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Feature Matching for Remote Sensing Image
Registration via Manifold Regularization

Huabing Zhou"”, Anna Dai"”, Tian Tian ", Yulu Tian

Abstract—Feature matching is critical in analyzing remote
sensing images, aiming to find the optimal mapping between
correspondences. Regularization technology is essential to en-
sure the well-posedness of feature matching. However, current
regularization-based methods scarcely consider the geometry
structure of the image, which is beneficial for estimating the map-
ping, especially when the image pairs have a large view or scale
change and local distortion. In this article, we introduce manifold
regularization to overcome this limit and formulate feature match-
ing as a unified semisupervised latent variable mixture model for
both rigid and nonrigid transformations. Especially, we apply a
Bayesian model with latent variables indicating whether matches
in the putative correspondences are outliers or inliers. Moreover,
we employ all the feature points, only part of which have correct
matches, to express the intrinsic structure, which is preserved by
manifold regularization. Finally, we combine manifold regulariza-
tion with three different transformation models (e.g., rigid, affine,
and thin-plate spline) to estimate the corresponding mappings.
Experimental results on four remote sensing image datasets demon-
strate that our method can significantly outperform the state of the
art.

Index Terms—Feature matching, image registration, manifold
regularization.

I. INTRODUCTION

MAGE registration is a fundamental and challenging prob-

lem in the image process, aiming to align geometrically two
or more images, which are from different views, different times,
even various sensors, but the same scene [1]. It is a critical pre-
requisite of the tasks of analyzing two or more relevant images.
After the first full digit image registration was applied in remote
sensing field [2], image registration becomes popular in remote
sensing, which can be applied for environmental monitoring,
change detection, image mosaic, and so on [3]-[6].
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The registration methods can be classified as area- and feature-
based methods. As the geometric structure will not change in
some situations, the feature-based methods are robust to the
variety of illumination, different sensors, or noise. Besides, as
remote sensing images have scaling changing between the pairs,
we use the feature points to model the images. The general
procedure of feature-based methods is feature extraction, feature
matching, transformation function design, and image resam-
pling.

In recent years, some methods have tended to locate feature
points and find correspondences between them. RANSAC [7] is
a classical method that can estimate the transformation function
and then apply it to verify correspondences between the remain-
ing points in the two sets; however, efficiency will decrease
when the proportion of mismatches becomes high. Thus, Li
and Hu [8] proposed the Identifying point correspondences by
Correspondence Function (ICF) algorithm, and it can pick out
the correspondences that satisfy the consistency of transforma-
tion function to reject mismatches. Some methods focus on the
dissimilarity metric of the descriptor [9], [10], which utilize
eigenvector correlation based on the eigenvector properties or
signal directional differences.

However, the methods mentioned above could not get sat-
isfactory results when the images suffer from nonrigid trans-
formation. Therefore, some works introduce additional con-
straints to approximate the mapping function well. For example,
vector field consensus (VFC) [11] algorithm, based on the
Tikhonov regularization in vector-valued reproducing kernel
Hilbert space, learns a vector field fitting for the inliers to
remove outliers. Locally linear transforming [12] designs a
local geometrical constraint to preserve local structures among
neighboring feature points; it performs well even the outlier rate
is too high. Kahaki ez al. [13] use the Frobenius norm squared of
the difference between the deformation gradient tensor and the
identity matrix to regularize affine and B-spline transformations,
which can progressively improve the registration accuracy with
the increasing complexity of the transformations. This method
mainly deals with the medical images suffering from a small
view change, where the transformation estimating model need
not be robust to a large number of outliers.

Although many methods have been proposed to solve the
problem of image registration, the complex variety happens
in the remote sensing image process making it difficult to get
satisfying results. On the one hand, these methods only based on
the local geometric constraint that regularizes the transformation
function, and they do not fit the images suffering from local
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distortion. On the other hand, the constraints are obtained from
the putative correspondences under the similarity constraint,
which have discarded the mismatches that may contain impor-
tant information.

In this article, for solving the problem mentioned above, we
propose a novel method based on manifold regularization. First,
under the Bayes framework, we apply a joint model with a
latent parameter to formulate the problem as the probability
estimation, and then, we introduce the manifold regularization
technology to explore the additional information about images
to achieve the goal of improving performance; finally, we use
three typical transformation models and combine them with the
manifold regularization to approximate the mapping function
well.

Our contribution in this article can be summarized in the
following three aspects.

1) We propose a new method that can be applied in remote
sensing image registration; unlike the other method that
merely uses local features to approximate the transforma-
tion function, we introduce the manifold regularization,
which is constructed by all feature points preserving more
information about images.

