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Local Binary Patterns and Superpixel-Based Multiple
Kernels for Hyperspectral Image Classification
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Abstract—The superpixel-based multiple kernels model uses
the average value of all pixels within superpixel as the spatial
feature, which results in inaccurate extraction of edge pixels. To
solve this problem, a local binary patterns and superpixel-based
multiple kernels method is proposed for hyperspectral image (HSI)
classification. First, the original HSI is segmented into multiple
superpixels by using the entropy rate superpixel segmentation
algorithm. On the HSI with superpixel index, the spectral kernel
is second obtained by combining the spectral feature map with
the radial basis kernel (RBF). By introducing local binary pattern
(LBP) and weighted average filtering into RBF, the spatial kernels
are obtained within and among superpixels. Finally, the combined
kernel containing the abovementioned three kernels is inputted into
the support vector machine classifier to generate a classification
map. The experimental procedure in this article uses LBP to extract
the information in superpixels, which effectively prevents the loss
of edge features in superpixels. The experimental results show that
the proposed method is superior to the state-of-the-art classifiers
for HSI classification.

Index Terms—Hyperspectral image (HSI), local binary mode
(LBP), multiple kernels (MK), superpixel, support vector machine
(SVM).

I. INTRODUCTION

THE development of remote sensing technology has gone
through the stages of panchromatic (black and white),

color, and multispectral scanning imaging. The emergence of
spectral imaging concept in the early 1980s led spectral remote
sensing into a new stage−the hyperspectral remote sensing
stage [1]. The emergence of hyperspectral remote sensing is a
revolution in the field of remote sensing. Hyperspectral remote
sensing can detect substances in wideband remote sensing.
Hyperspectral image (HSI) can obtain rich spectral information
from hundreds of identical narrow band spectral channels, which
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supports the fine identification of various land-cover materials.
Thus, HSI has drawn more and more attention and it has been
widely utilized for classification [2], [3], target detection [4],
[5], anomaly detection [6], [7], and spectral unmixing [8], [9].
The HSI classification task plays a substantial role in geological
exploration [10], [11], crop detection [12], [13], national de-
fense [14], [15], and other fields, it indicates that further research
of this technique is warranted.

While HSI classification is widely used, it also faces consid-
erable challenges, one of which is the Hughes phenomenon [16].
The Hughes phenomenon means that, with the increase of the
number of operational bands, the classification accuracy will
“increase at first and then decrease” [17] during the hyperspectral
analysis. In HSI processing, the key step of solving this issue
is feature extraction. In addition, because of the complexity and
variability of spectral features, feature extraction in HSI is one
of the most challenging tasks [18].

During the last decades, various spatial-spectral feature ex-
traction methods have been proposed to address the classification
problem of HSI. The initial method is the case of stacking
method [19], i.e., the spectral features and spatial features are
directly stacked in a vector to achieve the joint utilization of
spatial and spectral information. Although, this method uses
both spatial and spectral information, it directly increases the
number of extracted feature dimensions. At the same time, sim-
ply stacking different types of features together is not conducive
to the use of their respective advantages and cannot effectively
achieve the joint use of different features.

The Kernel-based methods have gained general acceptance,
and these methods [20], [21] use a simple linear weighting
scheme to achieve joint learning and the utilization of spatial
and spectral information. In order to complete the classification
task, the kernel-based support vector machine (SVM) meth-
ods have been proven to effectively alleviate the well-known
Hughes phenomenon. In addition, it has become an outstanding
framework and core direction in the research of HSI classi-
fication. SVM not only overcomes the disadvantages of tra-
ditional statistical-based learning methods [22], [23], but also
abandons the requirement for large numbers of training samples.
Moreover, the new kernel functions, such as spectral weighted
kernel, composite kernel (CK), spatial-spectral kernel (SSK),
can flexibly utilize the spectral and spatial information by fusing
different heterogeneous features in HSI, thereby improving the
classification performance. Among them, the CKs [24], [25] and
SSKs [26], [27] are the most commonly used kernels. In [24],
multisource spectral and spatial information are effectively used
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by applying CKs in SVM. G. Camps-Valls [25] captured spatial
information from the square neighborhood of a target pixel and
used the characteristics of the Mercer kernel to build a CK
that contains the combined spatial and spectral information.
Compared with the spectral-weighted kernel using only spectral
information [28], CK took full advantage of HSI characteristics.
Different from the way that the CK extracted spatial and spectral
information separately, the SSK extracted spatial and spectral
information directly from the spatial-spectral structure. In [26], a
framework for a SSK-based sparse representation classification
(KSRC) method was used to measure the similarity of kernel
space and to extract spectral and spatial features directly from the
spatial-spectral structure. However, SSK-based methods were
time-consuming by directly computing the cluster feature in
kernel space, because these kernels were obtained by pixel-wise
calculation in the neighborhood.

