
4674 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Multiobjective Optimization of SAR Reconstruction
on Hybrid Multicore Systems

Adeesha Wijayasiri , Tania Banerjee, Sanjay Ranka, Sartaj Sahni , and Mark Schmalz

Abstract—Hybrid multicore processors (HMPs) are poised to
dominate the landscape of the next generation of computing on the
desktop as well as on exascale systems. HMPs consist of general
purpose CPU cores along with specialized coprocessors and can
provide high performance for a wide spectrum of applications
at significantly lower energy requirements per floating-point op-
erations per second (FLOP). In this article, we develop parallel
algorithms and software for constructing multiresolution synthetic
aperture radar images on HMPs. We develop several load balancing
algorithms for optimizing time performance and energy on HMPs.
We also present a systematic approach for deriving the energy-time
performance tradeoffs on HMPs in the presence of dynamic voltage
frequency scaling. Pareto-optimal curves are presented on a system
consisting of 24 traditional cores and a GPU.

Index Terms—Dynamic voltage frequency scaling (DVFS),
GPU, hybrid multicore processors (HMP), load balancing, list
assignment, multiresolution images, power and energy evaluation,
synthetic aperture radar.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) image formation utilizes
tensor product-based transformation of radar return pulse

histories to yield a spatial representation containing possible
target objects. Algorithms such as backprojection have been
employed in reconstructing images from SAR pulse data to
produce better quality reconstructions than frequency domain
algorithms [1]–[3] due to support for higher resolution and fewer
assumptions about the image, albeit with high computation
time [4], [5]. Mulitresolution approaches for improving the time
performance of sequential SAR algorithms were proposed in [6].
This is beneficial, for example, in change detection applied
to reconstructed SAR video, where reduced resolution (and
lower computational time) may be appropriate for background
regions, while candidate target regions are rendered at higher
resolution. Such a dynamic data-driven approach has the benefits
of adaptively optimizing the overall computation requirements
based on the nature of the underlying terrain.

Manuscript received February 14, 2020; revised May 18, 2020 and June
21, 2020; accepted July 9, 2020. Date of publication August 5, 2020; date of
current version August 26, 2020. This work was supported by the Air Force
Office of Scientific Research, under Contract FA9550-15-1-0047. This article
was presented at the IEEE 24th International Conference on High Performance
Computing (HiPC), Jaipur, India, Dec. 2017. (Corresponding author: Adeesha
Wijayasiri.)

The authors are with the Department of Computer, and Information Sci-
ence, and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: adeeshaw@cise.ufl.edu; tmishra@cise.ufl.edu; ranka@cise.ufl.edu;
sahni@cise.ufl.edu; mssz@cise.ufl.edu).

Digital Object Identifier 10.1109/JSTARS.2020.3014531

Hybrid multicore processors (HMPs) are poised to dominate
the landscape of the next generation of computing on the desktop
as well as in exascale systems [7]. HMPs consist of general pur-
pose GPU cores along with specialized cores and are expected
to provide benefits to a wide spectrum of applications at signif-
icantly lower energy requirements per floating-point operations
per second (FLOP) [8], [9]. In this article, we describe a com-
prehensive strategy for efficiently implementing multiresolution
SAR construction on HMPs consisting of a CPU and a GPU.
We provide load balancing strategies for a combination of CPU
and GPU cores. We show that, depending upon whether time
performance or energy optimization is critical, separate load
balancing strategies should be used on HMPs. We provide time
performance, power, and energy evaluation as well as modeling
and validation for a variety of CPU–GPU core combinations. We
also discuss the multiple objectives of minimizing the runtime
and energy required for SAR image reconstruction. Throughout
this article we will use single precision computations when we
present performance results.

The main contributions of this article are:
1) Efficient implementations of multiresolution SAR image

reconstruction on a GPU and CPU. Our GPU implemen-
tation achieves 725 GFLOPS on an Nvidia Tesla K40 m
GPU and the CPU implementation achieves 170 GFLOPS
on a 24 core 2-socket Intel Xeon CPU E5-2695 V2 archi-
tecture.