2) We combine the manifold regularization term with three
transformation models that obtain different mapping func-
tions models—rigid, affine, and thin-plate spline (TPS)
model, which are called MRR, MRA, and MR-TPS.

3) We derive the solutions of these three models and test their
performance on four datasets; these models are general,
and MR-TPS can get the best performance compared with
the comparable state-of-the-arts methods and the other two
models.

The remainder of this article is organized as follows.
Section II describes the background material and related work.
In Section III, we present our manifold regularization algorithm
and apply it to the rigid, affine, and TPS feature matching.
Section IV describes our experiment to show the performance
of our algorithm and the result of comparing it with the other
algorithm. Finally, Section V concludes this article.

II. RELATED WORK

Image registration has a number of applications from com-
puter vision [14], [15], medical imaging [16], [17], and pattern
recognition [18]-[20] to remote sensing imaging [21]-[23]. The
remote sensing image registration methods can be classified
as area-based methods and feature-based methods. Area-based
methods deal with the image rather than detecting the distinctive
object but more focusing on the image intensity values. There
are three main types of area-based methods: correlation-like
methods [24], Fourier methods [25], and mutual information
methods [26]. However, when there are sufficient salient and
easily detected features in remote sensing images, the feature-
based methods will be the better choice for small complexity.

A. Correspondence Construction

Our method is based on features. For establishing reliable
correspondences, we should first detect the features and then,
based on these features, find out the correspondences between
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them. According to the type of features used in remote sensing
image registration, we can classify them as region features, line
features, and point features. Region features are always the
projection of the closed-boundary regions with high contrast,
which are usually detected using segmentation methods [27].
Line features can be obtained from general line segments, ob-
ject contours, coastal lines, or roads [28], [29]. Existing edge
detection methods are used for line feature detection, such as
Canny detector [30] or based on the Laplacian of Gaussian [31].
Because the region feature can be represented by their center
of gravity, and the line feature can be represented by the pairs
of line ends or middle points, point features are applied more
widely. Moravec [32] is the first one who uses a set of local
interest points in image matching; then, Harris and Stephens [33]
improved the performance of the Moravec’s method to make it
more repeatable under small image size. In 2004, Lowe [34] pro-
posed the SIFT descriptor, which assembles a high-dimensional
vector representing the gradients of the image within a local
region of the image to keep the distinctiveness of the point.
SIFT is invariant to image rotation and scale and robust across
a substantial range of affine distortion, addition of noise, and
change in illumination.

Establishing a robust correspondence is a crucial step for im-
age registration. Here are two steps for establishing the reliable
point correspondences between remote sensing images [11],
[35], [36]: first, computing a set of putative correspondences
and then using the geometrical constraints to remove the outliers
causing a bad influence on matching. During the first step, there
are three methods to construct the correspondence, which use
spatial relations, invariant descriptors, and relaxation methods.
Besl and McKay [37] proposed the well-known iterative closest
point algorithm for registering 3-D shapes, which minimize the
distance between two point sets through rotation and translation.
Lietal. [38] proposed using the SITF to overcome the difference
in the gradient intensity and orientation between remote image
pairs. In this way, we need to find out the correspondences that
are highly similar to all possible correspondences and combine
them with parametric geometrical models providing more infor-
mation about the images to remove the outliers for improving
the robustness of estimation. Fischler and Bolles [7] proposed a
random sample consensus (RANSAC), which aims to solve the
estimation of a model for the given set. Through hypothesizing
and verifying, it resamples to obtain the smallest outlier subset
to estimate the parameters of the model. There are many variant
algorithms based on RANSAC that have been proposed, such as
MLESAC [39], LO-RANSAC [40], and PROSAC [41].

B. Manifold Regularization

Regularization was first proposed by Tikhonov in 1963 [42],
which aims to solve the ill-posed inverse problems. Considering
that most of the image problems are of the same type, many
researchers try to apply this in solving image problems [43]—
[45]. Ma et al. [46] proposed moving regularized least squares
(MRLS) which based on the moving least squares (MLS) [47]
introduced the regularization in reproducing kernel Hilbert space
(RKHS) to get a closed-form solution and a detail-preserving
deformation. Zhou et al. [48] proposed MRLS-TPS, which
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models the deformation function by a nonrigid TPS function
with a regularization coefficient that can satisfy global linear
affine transformation and local nonrigid deformation to get
realistic deformation. Manifold regularization was proposed by
Belkin et al. [49], which is used for reducing the overfitting in
machine learning and for ensuring that a problem is well-posed
by penalizing complex solutions. Ma et al. [50] cast the point
registration into a semisupervised learning problem, where a set
of indicator variables is adopted to help distinguish outliers in a
mixture model; they constrain the transformation with manifold
regularization to play a role of prior knowledge to preserve the
intrinsic geometry structure of the input data. Zhou et al. [51]
applied manifold regularization as a prior on the feature-guided
MLS transformation and get a fast deformation in the 2-D image
and 3-D surface. Considering the similarity of image registration
and image deformation, we apply the manifold regularization to
get better performance.