In recent years, an increasing number of studies have focused
on the use of spatial area information of HSI. In [29], the ap-
plication of extended morphological profiles with partial recon-
struction to high-resolution HSI of urban areas to mine spatial
information could effectively improve classification accuracy.
Tarabalka et al. [30] used the method of partition clustering
to segment the spatial region. In [31], the spatial information
could be sparsely represented by a linear combination of several
training samples in a structured dictionary [32], [33]. The HSI
classification based on edge retention filtering [34] and Gabor fil-
ter [35]–[37] has been used to extract spatial features. Although,
the abovementioned methods may lead to good classification
precision, the size and shape of the spatial area that used is
fixed, resulting in the inability to make full use of the spatial
texture of HSI.

Entropy rate superpixel segmentation (ERS) [38] can adap-
tively change the shape of the region according to the spatial
structure of HSI. This method uses the similarity of features
between pixels to group pixels and uses a small number of
superpixels to replace a large number of pixels to express image
features, which greatly reduces the complexity of image post-
processing. In [39], [40], superpixels were regarded as a local
neighborhood to obtain spatial information, thereby avoiding the
choice of the best spatial neighborhood. In [41], multiple kernels
(MK) were applied to effectively utilize the spectral-spatial
information of the superpixel. Compared with [39], [40], it not
only utilized the spatial information within the superpixel but
also utilized the spatial information among superpixels, resulting
in higher classification accuracy. Due to the powerful feature
extraction performance of multiscale information [42], [43],
the classification of multiscale superpixels for HSI is proposed
in [44], [45], which avoids the selection of the optimal superpix-
els. Cui et al. [46] proposed a superpixel-based extended random
walker classification method for HSI, which uses the principle
of probability maximization to refine each superpixel label.
Wang et al. [47] used superpixels for resolution enhancement
and achieved good results. Sellars et al. [48] extracted spatial-
spectral features from the superpixel region, and combined them
with a semisupervised classifier to effectively improve the clas-
sification accuracy. Therefore, using superpixel segmentation in
the processing of HSI can achieve good classification results.

However, the superpixel-based approach also has a drawback:
the spatial information within the superpixel is represented by
the mean value of the pixels, which leads to loss of the edge
information of pixels within the superpixel.

In this article, we propose a classification method of local
binary patterns and superpixel-based multiple kernels (SMK)
for HSI. First, we use a superpixel segmentation algorithm
to segment the image that is reduced by principal component
analysis (PCA) [49] into a HSI with a superpixel index. Then,
we use weighted average filtering and local binary patterns
(LBP) to acquire the spatial characteristics within and among
the superpixels, and the obtained spatial kernels among the
superpixels, the spatial texture kernels within the superpixel,
and the directly extracted spectral kernels were fused together.
Finally, this combination kernel is input into the SVM classifier
to generate a classification result map. The proposed method
combines LBP with superpixels to effectively solve the problem
of inaccurate edge information extraction within superpixels,
thereby improving the classification accuracy.

The remainder of this article is organized as follows: Section II
presents the superpixel segmentation algorithm, the SVM and
the kernel function; Section III introduces the proposed method
(a SMK method); Section IV presents the results of three famous
experimental datasets; and Section V provides the conclusion of
this article.

II. RELATED WORK

A. Kernel Function-Based SVM

SVM is a binary classification model, which is a linear
classifier with the largest spacing defined on the feature space.
However, true hyperspectral pixels are linearly inseparable, so
SVM is often combined with kernel functions to solve the
problem of linear inseparability. Kernel functions can map pixels
to high-dimensional feature spaces.

Suppose that there is a set of labeled datasets
{(x1, y1), . . ., (xn, yn)}, where xi ∈ RB×1 and yi ∈ [−1, 1]
(i ∈ {1, . . ., n}). A nonlinear mapping Φ: RB×1 → H , which
usually maps the data to a high-dimensional Hilbert space.
SVM mainly solves the following dual problems:

max

⎧⎨
⎩

N∑
i=0

αi − 1

2

N∑
i=0

N∑
j=0

αiαjyiyj〈ϕ(xi), ϕ(xj)〉
⎫⎬
⎭ (1)

where αi and αj are Lagrangian multipliers, ϕ(•) represents a
mapping function, which converts pixels to a high-dimensional
feature space. It is difficult to directly calculate the inner product
〈ϕ(xi), ϕ(xj)〉, so a kernel function is introduced to represent
〈ϕ(xi), ϕ(xj)〉

K(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 (2)