2) The work distribution algorithm, developed by us in [6], is
generalized to distribute workload among multiple CPU
cores and the GPU. Due to varying spatial resolution
and variable computational capabilities of CPU cores and
GPU, the naive method of assigning an equal number
of image partitions to each core do not necessarily yield
optimal time.

3) Empirical models of runtime, power, and energy consump-
tion of SAR image reconstruction on both CPU and GPU
facilitate development of load balancing techniques for
distributing work on an HMP system. These derived tech-
niques can be applied to obtain either time performance
or an energy optimal implementation.

4) A study of the impact of dynamic voltage frequency scal-
ing (DVFS) on time performance-energy tradeoffs, under
the assumption that the frequency of the CPU and GPU
can be independently controlled.

5) A dynamic programming approach to obtain runtime,
power, and energy consumption of SAR image reconstruc-
tion while reducing the exhaustive search space.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1807-3545
https://orcid.org/0000-0002-8129-1676
mailto:adeeshaw@cise.ufl.edu
mailto:tmishra@cise.ufl.edu
mailto:ranka@cise.ufl.edu
mailto:sahni@cise.ufl.edu
mailto:mssz@cise.ufl.edu

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4675

Algorithm 1: Algorithm for Sequential Backprojection.
Input: Pulse Array, Location Arrays, Nfft, Wr

Output: Nx ×Ny image
1: for i = 1 to Number of Pulses in Pulse array do
2: Calculate IFFT for the pulse
3: Perform FFTShift for the result of IFFT and store as

pData array.
4: for j = 1 to Nx ×Ny do
5: Calculate ΔR w.r.t. pixel location.

6: let index = ΔR · Nfft

Wr
//Find the range bin that

is closest to ΔR.
7: let

v1 = pData[index] and v2 = pData[index+ 1]
8: Interpolate v1 and v2 to get the value (v) that

corresponds to ΔR.
9: Multiply with phase correction.

10: Accumulate the calculated value for the current
pulse with that value calculated for previous
pulses.

11: end for
12: end for
13: Normalize computed pixel values.
14: return

The remainder of the article is organized as follows. In
Section II, we describe the standard single-core backprojec-
tion algorithm for SAR image reconstruction as well as our
GPU algorithm of [6]. In Section III, we apply the workload
distribution algorithm developed by us in [6] to arrive at a
multicore algorithm for SAR reconstruction. In Section IV,
we extend the list assignment scheduling algorithm of [6] to
arrive at a multilevel workload scheduling algorithm suitable
for an HMP for both single resolution and multiresolution SAR
images. In Section V, we present time performance, power, and
energy evaluations for our SAR reconstruction methods on a
CPU, a GPU, and a CPU–GPU hybrid system. A comparison of
different load balancing schemes in terms of time performance
and energy is provided in Section V, where we analyze time
performance, power, and energy analysis on CPU and GPU for
SAR reconstruction when DVFS is used. Finally, Section VI
concludes the article.

II. BACKGROUND AND PREVIOUS WORK

A. Backprojection Algorithm

Backprojection is a time domain reconstruction algorithm
that inputs radar pulses collected in the frequency domain over
a specific time interval, then sums their effects to produce a
reconstructed output image [10]–[12].

Equations which were developed in [13] are used as the
core of the sequential backprojection algorithm presented in
Algorithm 1.

As described in [13], inputs for the Algorithm 1 are as follows.
1) Pulse Array: Contains phase history data.

2) Location Arrays: Contain (x, y, z) position of the sensor
at each pulse.

3) Nfft: The length of the IFFT.
4) Wr: Maximum alias free range extent given by c/2 ·ΔF ,

where c is speed of the light and ΔF is the frequency step
size.