III. METHOD

In our method, we use the feature detection algorithm to locate
the feature points Xy = {x;};2; and Yx = {y;}7_,, which
come from the reference and sensed image, respectively. Both
of them are 2-D column vectors and denote the positions of
feature points, where m > n. After comparing the similarity of
feature points, we can obtain a set of putative correspondences
containing the outliers. In theory, the set of inliers could approx-
imately fit the mapping function of the image pairs well. In our
method, we get the transformation function based on the inlier
and then use this transformation function to verify whether the
correspondence is an inlier. The process of our method can be
summarized as follows: 1) establish a putative correspondence
set based on rough matching; 2) determine inliers according
to the transformation function; 3) update the transformation
function according to inliers; and 4) iterate second and third
steps until the algorithm convergence.

As shown in Fig. 1, the first row shows the correct matches
on the images, the left is the reference image, and the right is
the sensed one. For visuality, only 50 randomly selected pairs of
correspondences are shown. The second and third rows are the
feature points extracted from the images, where the black points
have putative correspondences whose corresponding point has
been marked by the blue line; the red points on the reference
image are the points that cannot find the corresponding points in
the sensed image. The difference between the second and third
rows is that the reference image of the third row has gone through
the transformation. Thus, the reference image and the sensed
image are in the same coordinate system; that is the reason why
the blue lines in the third row are parallel. We can observe from
point distributions of the second and third rows that both the
global features and the local details of the point distribution are
preserved under the transformation, which was estimated by our
method.

A. Problem Formulation

To achieve the goal of distinguishing the inliers and outliers,
we apply a joint distribution to make the complicated distribution
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Fig. 1. Overview of the approach. The first row shows the correct matches
on the images, the left is the reference image, and the right is the sensed
one. The second and third rows are the feature points extracted from the
images before and after transformation, respectively, where the black points
are putative correspondences whose corresponding point has been labeled by
the blue line, and the red points on the reference image are those that cannot find
the corresponding points in the sensed image. For visibility, only 50 randomly
selected matches are presented in the figure. (Observing from the third row,
the blue lines are parallel, which means these feature points are in the same
coordinate and keep the same relative distance.)

to be formed from more straightforward and more tractable
components. More specifically, we use the Gaussian mixture
model. Assuming that we have obtained /V pairs of correspon-
dence S = {(z,yn)}2_,,, which contain inliers and outliers
and x,, € z;,y, € y;. We use a latent parameter z,, € {0,1} to
denote the nature of the correspondence s,, = (2, yn), i.€.,

1, if (zn,yn) is inlier

ey

Zn — .
" 0, if (2, yn) is outlier

As the outliers are disordered, we think they follow the uniform
distribution. In contrast, inliers follow the isotropic Gaussian
distribution with zero mean and covariance o21, and I is the
identity matrix. Since inliers have the character that they satisfy
the transformation function f, the model can be expressed as

P(Ynl|Tn,0) = Zp(ym 2T, 0)

= p(zn = l)p(yn‘zna 0,2z, = 1)
+p(zn = 0)p(yn|xna 0; Zn = 0)

2mo? a

v lun—fn)|?
e 202

2

where 7y indicates the probability of inliers, i.e., p(z, = 1) =7,
a is the parameter of the uniform distribution, which is de-
cided by the range of y,,, and § = {f,02,~v} contains all the
unknown parameters that are needed to be solved. We design
two N x 2 matrices X = (z1,...,zy)and Y = (y1,...,yn)
to denote the sets of feature points. Then, the image registration
turns to solve the problem of probability estimation. Under
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the assumption of independent identically distributed (i.i.d.)
data distribution, our aim is to solve a likelihood function
p(Y|X,0) = [12_, p(yn|2n, 8) and obtain the set of parameters
0* = argmax,p(Y|X, 0). To simplify the calculation, we add the
log manipulation on the function and rewrite the energy function

E0) =

~Inp(Y[X,0) Zlnp Ynln,0).  (3)

n=1

The expectation—maximization (EM) algorithm is a general
technique to solve this type of problem, which consists of the
latent variables and alternates with the expectation step (E-step)
and the maximization step (M-step). In the E-step, we fix the
parameter set 6 to estimate the range of the inlier, and then, in
the M-step, we update 6 according to the current estimation. Fol-
lowing the standard notation and omitting the terms independent
of 6, we can simplify the function and obtain the complete-data
log-likelihood function such as

222pn”yn_ Tp)

N
+ ln'yan +In(1 —

n=1

Q(e eold

N
—1Ino? an
n=1
N
Z 1-pn) @&

where p, = P(z, = 1|z, yn, 0°¢) is a posterior probability
indicating the intensity of (x.,, y,,) being an inlier.