The kernel function maps the samples of the original space
into the feature space and performs the inner product operation,
but not any function can be used as the kernel function. Usually,
the kernel function is required to satisfy continuity, symmetry,
and semipositive definiteness, which is Mercer’s theorem [50];
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the commonly used kernel functions are linear kernel, polyno-
mial kernel, Sigmoid kernel, Gaussian radial basis kernel (RBF),
and wavelet kernel. This article uses the RBF function, and its
calculation formula is as follows:

K(xi, xj) = exp

(
−‖ xi − xj ‖2

2σ2

)
(3)

If the spectral pixels are input into the RBF kernel in (3), the
spectral kernel function can be obtained

KSpec

(
xSpec
i , xSpec

j

)
= exp

(
−‖ xSpec

i − xSpec
j ‖2

2σ2

)
(4)

where xSpec
i represents the ith original spectral pixel, and

KSpec(x
Spec
i , xSpec

j ) represents the spectral kernel.

Similarly, if xSpat
i that represents the spectral mean or variance

of the pixels in the neighborhood of the space of the ith pixel is
input into (3), and the spatial kernel function KSpat(x

Spat
i , xSpat

j )
can be obtained. The spatial-spectral CK function is defined as
follows:

KCK(xi, xj) = ω1KSpec(x
Spec
i , xSpec

j )

+ ω2KSpat(x
Spat
i , xSpat

j ) (5)

where ω1 + ω2 = 1, ω1 represents the weight of the spectral
kernel, and ω2 represents the weight of the spatial kernel.

MK is an improvement based on CK. Unlike CK, MK is more
flexible in the combination of different feature kernel functions.
In this article, we use different techniques (i.e., LBP feature and
weighted average filtering) to obtain the spatial features. After
inputting these spatial features into the RBF kernel function,
different spatial kernels are obtained. Then, these spatial kernels
and spectral kernel are combined by a certain weight to obtain
MK. It can be constructed as follows:

KMK(xi, xj) = ω1KSpec

(
xSpec
i , xSpec

j

)

+

N∑
n=2

ωnKSpatn−1

(
x

Spatn−1

i , x
Spatn−1

j

)

s.t.
N∑

n=1

ωn = 1 (6)

where ω1, ω2, ..., ωn are the balance parameters, which are
determined by experimental verification in experiment section.
N represents the number of kernel functions, including one
spectral kernel function and N − 1 spatial kernel functions.

B. Superpixel Segmentation Algorithm

In recent years, superpixel segmentation algorithms have been
widely used in the processing of HSI. These algorithms can
segment HSI into many superpixels. A superpixel is a small
area composed of a series of adjacent pixels with similar char-
acteristics such as color, brightness, and texture. By abstracting
basic information, a superpixel converts a pixel-level image
into a region-level image. However, because the number of HSI
bands is too large, which cannot be directly used for superpixel

Fig. 1. False-color images. (a) Principal component extraction. (b) Superpixel
segmentation map.

segmentation, so dimension reduction of HSI is required. There
are many methods available for HSI dimension reduction. In this
article, we choose PCA to reduce the dimension of the original
HSI. PCA is a technique used for analyzing and simplifying
datasets. In this method, linear projection is used to project
data into a new coordinate space in which the first principal
component contains the largest amount of information, followed
by the second principal component and the other principal com-
ponents, decreasing successively, and each principal component
is independent of the others. It can be concluded that PCA [51]
maximizes the retention of data information while reducing
the data dimension. In this article, the first three principal
components [as shown in Fig. 1(a)] are selected to segment
the superpixel, and the superpixel segmentation map [as shown
in Fig. 1(b)] is generated. The superpixel segmentation map is
then combined with the original HSI to generate the HSI with
superpixel index.

The most important aspect of superpixel segmentation is
choosing the number of superpixels. The number of superpixels,
L, is selected according to the complexity of the texture. Its
calculation formula is as follows:

L = Lbase ×Rtexture (7)

where Lbase is the number of base superpixels, Rtexture indicates
that the texture ratio is mainly used to reflect the complexity of
the texture in HSI, which is calculated as follows:

Rtexture =
t

T
(8)

where t denotes the number of nonzero elements in the filtered
image (The image obtained after inputting the first three princi-
ple components to the Sobel filter [52]), and T denotes the total
number of pixels in the first three principle components. Sobel
filtering is a simple texture detector for detecting the texture
structure of HSI. It is not very accurate for edge localization, so
the extracted image contours are sometimes unsatisfactory. The
third part of this article will introduce another texture detection
method in detail, it will be combined with superpixels to fully
mine the texture information of HSI.

