is unmatched (e.g., a clear fine image and cloudy
coarse image), the SMF based on the image pair at t0 would
be unreliable and further affect the final output. Therefore, it is
worth testing different ways of the MMF application over whole
image in the future work. For example, Kwan et al. [13] found
that predicted results would be more accurate if images were
divided into patches. Accordingly, we might apply patch-based
MMF in homogenous areas instead of using pixel-wise MMF
to reduce overcompensation, while still applying pixel-wise
MMF in heterogeneous areas. Moreover, the assumption that the
temporal changes on different scales are consistent is crucial. If
the temporal changes were considerably different between fine
and coarse images, the fusion performance would be adversely
affected. Therefore, it is necessary to check if temporal changes
captured by image pairs are consistent before applying the
HISTIF algorithm. Given the uncertainty in image processing,
bandwidth differences, signal noise, and model errors, a residual

might be considered in the future to correct for the small biases
and eventually improve the fusion accuracy.

Due to the lack of submeter imagery, the fine images used
in this study are pan-sharpened PMS/GF-1 bands. Although
pan-sharpened PMS/GF-1 data have been widely used as a
real and reliable product in many applications [53]–[58], it is
important to use the original high-resolution data to do the
fusion. Our results indicate the great potential of HISTIF in the
applications of fusing Landsat-8 or Sentinel-2 and WorldView-
2 or other high-resolution imagery. These applications could
be accomplished by automatically adjusting the parameters of
SMF. According to previous studies and our experience, the
maximum value of the FHWM could be set as three times larger
as the resolution of coarse imagery and the shift generally would
not exceed twice of the coarse resolution. We suggested setting
FHWM in x and y directions to the same range. In terms of
the rotation, its range is from 0° to 180°. When the ranges of
FHWMx and FHWMy are set to the same, the range of the
rotation could be set from 0° to 90° to avoid repeated operations.
We increased the practicability of our method by implementing
HISTIF in MATLAB, which provides user-friendly and concise
interfaces.

VI. CONCLUSION

To improve the continuous subfield-level crop monitoring,
this article presents a new spatiotemporal fusion algorithm
HISTIF to blend temporally sparse high-resolution images and
frequent medium-resolution images. HISTIF addresses the two
challenging issues, spatial scale mismatch and within-field vari-
ability, with only two steps (FCSM and MMTC). It was tested
using both simulated and real datasets of GF∼Landsat and
GF∼Sentinel and was compared with the three state-of-the-art
spatiotemporal fusion methods STARFM, FSDAF, and Fit-FC.
The correction of spatial scale mismatch in HISTIF led to sub-
stantial reduction in PSF calibration errors and geo-registration
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errors that affect all pixel-based fusion methods. The visual
assessment demonstrated that STARFM performed the worst
in reducing blocky artifacts and improving spatial details within
fields, especially for the real data. The minor within-field vari-
ability could only be predicted by Fit-FC and HISTIF, but
predicted images of Fit-FC were less accurate due to the spectral
distortion.

Compared to the benchmark methods, HISTIF has advantages
in reconstructing fine spatial details within fields and reducing
fusion errors from spatial scale mismatch with minimal input
data. Furthermore, HISTIF was designed to accommodate the
temporal changes per pixel rather than per class such that its

performance was independent from a land cover classification
map as required by traditional methods. This method has great
potential in the application to other spatiotemporal imagery
from different satellite sensors with stable applicability and
high computing efficiency. The generated time series or dense
stacks of fine images allow better support to subfield-level crop
monitoring, crop growth modeling, and yield forecasting for the
precision agriculture sector.

APPENDIX

Fig. 12. Test whole images of Site 1 for t0 and t1 and the corresponding NDVI difference images at fine and coarse resolutions. The Sentinel-like and Landsat-like
reflectance images were simulated from the corresponding GF-1 data, so t0 and t1 of them are the same as those of GF-1 on Site 1 in Table I. The NDVI difference
images between the two dates were calculated by subtracting the NDVI at t0 from the corresponding NDVI at t1 for GF-1, Sentinel-like, Sentinel, Landsat-like,
and Landsat dataset. All false-color images are displayed with NIR-red-green as RGB.

TABLE VIII
STATISTICAL COMPARISON OF THE TWO SITES IN FOUR BANDS FOR THE WHOLE IMAGES
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Fig. 13. Relationships of the actual and predicted values in four bands for
the whole image with the four methods for the simulated GF∼Landsat fusion.
Panels (a–d), (e–h), (i–l), and (m–p) are the plots for blue, green, red, and NIR
band, respectively. The four columns from left to right correspond to the image
fusion methods STARFM, FSDAF, Fit-FC, and HISTIF, respectively.

Fig. 14. Relationships of the actual and predicted values in four bands for
the whole image with the four methods for the simulated GF∼Sentinel fusion.
Panels (a–d), (e–h), (i–l), and (m–p) are the plots for blue, green, red, and NIR
band, respectively. The four columns from left to right correspond to the image
fusion methods STARFM, FSDAF, Fit-FC, and HISTIF, respectively.

Fig. 15. Relationships of the actual and predicted values in four bands for
the whole image with the four methods for the real GF∼Landsat fusion. Panels
(a–d), (e–h), (i–l), and (m–p) are the plots for blue, green, red, and NIR band,
respectively. The four columns from left to right correspond to the image fusion
methods STARFM, FSDAF, Fit-FC, and HISTIF, respectively.

Fig. 16. Relationships of the actual and predicted values in four bands for
the whole image with the four fusion methods for the real GF∼Sentinel fusion.
Panels (a–d), (e–h), (i–l), and (m–p) are the plots for blue, green, red, and NIR
band, respectively. The four columns from left to right correspond to the image
fusion methods STARFM, FSDAF, Fit-FC, and HISTIF, respectively.
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