E-step: We set a diagonal matrix P, which is described as P =
diag(p1,...,pn), and based on the Bayes rule, we fix the current
parameter set #° to calculate p,, for every correspondences,
which is written as

_ Hzm—f(gn)u‘z

e ’ . (5)

lon—fGem)®  orp2(1-
- = )
+ a

Pn =
e

M-step: In this step, according to §™% = argmax,Q (6, 6°%),
we update the set of parameters, taking derivatives of ) with
respect to o2 and ~, and setting to zero; then, we obtain the
function

o _ u((Y = fX))TP(Y — (X))
2-tr(P)

trP
=N (6)
Until the EM iteration converges, we can distinguish the inlier
and outlier through a predefined threshold ¢, where the set of
inliers 1.5 satisfies

1S = {(@n,yn) : pn > T,n € L}. 7

B. Manifold Regularization

Observing the procedure of image registration, we can find
that the transformation function can have a great influence on
image registration. Through applying the geometric constraint,
we can obtain additional information about the images to get
better results. However, putative correspondences do not contain
all the feature points, which will cause loss of information.
The manifold regularization is composed of all feature points
and can exploit the intrinsic structure of feature points as a
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geometric constraint. Therefore, an additional regularization
term is introduced to the energy function

— | PY2(Y = J(X) [} + Aéur. ®)

Graph Laplacian is a discrete analog of the manifold Lapla-
cian. Under the assumption that the input points are drawn i.i.d.
from the manifold, we use the weighted neighborhood graph for
the data. {a;}™, are the feature points in reference image with
edges (;, ;) ifand only if | #; — x; ||* < &, assigning to edge
(x;, ;) the weight

E(f)

Gij = e tllwi—ail? )
The graph Laplacian is the matrix L which is given by
Lij = Aij — Gij

where A = diag(3_7L, Gy;), is the diagonal matrix whose
ith entry is the sum of the weights of edges leaving z;. LetI' =

(10)

(f(x1),..., f(zm))T; the manifold regularization term ¢, can
be defined as
Z Z Gyj(T = u(ITLD) an
i=1 j=1

where tr(-) denotes the trace. Substituting (11) into (8), we can
get the following energy function:

B(T) = || PV2(Y = T) |5 +ac(@TLD)  (12)

where A > 0 controls the degree of the influence that the
manifold regularization have on the final result. There is no doubt
that if A is too large, it will cause a bad result, and if A is too
small, it cannot have obvious improvement in the algorithm.
From the construction of the manifold regularization term,
we can find that it depends on the input data, and as a prior
term, it will not increase the difficulty of calculation. On the one
hand, using the manifold regularization term can add additional
information about the images that can greatly improve the accu-
racy of estimating the parameters in the transformation model.
On the other hand, the manifold regularization can control
the complexity of the transformation. Applying the manifold
regularization in different types of transformation model, we
have different solution of parameters. In the next part, we will
describe the ways to solve the problems on different models,
which contain the rigid model, affine model, and TPS model.

C. Rigid Model Matching

The rigid model is defined as [12]: I'(z,,) = sRx,, + t, where
R is a 2 x 2 orthogonal rotation matrix, ¢ is a 2 x 1 translation
vector, and sisa2 x 1 arbitrary scaling parameter. The manifold
regularization term for the rigid transformation can be written
as

M M
o = ZZ ij(sRx; sta:j)Q

M M
= SQZ Z Lij (R.’L’Z - R$])2
i=1 j=1

= s*tr((RX )" L(RX pp)). (13)
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Combining with (12), the error function can be written as
E(R,t,s) =| P3(Y — sRX —t) |> +Atr(s* X, TLX pp)

st. RTR = I,det(R) = 1. (14)

Considering the character of R, we cannot directly derive E with
R and set to zero to get the closed-form solution. Thus, we use
the following theorem.

Theorem 1: Let R be an unknown D XD rotation matrix
and B be a known Dx D real square matrix. Let USV” be
a singular value decomposition of B, where UUT = VV7T = [
and S = diag(s;) with s1<---<sp < 0. Then, the optimal ro-
tation matrix R that maximizes tr(BT R) is R = UDVT, where
D = diag(1,...,1,det(UVT)).