Given the number of superpixels L, an ERS segmentation
algorithm is used to generate a 2-D superpixel map on the first
three PCs. ERS is a graph-based clustering algorithm, which
can construct a graph G = (V,E) on the basis image, where V



HUANG et al.: LOCAL BINARY PATTERNS AND SUPERPIXEL-BASED MULTIPLE KERNELS FOR HYPERSPECTRAL IMAGE CLASSIFICATION 4553

Fig. 2. Schematic diagram of the LBP-SMK method.

is the vertex set corresponding to the pixels of the basis image,
and E is the edge set corresponding to the similarity among
adjacent pixels. The goal of ERS is to find a subset of edges
A (i.e., A ⊆ E) to make the segmentation map G = (V,A)
contain exactly L discrete subgraphs (each subgraph denotes a
superpixel). The objective function of superpixel segmentation
is defined as follows:

max
A

{H(A) + λB(A), s.t.A ⊆ E} (9)

where H(A) is a randomly changing entropy rate, B(A) is a
balance term, it is mainly used to promote the clusters to have
similar sizes and reduce the number of unbalanced superpixels,
A denotes edge set, λ (λ ≥ 0) is a weight of the balance term.
The optimization problem of (9) can be solved by the greedy
algorithm.

III. PROPOSED METHOD

This article proposes a local binary pattern and superpixel-
based multiple kernel (LBP-SMK) method for HSI classifica-
tion. The schematic diagram is shown in Fig. 2. It is divided
into three main parts: first, generating a HSI with a superpixel
index; second, using the HSI with a superpixel index to obtain
three kernel functions; and third, fusing the obtained three kernel
functions together for input into the SVM classifier to generate
the classification result map.

A. Extraction of Spectral Features Based on Superpixels

Since each superpixel is composed of a set of adjacent spectral
pixels, the spectral information can be directly composed of the
spectral pixels in the superpixel. All the spectral pixels that are
in the HSI make up the spectral characteristics of the HSI. Let

the input spectral pixels be (xSpec
1 , . . . , xSpec

n ). According to (4),
the spectral kernel can be calculated.

B. Extraction of LBP Features Within Superpixels

As described in the second part of this article, the number of
superpixels is partially determined by Sobel filtering, which is a
simple texture detector, and it first roughly detects HSI texture
features and then uses them for superpixel segmentation. Gen-
erally speaking, a superpixel seldom contains multiple objects,
but special cases will occur. LBP can be used to improve the
extraction performance of spatial texture features within super-
pixel. However, since each superpixel is an irregular region, LBP
cannot directly be used to extract spatial texture features within
it. Therefore, in order to obtain the spatial texture information
within a superpixel, first, we utilize a circular LBP operator for
each PCA component of HSI to obtain a local texture feature
image. Second, the pixel indexes of a superpixel on the local
texture feature map are used to obtain LBP statistical histogram
for this superpixel. Moreover, all the statistical histograms are
concatenated to obtain spatial texture features. Finally, we use
the obtained spatial texture features as internal features of a
superpixel.

The traditional LBP [53] method uses thresholds to mark the
differences among the central pixel and its neighboring pixels
so as to analyze the local texture structure. The algorithm is
gradual and unaffected by changes in lighting conditions. In
order to obtain the local area of HSI, PCA is first used to
reduce the dimension of the original HSI. Moreover, the first
three PCs are retained, one of the principal components is
divided into many image patches, and the histogram of each
image patch is extracted using LBP, and then the extracted
histograms are connected together to form the eigenvectors of
principal components. Finally, the same operation is performed
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Fig. 3. Feature extraction of LBP.

on each principal component, and all bands of the obtained LBP
histogram are connected in series to form a spatial feature vector.
For an image patch, the center pixel is located at the center of
the circle, and adjacent pixels of the center pixel are distributed
on the circumference instead of rectangular. We compare these
adjacent pixels with the center pixel. If the gray value of the
pixel is greater than the gray value of the center pixel, the pixel
is marked as 1. If the gray value of the pixel is less than the gray
value of the center pixel, the pixel is marked as 0. For example,
by comparing eight surrounding pixels in the neighborhood with
the central pixel, a set of 8-b binary numbers can be generated
(generally they will be converted to decimal numbers, and there
are a total of 256 combinations). The expression is as follows:

LBP(c,P ) =

p−1∑
i=0

s(ti − tc)2
i (10)

where c denotes the center pixel, P denotes the number of
surrounding pixels, ti denotes the gray value of adjacent pixels,
tc denotes the gray value of the center pixel, and s(•) is the sign
function defined as follows:

s(x) =

{
1 x � 0

0 x < 0
(11)

The direction and smoothness of the texture of the local area
are reflected by the output of the LBP code. After obtaining the
LBP codes of all pixels, a histogram is calculated for the local
area centered on the pixels of interest (Fig. 3).