The differential range (ΔR) and phase correction used in
Algorithm 1 can be calculated as described in [13]. FFTShift
is a function that is used to shift zero-frequency components to
the center of the spectrum [13].

An analysis of algorithm 1 reveals that backprojection takes
O(Nx ·Ny ·Np) time to reconstruct an Nx ×Ny image using
Np pulses. Algorithm 1 consists of two main for loops that can
be used for parallelization: 1) A loop that iterates every pulse in
the pulse array and 2) a loop that calculates the value of each
pixel.

High resolution output images for realistic scene sizes can
grow to several gigabytes in size. A key observation is that most
of the scene information is not interesting for many practical
applications. Objects are either not changing, or the nature of
the change is already understood and expected. In areas meeting
these constraints, the frequent generation of high resolution
images is unnecessary. CPU time and power resources could
be better allocated toward the production of imagery in other
areas, where results are more likely to be mission-critical. High
resolution renderings of the entire scene are only necessary at
infrequent intervals, to detect small changes in areas that are
being rendered in low resolution. An efficient, high-performance
surveillance technology can exploit this observation.

For multiresolution SAR formation, one can consider the
output image as decomposed into tiles where each tile has a
potentially different resolution. The benefits of this approach
follow from the fact that the computational complexity of back-
projection scales proportionally with the output image size (in
pixels). This means that identifying subsections of the image
where activity is not occurring, and rendering those areas at low
resolution, can significantly reduce the computational burden
of generating high-performance surveillance imagery of a wide
area. The decision about which pixels to render in high resolu-
tion can be made externally (for example, a change detection
algorithm) but due to its complexity is outside the scope of this
article. The key input is the target resolution value to be assigned
to each tile of the output image based on the contents of this
mask.

B. GPU SAR Reconstruction

SAR image reconstruction using backprojection demonstrates
high parallelizability and GPUs can be used to speedup the
SAR image reconstruction process [14]. Over the past decade,
researchers have been investigating about efficient algorithms to
reconstruct SAR images using parallel processing units. Chap-
man et al. introduced a parallel processing technique which
distributes pulse array among thread blocks in the GPU [15].
Methods on implementing SAR backprojection with a single
GPU has been explored in [16] where the partitioning of data
along both range and aperture is allowed.

4676 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 1. Output image partitioning in a single GPU.

Algorithm 2: Kernel for Backprojection on a Single GPU.
Input: pData, Nfft, minF, Location Arrays
Output: Nx ×Ny image
1: Calculate pixel index corresponding to blockIdx and

threadIdx.
2: for i = 1 to Number of Pulses do
3: Calculate pixel value per line 5-9 of Algorithm 1
4: Accumulate the calculated value for this pulse with

the value calculated for previous pulses.
5: end for
6: return

Nvidia’s GPU architecture and programming model are de-
scribed in [17]–[19]. Algorithm 2 gives the kernel code for
backprojection on a single GPU and Fig. 1 shows how the pulses
are distributed to each thread block in the GPU [6]. In this basic
single GPU code, each thread computes a single pixel value,
and each GPU core has to access all of the pulse data. The IFFT
and FFTShift of the pulse data is computed and saved in the
array pData in GPU memory before the GPU kernel is invoked.
CUDA’s cuFFT library provides an efficient implementation of
the IFFT function that can be used to calculate the IFFT in a
separate kernel. The normalization of final pixel values is also
done in a separate kernel.

Analysis using the Nvidia profiler reveals that the GPU kernel
code requires 47 floating point operations (FLOPS) per pulse per
pixel, with one-third of the time spent on actual computations
and the remainder of memory access. According to Algorithm
2, each iteration requires six memory read accesses and one
memory write access. Memory read accesses consist of four
location array reads and two pulse array reads. The memory write
access is for writing the accumulated value back to memory. In
order to reduce the write accesses to device memory, we used a
register variable to store accumulated values for each pulse; the
final value of this register was then written to the device memory.
This reduced device memory writes from n2 · p to n2.