To solve the problem, we should eliminate the translation
parameter ¢ at first. Taking the derivation of E with respect to ¢
and setting it to zero, we can get

1 _r 1 T
w(P) w) py = sBipa - (15)
where p1, and p,, are the mean vectors defined as
1
.= —XTP1
He = 4(P)
I o
py = ——=Y " Pl (16)

tr(P)

By substituting ¢ back into the function (14) and omitting the
terms that are independent of R and s, we obtain

E(R,s) = tr(s>’XTPX — 2sYTPXRT)

+ - tr(s* Xy T LX) (17)

where X = X — 13,7 and Y =Y — 1,7 are the centered

point matrices. Preserving the term related to R, we obtain
E(R) =u((YTPX)TR). (18)

According to Theorem 1, we can get the optimal solution of

R
R=UDVT (19)

where U and V come from USV7T = svd(YTPX), and D =
diag(1,det(UV'T)). Then, we set (17) to zero and obtain
B 2t((YT PX)T R)
tr(XTPX) + ate(Xp T LX yy)
Until now, all the parameters in the M-step have been solved.

We summarize our MR algorithm for the rigid model in Algo-
rithm 1.

(20)

D. Affine Model Matching

The affine model is defined as [12]: T'(x,,) = Az, + t, where
A is a 2 x 2 affine matrix, and ¢ is a 2 x 1 translation vector.
Combining the manifold regularization term, we obtain

E(A,t) = || PV2(Y — AX —t) ||?

+)»tr((AX]\/[)TL(AX1w)). 21

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Algorithm 1: The MR Algorithm for Rigid Model.

Input: Correspondences set S = {(z,,yn : n € N)},
whole feature points set X, parameters A, €,
-

Output: Inlier set 1.S

1 Initialize v, t =0, P = InxnN;

2 Set a to the volume of the output space;

3 Initialize o by Eq.(6);

4 Compute the L of the reference image by Eq (9);
5 repeat

6 E-step:

7 Update P by Eq.(5);

8 M-step:

9

Compute X and Y accroding to Eq.(16);
10 Compute USVT = svd(Y PX);

11 Update R, s,t by Eqs.(18)(19) and (20);

12 | Update o2 and ~ by Eq.(6);

until Q converges;;

14 The consensus set 1S is determined by Eq.(7).

—
w

Algorithm 2: The MR Algorithm for Affine Model.

Input: Correspondences set S = {(2y,yn : 1 € N)},
whole feature points set X, parameters A, e,
-

Output: Inlier set 1.5

1 Initialize v, t =0, P = InxnN;

2 Set a to the volume of the output space;

3 Initialize o2 by Eq.(6);

4 Compute the L of the reference image by Eq (9);

5 repeat

6

7

8

9

E-step:

Update P by Eq.(5);

M-step:

Compute X and Y accroding to Eq.(16)
10 Update A,t by Eq.(22);

n | Update o2 and v by Eq.(6);

12 until Q converges;;

13 The consensus set 1.5 is determined by Eq.(7).

The solution of ¢ is similar to the rigid model, and the solution
of A can be obtained directly by taking a partial derivative of £
and setting it to zero. Then, ¢ and A take the following form:

t=py — Apty

A= YTPX)(XTPX +2XyTLXy) . (22)

Until now, all the parameters of affine transformation in the
M-step have been solved. We summarize our MR algorithm for
affine matching in Algorithm 2.

E. TPS Model Matching

TPS is a spline-based technique for smoothing and has a
closed-form solution; thus, we introduce the TPS model to
approximate the mapping function well. It is a nonrigid model
that contains a global affine transformation and a local bending



ZHOU et al.: FEATURE MATCHING FOR REMOTE SENSING IMAGE REGISTRATION VIA MANIFOLD REGULARIZATION

function and has the following form [52]:

f(x) = AT + gu (1)

m

ZK(m,xz)c}

i=1

gm(a?) = (23)

where A is a 3 x 3 affine matrix, and T is a homogeneous
coordinate matrix defined as (7, 1). The TPS has a natural
representation in terms of radial basis functions; thus, we define
K (aradial basis function) as a TPS kernel matrix

o(r) = r’logr

K(x,z;) = —x; |*log | & — z; ||. (24)

We design C' = (¢1, ..., ¢p)T, which is an M x 3 bending
coefficient matrix. As shown in [48], we place the TPS model in
the RKHS—%H; thus, the regularization term ¢ has the following
form:

5 =1 £ I 25
where || - |3 denotes the norm of space H. We can get the
regularization term
M M
I fe 17 =D < K(xs,25)é, ¢ > = u(CTKC). (26)
i=1 i=1