However, for the LBP operator with P sampling points in
a circular area of radius R, 2P patterns are generated, and
as the number of pixels in the field set increases, the LBP
pattern increases rapidly, which greatly increases the difficulty
of classification.

Most binary numbers are transitions from 1 to 0 or from 0
to 1, and the number of transitions does not exceed 2, so the
LBP equivalent mode uniform LBP (ULBP) is used to reduce
the feature vector [54], which is defined as follows:

ULBP(c,P ) =

{∑P−1
i=0 s(ti − tc)2

i U(LBP(c,P )) � 2

P + 1 otherwise
(12)

where, U(LBP(c,P )) represents the number of transitions of the
cyclic binary number corresponding to LBP from 1 to 0 or from 0
to 1. The number of LBP statistical histograms is reduced from

2P to P × (P − 1) + 3. In this article, all the LBP statistical
histograms can be seen as the spatial texture features of HSI.

C. Extraction of Spatial Features Among Superpixels

In order to increase the weight of pixels of interest, a new
weighted average filtering method is proposed for anomaly
detection [55]. This method can assign different weights to
different pixels, e.g., increase the weight of the background
samples and reduce the weight of the anomalous pixels or
noise signals, and achieve the better results. Inspired by this,
the weighted average filtering method is used to extract spatial
features among superpixels. Let xwao

i be the weighted average
pixel belonging to superpixel Xi, {Xi1, Xi2, . . ., XiJ} be the
neighboring superpixel of superpixel Xi, and xMean

ij be the
average of all pixels belonging to superpixel Xij . xwao

i can then
be calculated in the following:

xwao
i =

J∑
j=0

ωijx
Mean
ij (13)

where ωij is the weight of xMean
ij , and ωij can be calculated as

the following:

ωij =
exp(− ‖ xMean

ij − xi) ‖22 /h)∑
j exp(− ‖ xMean

ij − xi) ‖22 /h)
, j = 1, 2, . . ., J (14)

where h is a predefined scalar.
All the pixels in the superpixel Xi are replaced by the

calculated xwao
i , and the same operation is performed in each

superpixel. Finally, all superpixels obtained by the combination
are combined to obtain a spatial feature based on the superpixels.

D. LBP-SMK

The proposed LBP-SMK method in this article uses three
kernel functions based on the spectral kernel, the spatial kernel
within the superpixel, and the spatial kernel among the super-
pixels. The kernel function in the training phase can be obtained
from (6), which is expressed as follows:

K train
SMK(xi, xj) = ωSpecKSpec

(
xSpec
i , xSpec

j

)
+ ωIntras•

K Intras
Spat1

(
x

Spat1
i , x

Spat1
j

)
+ ωIntersK

Inters
Spat2

(
x

Spat2
i , x

Spat2
j

)
(15)
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Algorithm 1: LBP-SMK for Classification of HSI.
1: Input: The original HSI R, the base superpixel

number Lbase;
2: Step 1: PCA was used to reduce the dimension of R,

and the first three PCs were selected for superpixel
segmentation to obtain the superpixel segmentation
image P ;

3: Step 2: Combine P with R to generate a HSI I with
superpixel index;

4: Step 3: Do the following for I:
5: 1) Combine all the spectral pixels in I from a spectral

feature image ISpec;
6: 2) Weighted average filtering on I generates weighted

average feature image IWAF ;
7: 3) LBP feature extraction is performed on the first

three principal components after dimensionality
reduction of I , and the extracted spatial features are
concatenated to form a local binary feature image
ILBP .

8: Step 4: A set of training data is randomly selected in
R, and the corresponding pixels are extracted in ISpec,
IWAF and ILBP to generate the corresponding three
sets of training data according to the position of the
training data;

9: Step 5: The three sets of training data in Step 4 are
input into (3) to generate three kernel functions:
Spectral kernel KSpec(x

Spec
i , xSpec

j ) spatial kernel

KIntras
Spat1 (xSpat1

i , xSpat1
j ) among superpixels, and

spatial kernel KInters
Spat2 (xSpat2

i , xSpat2
j ) within

superpixels;
10: Step 6: The above three kernel functions are fused by

(15) and input to the SVM classifier.
11: Output: Classification result map.

where ωSpec + ωIntra + ωInters = 1, KSpec(x
Spec
i , xSpec

j ) repre-

sents the spectral kernel, K Intras
Spat1(x

Spat1
i , x

Spat1
j ) is based on the

spatial kernel among superpixels, and K Inters
Spat2(x

Spat2
i , x

Spat2
j ) is

based on the spatial kernel within superpixels. All of these terms
can be calculated by (3), and the kernel function in the test phase
can be obtained in the same way.