III. MULTICORE SAR RECONSTRUCTION

A. CPU Optimizations

With the introduction of advanced vector extensions (AVX),
CPUs are able to compute up to 8 32-bit registers concur-
rently [20], [21]. Contemporary compilers perform autovec-
torization on the CPU code to utilize the vector calculation
capabilities on the CPU. In order to improve vectorization we
explored different versions of the SAR image reconstruction

Fig. 2. Basic for loops in the SAR reconstruction algorithm.Nx andNy refers
to the image dimensions, Tx and Ty refers to the tile dimensions, and Np is the
number of pulses.

algorithm, for example, where the reconstructed image is par-
titioned into tiles as described in [6], and the for loops of
Algorithm 1 are replaced by those of Fig. 2. The two outermost
loops of this figure iterate through the image tiles in the x and
y dimensions. The next two loops iterate through a tile’s pixels
in the x and y dimensions, and the innermost for loop iterates
through the pulses. All possible combinations and/or fusions
of these for loops were evaluated experimentally to find the
combination/fusion that gives the best time performance. Our
experiments show that fusing the outermost two loops into a
single loop, fusing the next two loops into a single loop and
placing the innermost loop as the second loop results in the best
time performance. Algorithm 3 is the resulting backprojection
algorithm.

In order to reduce memory transactions and improve cache
efficiency, location data are read from the location array then
stored in registers and used by the innermost for loop as in
Algorithm 3. These optimizations led us to achieve 6 GFLOPS
from a single core of an Intel Xeon CPU E5-2695 V2.

Algorithm 3 was coded in C and compiled using the Intel C
compiler with -O3 optimization with autovectorization and fast
math calculations and performance is increased to 7 GFLOPS
from a single core of an Intel Xeon CPU E5-2695 V2.

B. Multicore Implementation

Algorithm 3 gives the pseudocode for backprojection on a
multicore CPU system based on output image partitioning. The
master process initiates the computation by allocating work
to each core. The output image tiles produced by the slave
processes are saved in main memory and the master process
normalizes the computed pixel values to create the final output
image.

Our experimental results indicate that the pulse partitioning
approach is much slower than the image partitioning approach
when Algorithm 3 is used. The main reason for this is that, in
pulse array partitioning, each CPU core needs to access all of the
output image array that resides in shared memory, using atomic
transactions. Hence, we do not provide a muticore pseudocode.

IV. HYBRID SAR RECONSTRUCTION

Efficient distribution of work among the GPU and CPU cores
is crucial to maximizing the utility of computational parallelism.
We modified and used methods described in [5] for partitioning

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4677

Algorithm 3: Parallel Backprojection on a Multicore CPU
System: Output Image Partitioning.

Input: pData, Nfft, Wr, Location Arrays
Output: Nx ×Ny image
1: Master process allocates tiles to slave processes.
2: // Each process does the following
3: for i = 1 to Number of tiles allocated to the CPU core

do
4: for j = 1 to Number of Pulses do
5: Read location data and store in register variables.
6: for k = 1 to Number of pixels in a tile do
7: Calculate pixel location corresponding to i, k

and process ID.
8: Calculate pixel value as stated in line 5-9 of

Algorithm 1
9: Update accumulated values for each pixel in

register variables.
10: end for
11: end for
12: Write final pixel values to main memory
13: end for
14: Master process normalizes computed pixel values.
15: return

a uniform-resolution output image in terms of pulse partition-
ing and output image partitioning. Pulse partitioning involves
distributing part of the pulse array to the GPU and the rest to
the CPU, with subarray partitioning inside each CPU core if
required. This reduces CPU to GPU communication time due
to pulse data movement across different levels of the memory
hierarchy. However, the entire reconstructed image must be
transferred back to the CPU memory and merged with the image
calculated by the CPU cores.