Based on the solution of [48], the affine calculation and
bending calculation can be divided into two parts. After com-
bining (12), (23), and the manifold regularization term, the error
function can be written as

E(A,C)= | PM2(Y — XA~ JKC) |* + mu(CTKC)
+ )\.Qtr((XMAT)TL(X]\/[AT))
+ astr((KC)TL(KC)) (27)

where Y = (41,...,90)T, X = (Z1,...,%,)7, and X =

(Z1,...,%,)T. To obtain the solutions of A and C, we set
Yy = P2y
X =P'/?x (28)
and we use QR decomposition on matrix X:
5 R
X = [Q11Q2] [O} (29)

where ()1 and ()2 are the orthogonal matrixes of NV x N and
N x (N — 3),respectively. Risa3 x 3upper triangular matrix.
Assuming that C' = Q>C, Cisan (N — 3) x 3 matrix; then, we
obtain (30):

E(A,C) = || QIY - RAT - QT P2 JKC |?
+ 1 QFY - QFPRIKC |?
+ A1tr(C~'TQ2TKQQC’) + )»Qtr((,X_A{A)TL(,X_]uA))

+ astr((KC)' L(KC)). (30)
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Algorithm 3: The MR Algorithm for TPS Model.

Input: Correspondences set S = {(xy,y, : n € N)},
whole feature points set X, parameters A, €,
-
Output: Inlier set 1.5
Initialize v, C =0, A=1I343, P=1InxnN;
Set a to the volume of the output space;
Initialize o2 by Eq.(6);
Construct the Kernel matrix K using the definition of
K;
Compute the L of the reference image;
repeat
E-step:
Update P by Eq.(5);
M-step:
10 Update A, C' by Eqgs.(32);
1 | Update 02 and 7 by Eq.(6);
12 until Q converges;;
13 The consensus set .S is determined by Eq.(7).

R S

=TI B Y]

Minimizing the function (31), the results of C and A are

C=QyC=(STS+ 1K+ rKLK) STy

A= (Y = SC)TQiR(RTR+ 2,X0 LXx) T (31)

where S = P3.JKC. Until now, we summarize the parameters
in the M-step of the MR algorithm for the TPS model in Algo-
rithm 3.

F. Implementation Details

The whole feature matching process is based on the feature
points that are extracted by the SIFT algorithm, and through
comparing the similarity of the descriptors, we can obtain rough
matching and a set of putative correspondences, which represent
the coordinate system. We use data normalization to control
them and use linear rescaling to make both two feature point
sets have zero mean and unit variance. Obviously, the constant
of uniform distribution in (1) should be set according to the data
normalization.

Parameter setting: There are mainly six parameters in our
method: €, A, A1, Ao, A3, 7, and . The parameter ¢ controls
the construction of the manifold regularization term for the
distance between the points larger than €; we think there is a
line between the points. The parameter A controls the influence
of the geometrical constraint on the transformation I' of the
rigid model and the affine model. Parameters A1, Ao, and A3
are the parameters in the TPS model; all of them control the
transformation complexity. Parameter 7 is a threshold; it controls
the intensity of the correspondence to be an inlier. Parameter ~y
is the initial assumption of the ratio of the inlier and the rough
matching.

We set € = 0.08, » =9000000000, A; = 100000, Ay =
0.001, 23 = 100, 7 = 0.75, and v = 0.9 throughout this article.
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Fig. 2.

Qualitative matching results on several typical remote sensing image pairs. The first and second rows are the results of MRTPS on the UAV dataset. The

third and fourth rows are the results of MRTPS on the PAN dataset. The fifth and sixth rows are the results of MRA on the SAR dataset. The final two rows are
the results of MRR on the CIAP dataset. The columns show the process of the EM algorithm; the intensity of the blue lines indicates the probability of being the
inliers. The red points on the first and last columns are the feature points that not participate in the matching but control the transformation of the reference images.

IV. EXPERIMENT RESULTS

In this section, we test the performance of our algorithm in
sets of images, which contain different types of remote sensing
images, and compare our algorithm with the other algorithms
applied in feature matching, such as RANSAC [7], ICF [8],
GS [53], and VFC [11].

A. Datasets and Settings

We test our algorithm on four different types of remote sensing
image pairs, which suffer from different types of transformations
and have different problems on feature matching.

1) UAV: This dataset contains 35 all-color image pairs, which
are captured from a piece of farmland by an unmanned aerial ve-
hicle (UAV) and are used for the automatic crop monitoring task.
These are high-quality images, and the observation objection
on the images is pure, just containing the grassland. However,
intensive planting makes the physical correspondences become
not similar at all under a small view change. Most of the images
suffer from projection distortion, and their size is 600 x 337.