The solution steps of the proposed LBP-SMK method are
shown in Algorithm 1.

IV. EXPERIMENT

To verify the rationality of this algorithm, the Indian Pines,
Pavia University, and Pavia Center datasets were used to verify
it in the MATLAB2019 environment and compared the results
with several state-of-the-art methods.

A. Dataset Introduction

1) Indian Pines Dataset: In 1992, the United States acquired
the Indian Pines dataset by imaging Indian pine trees in Indi-
ana. An airborne visible infrared imaging spectrometer with an

TABLE I
CLASS TYPES AND STATISTICS OF INDIAN PINES DATASET

imaging wavelength range of 0.4–2.5 μm was used to image
ground features in continuous 220 bands. Because the 104–108,
150–163, and 220 bands cannot be reflected by water, in this
experiment we removed these 20 bands and used the remaining
200 bands as the research object. The Indian Pines dataset con-
tains 145× 145 pixels and 16 types of ground objects. There are
only 10 366 pixels in the dataset that contain ground objects, and
the rest are background pixels. After removing the background
pixels, we took 10% of the samples in each class as training
samples, leaving 90% as test samples. Table I displays the feature
categories and statistics of the Indian Pines dataset.

2) Pavia University Dataset: The dataset of Pavia University
was acquired by Germany in 2003 in Pavia, Italy. An airborne re-
flection spectrometer was used to continuously image 115 bands
with a wavelength range of 0.43–0.86 μm. Because 12 of these
bands are affected by noise, we excluded the 12 bands and used
the remaining 103 spectral bands. The Pavia University dataset
contains a total of nine types of features. The size of the data
is 610× 340, and it contains a total of 610× 340 = 220 7400
pixels. However, only 42 776 pixels contain ground features in
the dataset. The rest are all background pixels. After removing
the background pixels, we choose 10% of the samples in each
class to train, and the remaining samples were used for testing.
Table II shows the features and statistics of the Pavia University
dataset.

3) Pavia Center Dataset: Same as Pavia University dataset,
the Pavia Center dataset is also obtained by the ROSIS sensor.
It contains nine types of land cover, 102 spectral bands and
1096× 715 pixels. But it contains only 7456 land cover pixels,
and the rest are background pixels. After excluding background
pixels, 10% of the samples in each class are selected for training,
and the rest for testing. Table III displays the class types and
statistics of the Pavia Center.

B. Parameter Settings

The LBP-SMK method proposed in this article is compared
with several state-of-the-art methods, such as CKs for HSI
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TABLE II
CLASS TYPES AND STATISTICS OF PAVIA UNIVERSITY DATASET

TABLE III
CLASS TYPES AND STATISTICS OF PAVIA CENTER DATASET

classification (SVMCK) [25], spectral-spatial HSI classification
method using a spectral data regularization and a spatially
adaptive TV constraint (SpATV) [2], HSI classification by ex-
ploiting spectral-spatial information of superpixel via multiple
kernels (SC-MK) [40], region-based relaxed multiple kernel
collaborative representation for HSI classification (RMK) [56],
adjacent superpixel-based multiscale spatial-spectral kernel for
hyperspectral classification (ASMGSSK) [44], local binary
patterns and extreme learning machine for HSI classification
(LBPELM) [57] and the deep learning method of random patch
network (RPNet) [58]. Refer to the literature [40], [44], [57]
for specific parameter adjustment strategies, the method of
autonomously selecting parameters within the threshold range
is used to select the best parameters. The parameters used
in the comparison experiments are their optimal values. The
experiments were run on three real datasets, i.e., the Indian Pines
dataset, Pavia University dataset, and Pavia Center dataset. The
overall accuracy value (OA) of the experiment was the average
value obtained after ten times of randomly selected samples.

1) Effect of Sigma Parameter of RBF Kernel Function: This
article uses the RBF kernel function. The sigma parameter of
RBF kernel function is set on the three datasets as shown in
Fig. 4. According to experience, we set the sigma parameter from
2−10 to 2−1. From Fig. 4, we can see that on the Indian Pines
dataset, the classification accuracy is the best when the kernel
bandwidth is 2−6. On the University of Pavia dataset, as the
sigma parameter changes, the classification accuracy increases
gradually, and then decreases slightly. The best kernel bandwidth

Fig. 4. Effect of σ parameter.

Fig. 5. Effect of spectral kernel weights.

on the University of Pavia dataset is 2−4. On the Pavia Center
dataset, the optimal kernel bandwidth is 2−3.