A. Partitioning for Uniform Resolution

Output image partitioning can be implemented as round robin
(naive method), as well as static or dynamic range dimension
partitioning. Round robin removes image tiles from a scheduling
queue and assigns them to the GPU or the CPU core that has the
lowest current workload, but requires the entire pulse array to
be sent to the GPU. Static range dimension partitioning assigns
output image partitions to the GPU or to the CPU core that is
associated with similar distance of the reconstructed tile from
the center of the reconstructed scene. This assignment method
reduces the pulse array communication time and is refined by
dynamic range dimension partitioning, which reallocates tiles
when the look angle changes [5].

For SAR reconstruction on a hybrid system, we implemented
four methods to distribute the workload between the GPU and
CPU.

1) Tile-based partitioning for GPU/CPU level and tile-based
partitioning among CPU cores.

2) Pulse-based partitioning for GPU/CPU level and tile-
based partitioning among CPU cores.

Algorithm 4: CPU–GPU level Tile-Based and CPU-Core
Level Pulse-Based Partitioning on a Hybrid System.

Input: pData, Nfft, Wr, Location Arrays
Output: Nx ×Ny image
1: Master process allocates tiles for the GPU and CPU

cores.
2: GPU host process transfers data arrays to the GPU

memory and executes Algorithm 2 to compute
allocated tiles for the GPU.

3: In parallel to GPU, each CPU core runs Algorithm 3
on the tiles allocated for the CPU.

4: GPU host process collects the constructed image from
GPU memory.

5: Master process normalizes computed pixel values.
6: return

Algorithm 5: CPU-GPU Level Pulse-Based and Cpu-Core
Level Tile-Based Partitioning on a Hybrid System.

Input: pData, Nfft, Wr, Location Arrays
Output: Nx ×Ny image
1: Master process divides pulses for the GPU and CPU

cores.
2: GPU host process transfers data arrays to the GPU

memory and executes Algorithm 2 to compute the full
image using pulses allocated for the GPU.

3: In parallel to GPU, each CPU core runs Algorithm 3
on the pulses allocated for the CPU to compute the full
image.

4: GPU host process collects the constructed image from
GPU memory.

5: Master process finalizes the image by summing up the
two images made by the GPU and CPU cores and
normalizing pixel values.

6: return

3) Tile-based partitioning for GPU/CPU level and pulse-
based partitioning among CPU cores.

4) Pulse-based partitioning for GPU/CPU level and pulse-
based partitioning among CPU cores.

Algorithm 4 presents the basic pseudocode for tile-based par-
titioning for GPU/CPU level and tile-based partitioning among
CPU cores. The master process initiates the process by allocating
workload to the GPU and CPU cores and sending the pulse and
location arrays to the GPU. The tiles computed by the GPU are
sent back to the main memory. Finally, the pixels in all tiles are
normalized.

Algorithm 5 shows the pseudocode for pulse-based partition-
ing for GPU/CPU level and tile-based partitioning among CPU
cores. The master process distributes pulses to the GPU and
CPU cores to reconstruct a separate image from those pulses.
After computations are done, the images produced by the GPU
and CPU cores will be added and normalized by the CPU to
complete the final image.

4678 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 3. 16× 16 tile with 2× 2 grid overlay where pixels to be computed are
shaded.

Methods 3 and 4 for workload distribution require pulse-based
partitioning among CPU cores. Due to the reasons given in
Section III, these methods do not perform well and are not
considered further in this article.

B. Partitioning for Multiresolution

Multiresolution SAR image reconstruction begins by parti-
tioning the reconstructed image into equal-size tiles. Each tile
has a designated required resolution. At highest resolution (i.e.,
a resolution of 1), every pixel in the tile is to be reconstructed
from pulse data. In one-fourth resolution, we overlay a 2× 2
grid over the tile and compute only the top left pixel in each
2× 2 grid cell. Fig. 3 shows a 16× 16 tile with a 2× 2 grid
overlay. The pixels to be computed are shaded. At one-sixteenth
resolution, the overlay is done using a 4× 4 grid and the top left
pixel in each grid cell is to be computed.