2) PAN: This dataset contains 21 image pairs captured from
Tokyo, Japan, and Wuhan, China. These images are panchro-
matic (PAN) aerial photographs and show the look of these
places at a different time and suffer from a large view changes or
ground relief variations such as mountains and buildings. These
challenges increase the difficulty of feature matching because the
linear transformation function cannot model the transformation
of these images. The feature matching task for such image pairs
typically arises in change detection. Sizes of the images range
from 600 x 700 to 700 x 700.

3) SAR: This dataset contains 33 SAR image pairs that were
captured over Nantong, Jiangsu Province, China. The SAR
image pairs come from two different SARs loaded, respectively,
on a satellite and a UAV. The difficulty of this dataset is that
the SAR imaging process produces noise, which degrades the
quality of images. In addition, two different sensors also make
some problems with feature matching. These images are used
in the positioning and navigating problem, such as solving the
matching of a real-time UAV image and corresponding stored
satellite image, and obtain an accurate current position. The



ZHOU et al.: FEATURE MATCHING FOR REMOTE SENSING IMAGE REGISTRATION VIA MANIFOLD REGULARIZATION

uav

09 ——Average= 0.34402 09

_PAN

Inlier rate (%)

—<—Average= 0.31674

4571

SAR

0o —=—Average= 0.21605 09

cIAP

—=—Average= 0.12463

Inlier rate (%)

0 02 08 1 o 02 08

04 6 04 06
Cumulative Distribution Cumulative Distribution

04 06
Cumulative Distribution

S 8 e AiiiaA Ui e
O8L S pee et TIEE bbb Gttt
000

y ¥

Rost
| RANSAG: Precision= 0.94903

* VFC: Precision= 0.94903
ICF: Precision= 0.93954

L RANSAC: Precision= 0.94021
04 * VFC: Precision= 0.94021
ICF: Precision= 0.92492

Loal

GS: Precision= 0.94837 o GS: Precision= 0.93901
o2 © MRR: Precision= 0.98583 02 © MRR: Precision= 1.00000
ol MRA: Precision= 0.97606 ol MRA: Precision= 0.98806
l MRTPS: Precision= 0.99867 | MRTPS: Precision= 1.00000
° oz 0s os os % oz ot o6 o8 g
Gumulative Distribution Gumulative Distrioution
g I ]
i ;
oo o
osf| 08
orf| 07
o8] .
305 RANSAG: Recall= 1.00000 - | RANSAC: Recall= 1.00000 |
&4l “ VFC: Recall= 1.00000 | * VFC: Recall= 1.00000
ICF: Recall= 0.23799 | ICF: Recall= 0.26815
“ﬁ GS: Recall=0.97858 1 o3| GS: Recall= 0.92212
02 © MRR:Recall=099843 | o2  MRR: Recall= 0.98735
il MRA: Recall=0.99915 || MRA: Recall= 099750 |
l MRTPS: Recall= 0.98339 MRTPS: Recall= 0.98708
°C oz os ER 0z ‘ o b

04 06 04 06
Cumulative Distribution Cumulative Distribution

Fig. 3.
inlier ratio, precision, and recall with respect to the cumulative distribution.

images have a size of 800 x 800, and they, in general, suffer
from affine distortions.

4) CIAP: This dataset contains 39 CIAP image pairs with
small overlap areas. The transformation model in these images
is rigid, and all of them have size of 700 x 700 and have been
already orthorectified. The feature matching task for such image
pairs typically arises in the image mosaic problem. The images
are publicly available (from the Erdas example data), which were
captured over eastern Illinois, IL, USA.

We apply the SIFT algorithm, based on the open-source
VLFEAT toolbox, to construct the rough matching. We use the
precision rate and the recall rate to demonstrate the performance
of the algorithms, as follows:

#identified correct matches

Precision

#preserved matches

#identified correct matches
#ground truth

Recall (32)
We set the ground truth in such a way that we have made a bench-
mark before conducting any experiments to ensure objectivity;
specifically, each putative correspondence in each image pair is
checked manually. Experiments are performed on a laptop with
3.4-GHz Intel Core i7 CPU, 16-GB memory, and MATLAB
core.