2) Effect of Kernel Weights: This article uses three kernel
functions. To verify the effect of different kernel functions on
the experimental results, we set the spectral kernel weights from
0 to 1 and set the kernel weights within the superpixel and the
kernel weights among the superpixels to the same value. The
experimental results as shown in Fig. 5, where we can see that
when the spectral kernel weight is 1, only the spectral informa-
tion is used, and the classification result is very unsatisfactory.
When the spectral weight is increased to 0.2, the classification
accuracy is the highest on the three data sets, but as the spectral
weight continues to increase, the classification accuracy shows a
downward trend, indicating that the spatial kernel weights within
and among superpixels need to account for a larger proportion.
Therefore, the spectral kernel weight factor was fixed at 0.2 to
observe the influence of the spatial kernel weight factor within
and among superpixels in Fig. 6.

From Fig. 6, we can observe that the kernel weights within
superpixel are between 0 and 0.5, and the classification accuracy
increases. During the increase from 0.5 to 0.8, the classification
accuracy decreases slightly, indicating the kernel weights of the
superpixels need to account for a relatively large proportion, but
larger is not better.
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Fig. 6. Effect of spatial kernel weights.

Fig. 7. Effect of base superpixel number.

The abovementioned experimental results show that spectral
information, spatial information within superpixel, and spatial
information among superpixels are all beneficial to HSI classi-
fication.

3) Effect of the Base Superpixel Number: To verify the im-
pact of the base superpixel number on the classification results,
we set the local areas ω of the LBP feature extraction of the
Indian Pines dataset, Pavia University dataset, and Pavia Center
dataset to 23× 23 pixels, 19× 19 pixels, and 39× 39 pixels,
respectively. Next, we changed the base superpixel number to
see how it affects the classification results. In the experiment,
we set the base superpixel number to 100, 200, 400, 600, 800,
1000, 1200, 1400, and 1600. The experimental results are shown
in Fig. 7.

As can be seen from Fig. 7, with the increase of base su-
perpixel number, the OA rate also increased. However, with
the continuous increase of base superpixel number, OA did not
continue to increase, and fluctuations occurred. Therefore, we
can come to the conclusion that an increased base superpixel
number is not always better. Choosing appropriate base super-
pixel values can lead to good classification results. It can also be
obtained from Fig. 7 that for the Indian Pines dataset, the Pavia
University dataset, and the Pavia Center dataset, the proposed
method achieves the best classification accuracy when the base
superpixel number are set to 200, 400, and 800, respectively.

Fig. 8. Effect of patch size.

4) Effect of the Patch Size: In this article, LBP is used to
extract the spatial texture features of HSI images. In order to
verify the effect of different patch sizes on the classification
accuracy of HSI, we conducted experiments on three datasets.
The patch size selection is shown in Fig. 8.

As can be seen from Fig. 8, the Pavia University dataset is
sensitive to the transformation of patch size, and the overall
classification accuracy fluctuates greatly. When the patch size
is less than 39× 39 pixels, the overall classification accuracy
increases with an increase in patch size. When the patch size
increases to 39× 39 pixels, the overall classification accuracy
was the best. On the Indian Pines dataset and the Pavia Center
dataset, as the patch size continues to increase, the OA of
the classification appears to float up and down, and the best
classification accuracy is obtained when the patch size is 23× 23
pixels.

In this article, for the Indian Pines dataset, the superpixel is set
to 200 and the patch size is set to 23× 23 pixels. For the Pavia
University dataset, the superpixel is set to 400, and the patch size
is set to 39× 39 pixels. For the Pavia Center dataset, the base
superpixel is set to 800, the patch size is set to23× 23pixels, and
the kernel bandwidth is set to 2−3. The spectral weight factor
of both datasets is set at 0.2, the kernel weight factor within
the superpixel is set at 0.5, and the kernel weight among the
superpixels is set to 0.3. The experimental results are shown in
the next section.

C. Experimental Results and Analysis

In this article, the proposed LBP-SMK method is com-
pared with other HSI classification methods, i.e., SVMCK [25],
SpATV [2], LBPELM [57], SC-MK [40], RMK [56], RP-
Net [58], and ASMGSSK [44]. Tables IV, V, and VI show the
comparisons of classification accuracy, whereas Figs. 9, 10, and
11 show comparisons of the classification results by different
methods.