Our main objective in this article is to determine work alloca-
tion for the GPU and CPU cores to reconstruct the image using
a CPU–GPU hybrid system when multiple resolution levels are
required in the output image.

Algorithms 4 and 5 have been optimized for SAR image
reconstruction with multiple resolution levels. The objective
of the work distribution is to balance the computational load
proportionally across the GPU and all CPU cores. For the pulse
distribution method described in Algorithm 5, the presence of
multiple resolution levels in the image do not affect the work
distribution between the GPU and CPU; it affects only the tile
distribution among CPU cores. In Algorithm 4, a tile distribution
strategy that distributes work load to the GPU proportional to
the computing power of the GPU is required. Since multiple
resolution levels are considered, the tile distribution strategy
should not only consider the number of tiles but also the work
inside the tiles. We used the list assignment algorithm (LA)
described in [6] to distribute work between GPU and CPU
cores. As proven in [6], when work is distributed using LA,
the imbalance is at most that corresponding to one tile, which is
negligible when the number of tiles is large.

V. EXPERIMENTAL RESULTS

In Section V-A, we describe our experimental platform. In
Section V-B, we compare the time performance as well as power
and energy requirements using tile-based and pulse-based parti-
tioning on CPU cores. In Section V-C, we give the time perfor-
mance, power, and energy results for a GPU and in Section V-D
we do this for a hybrid CPU–GPU system. In Section V-E we

TABLE I
EXECUTION TIME (SECONDS) USING 23 CORES. HIGH, MEDIUM, AND LOW

CORRESPOND TO FULL RESOLUTION, 1/4TH, AND 1/16TH OF FULL

RESOLUTION RESPECTIVELY

present time performance, power, and energy results on CPU
cores and for a GPU when DVFS is used. All experimental
results reported in this section exclude the normalization step
of the SAR backprojection algorithm.

A. Target Platform

Our hybrid test platform comprises an Intel Xeon E5-2695
V2 CPU and a Tesla K40 m GPU. The Tesla K40 m has 13
multiprocessors and each multiprocessor has 192 CUDA cores.
The default core clock speed is 745 MHz with a maximum
boosted clock speed of 875 MHz. The GPU card has 6 4-K
registers per block and up to 48 KB of shared memory per
block. The Nvidia System Management Interface (nvidia-smi)
command line utility is used for power and energy measurements
with CUDA SDK 8.0. The Intel Xeon CPU E5-2695 V2 is a
24-core system where each socket has 12 cores. It has 2.4-GHz
base frequency with a 115-W thermal design point (TDP). It has
3.2 GHz of max turbo frequency and for Section V-B and Sec-
tion V-D measurements are taken with turbo boost enabled with
maximum frequency. For Section V-E, turbo boosting is disabled
to measure performance for the exact CPU core frequency. The
Intel Xeon CPU E5-2695 V2 has 30720 KB of cache with 64
byte alignment and a memory of 768 GB. PowerGadget, which
is based on the running average power limit (RAPL) utility, is
used to measure power.

B. CPU Results

Table I presents the execution times for tile-based and pulse-
based partitioning using only the CPU of our Xeon platform. As
can be seen, tile-based partitioning results in better performance
on our multicore CPU. In fact, tile-based partitioning was up to
36% faster than pulse-based partitioning on our datasets.

Figs. 4–7 give the runtime, power, and energy for SAR
reconstruction using tile partitioning as a function of number
of cores, number of pulses, image size, and resolution. The
SAR reconstruction was done using only the CPU of our Xeon
platform and the stated parameters were selected as below. The
tile size was set to 16× 16.

1) Number of Cores: We used 1, 2, 4, 12, and 23 CPU-cores
for the experiments. We did not use all 24 cores in this
experiment, to better compare with our hybrid results
where one core was dedicated to GPU management.