B. Qualitative Results

In this section, we show our result on different types of image
data. The first two rows are the UAV image pairs, which suffer
from the large view change, resulting in that some physical corre-
spondences are not similar at all. However, with the guidance of
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Quantitative comparisons of RANSAC [7], ICF [8], GS [53], and VEC [11] on the four test datasets: UAV, PAN, SAR, and CIAP. Top to bottom: initial

the manifold regularization, we can find these correspondences.
The third and fourth rows are the PAN image pairs; the ground
relief variations in them increase the difficulty of matching. The
next two rows are the SAR image pairs; they come from different
sensors, and the imaging process produces noise on images. In
the last two rows, there are CIAP image pairs, in which the
challenge is a small overlap area. All the problems, appearing
in matching these image pairs, are typical that need to be solved
in feature matching. We use our algorithm to establish accurate
feature correspondences.

As shown in Fig. 2, the blue lines drawn in the first column
are the rough matches found out by the SIFT algorithm, and
the middle columns are the iterative process of our algorithm,
using the EM algorithm to calculate the degree of p,,. We use the
intensity of lines to indicate the probability of the points to be
inliers and the arrow to show the direction of point moving. We
can find that our algorithm converges quickly and almost at the
fifth iteration, whose results are similar to the final results. The
red points, on the first and final columns, are the feature points,
which cannot find corresponding points in the sensed image; they
work as a guide for N pairs of correspondences. And the blue
lines on the last column are the final result of correspondences
found out by our algorithm. For the visuality of the matching
process, the correspondences are shown in the results.

C. Quantitative Results

We compare our algorithms with other classical feature
matching methods, which are RANSAC [7], ICF [8], GS [53],
and VFC [11]. They are tested on four different types of remote
sensing image data: UAV, PAN, SAR, and CIAP.
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Fig. 4. Robustness tests of our MR algorithm. Each column is a group of
results, where (a) shows the precision curves and (b) shows the recall curves.
The red curves represent the results of MR with a rigid model, the pink curves
represent the results of MR with the affine model, and the blue curves represent
the results of MR with the TPS model. In the experiment, we fix the inlier number
and vary the inlier ratio. The error bars indicate the precision/recall means and
standard deviations over ten trials.

We can observe from Fig. 3 that all of the methods get the
worst performances in the SAR dataset. The reason is that the
noise on the SAR images degrades the quality of the image,
which increases difficulty in matching. Most SAR images suffer
from affine distortion, which is a complex transformation. By
contrast, the best results are obtained on the CIAP and PAN,
even if there are some challenges such as small overlap area and
ground relief variation, but they suffer from the rigid transfor-
mation, which is a relatively simple transformation.

Observing from the character of each algorithm, ICF tends
to get high precision and low recall because ICF is the iterative
calculation in the neighbor of the points. RANSAC’s results
are highly affected by the inlier rate; the higher the inlier, the
higher the precision on the RANSAC. Therefore, a low inlier
rate cannot provide sufficient information to approximate the
model of the image. VFC and GS have a better precision—-recall
tradeoff compared with ICF, but the matching result is still worse
than our algorithms. Although the RANSAC and VFC have a
high recall, the low precision means that they cannot distinguish
between the inliers and the outliers.

Considering our algorithms, i.e., MRR, MRA, and MRTPS,
we can find that MRTPS almost gets the best performance on
all the datasets. TPS is a nonrigid transformation, which is
composed of a global affine transformation and a local distortion;
that is the reason why TPS is more general, and most of the
remote sensing images have local distortion. Comparing MRR
and MRA, MRA is based on the affine transformation, which
is more complex; thus, MRR can get better performance than
MRA.

D. Robust Test

We test the robustness of MRA, MRR, and MRTPS. Con-
sidering that the inlier is one of the most important factors in
performance, we design the following experiment. We fix the
inlier number, vary the percentage of the inlier, and then test the
performance of our methods.

Fig. 4 shows the results of our methods’ robustness. We fix the
number of inliers to 259 and then vary the inlier ratio from 0.3 to
0. Fig. 4(a) shows the precision curves, and Fig. 4(b) shows the
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recall curves. The blue, red, and pink curves represent the results
of MRTPS, MRR, and MRA, respectively. From the results, we
find that the performance of MRA becomes better and stable as
the inlier ratio increases and that MRR and MRTPS are stable
when the inlier ratio increases above 0.1.

V. CONCLUSION

In this article, we proposed a novel mismatch removal method
for robust feature matching of remote sensing images. We im-
proved the performance of the algorithm through reliable spatial
relationships, the manifold regularization term, which is used
as the geometrical constraint containing the global feature and
local details. We formulated the feature matching problem as
a maximum likelihood estimation and use the EM algorithm
to get the closed-form solution. We combined the manifold
regularization term with different transformation models and
tested on four different types of datasets. The results show that
our algorithms are general in the dataset and can get higher
precision and recall compared with other methods.
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