In the experiments, we choose the overall classification ac-
curacy (OA), kappa coefficient, and their standard deviations as
the evaluation indicators. It can be seen from Tables IV, V, and
VI that RMK and SC-MK use MK to explore spatial-spectral
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TABLE IV
CLASSIFICATION RESULTS FOR THE INDIAN PINES DATASET (NUMBERS IN BOLD REPRESENT THE BEST CLASSIFICATION PERFORMANCE)

TABLE V
CLASSIFICATION RESULTS FOR THE PAVIA UNIVERSITY DATASET (NUMBERS IN BOLD REPRESENT THE BEST CLASSIFICATION PERFORMANCE)

TABLE VI
CLASSIFICATION RESULTS FOR THE PAVIA CENTER DATASET (NUMBERS IN BOLD REPRESENT THE BEST CLASSIFICATION PERFORMANCE)

information. Using MK can achieve better classification accu-
racy compared with SVMCK which uses two kernel functions
to extract spatial-spectral information and SpATV which using
a spectral data regularization and a SpATV constraint for HSI
classification. RPNet is a deep learning classification method.
It uses random patches as the inputs of the neural network

for HSI classification. As can be seen from the experimental
results, for the classification problems with a small number of
samples, the performance of the kernel function is better than
RPNet. ASMGSSK directly extracts spatial-spectral informa-
tion from the spatial-spectral structure and uses the superpixel
segmentation algorithm to generate a multiscale SSK, which
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Fig. 9. Indian Pines data classification. (a) False-color maps. (b) Real feature marker. (c) SVMCK. (d) SpATV. (e) LBPELM. (f) SC-MK. (g) RMK. (h) RPNet.
(i) ASMGSSK. (j) LBP-SMK.

Fig. 10. Pavia University data classification. (a) False-color maps. (b) Real feature marker. (c) SVMCK. (d) SpATV. (e) LBPELM. (f) SC-MK. (g) RMK. (h)
RPNet. (i) ASMGSSK. (j) LBP-SMK.

has a better classification effect than RMK and SC-MK. The
LBP-SMK method in this article is proposed on the basis of
MK. The experimental results show that the accuracy is im-
proved by 1%–6% compared with other classification meth-
ods, and the standard deviation of the algorithm is also the

smallest among the classification algorithms. This demonstrates
that the algorithm proposed in this article not only has bet-
ter classification accuracy but also has a more stable classi-
fication performance under the condition of limited training
samples.
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Fig. 11. Pavia Center data classification. (a) False color maps. (b) Real feature marker. (c) SVMCK. (d) SpATV. (e) LBPELM. (f) SC-MK. (g) RMK. (h) RPNet.
(i) ASMGSSK. (j) LBP-SMK.

TABLE VII
COMPARISON WITH A STATE-OF-THE-ART SUPERPIXEL-BASED CLASSIFIER ON INDIAN PINES AND PAVIA UNIVERSITY DATASETS (NUMBERS IN BOLD REPRESENT

THE BEST CLASSIFICATION PERFORMANCE)

Figs. 9, 10, and 11 illustrate the classification maps of
the comparison algorithms on the three datasets, respectively.
The classification map of the SVMCK method has a lot of
noise when the spatial information is not fully utilized. Al-
though, the six methods (SpATV, LBPELM, SC-MK, RMK,
RPNet, and ASMGSSK) make full use of spectral-spatial
information, they do not maintain the detailed structure of

the original HSI. Many mismatched regions appear in the
classification results. LBP-SMK makes full use of the spec-
tral and spatial information, especially the spatial informa-
tion. Combining LBP with superpixels results in good perfor-
mance for extracting the edge features of the spatial informa-
tion. Therefore, LBP can well maintain the detailed structure
of HSI.
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Recently, some scholars have made many new achievements
in the HSI classification based on superpixel. These results have
been published, but the authors have not published their codes. In
these newly released hyperspectral classification methods based
on superpixel, we choose the superpixel-level weighted label
propagation method [59] as the comparison experiment. The
experimental results are shown in Table VII (Since the common
data sets used in these two articles are Indian Pines and Pavia
University, we conduct comparative experiments on the two
datasets). It can be seen from Table VII that even if each class
only trains three labeled samples, LBP-SMK obtains a good clas-
sification result. In addition, it is noticed from Tables IV, V, and
VI that RMK and SC-MK use the MK to explore spatial-spectral
information well.

V. CONCLUSION

This article proposes a LBP-SMK HSI classification method.
Unlike MK, the framework uses LBP to directly extract texture
features of HSI with superpixel indexes. LBP filtering has pow-
erful edge extraction capabilities, and the edge pixel information
in the superpixel can be extracted to improve the classification
accuracy of such pixels. Through experimental application, we
have demonstrated that the method proposed in this article is
not only better than MK, it is also better than other classification
methods, which proves that the improvement is convincing.

In the future, the proposed method is planned to be im-
plemented on the parallel computing platform, such as cloud
computing and GPU [60], to accelerate the running time for
more real-time applications.
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