2) Number of Pulses: The number of pulses used in our
experiments were 2000, 3000, and 4000.

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4679

Fig. 4. CPU time for varying image sizes, number of pulses, and resolutions.

Fig. 5. Speedup for different number of cores with varying images sizes,
number of pulses, and resolutions.

3) Image Size : Two sizes for the reconstructed SAR image
were used–2048× 2048 and 4096× 4096 pixels.

4) Resolution Tuple: This tuple represents the percentage of
each resolution level that we used in multiresolution SAR
image reconstruction. We used a 3-tuple, (a, b, c) where
a, b, and c denotes high, medium, and low resolution
percentages corresponding to full resolution, 1/4th, and
1/16th of full resolution, respectively. In the experiments
of Figs. 4–7, we used the tuples (100,0,0), (0,100,0), and
(0,0,100).

Fig. 4 shows CPU processing time for SAR reconstruc-
tion when uniform resolution level is used with varying input
parameters. Our experiment indicates that runtime is linearly
proportional to the resolution level as well as to the number
of pixels. This is not surprising, as with the resolution tuples
used the workload is O(n2rNp), where n2 is the number of
pixels, r is the resolution corresponding to the only nonzero
entry in (a, b, c), and Np is the number of pulses. Although one
may also expect a linear dependence on the number of pulses,
runtime increased at a slightly faster rate than linear. This is due
to higher cache miss rate resulting from an increase in pulses.

As the number of cores is increased, workload per core
decreases. Fig. 5 gives the speedup obtained; for 23 cores, the
speedup is more than 20.

Power consumption for memory and processor are major
causes of CPU power consumption. Our experimental results
revealed that DRAM power consumption has a constant value
of 22.5 Watts per socket. We will use the term CPU power to
refer the total of DRAM power and processor power hereafter.
Fig. 6 shows that the CPU power variation depends mainly

Fig. 6. CPU power when different number of cores are used.

Fig. 7. CPU energy consumption for different number of cores. Energy is
measured with varying image sizes, number of pulses, and resolutions.

on the number of cores used. Starting with a baseline power
consumption of 60 W, power increases linearly.

Fig. 7 shows that even though the power required increases
with the number of cores, the energy consumed decreases in
most cases. This is due to the corresponding decrease in run-
time. Although power increases linearly starting from a base of
60 W and runtime decreases slightly less than linearly, energy
consumption usually decreases because of the high 60-W base.

C. GPU Results

Our GPU implementation used tile-based partitioning and the
parameters number of pulses, image size, and resolution were
chosen as shown below. The GPU experiments reported in this
section did not use the CPU cores to compute any tile.

1) Number of Pulses: Our experiments used 5000 and 10 000
pulses.

2) Image Size: Image size was 4096× 4096, 8192× 8192,
and 16384× 16384 pixels.

3) Resolution Level: Resolution levels were the same as for
our experiments with the CPU (Section V-B).

Figs. 8 and 9, respectively, give the time, power, and energy
measurements from our experiments.

As shown in Fig. 8, reconstruction time increased linearly
with the number of pulses as well as with the number of pix-
els in the reconstructed image. Further, runtime is linear as a
function of resolution (i.e., when (a, b, c) = (0,100,0), runtime
is (approximately) 1/4th that when (a, b, c) = (100,0,0) and
(approximately) 4 times that when it is (0,0,100).

4680 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 8. Time Performance of SAR reconstruction on GPU.

Fig. 9. Energy consumption on a GPU while varying image size, number of
pulses, and resolution level.

The average power, approximately 165 W, required by the
GPU for the duration of the program run, was relatively insensi-
tive to image size and resolution; there is a very slight increase
with the number of pulses.

Fig. 9 shows the energy consumed by our GPU. As expected,
energy increases with increasing number of pulses, image size,
and resolution level. Since GPU power is nearly constant, GPU
energy is (approximately) linearly proportional to GPU time.
Our GPU implementation achieved 725 Gflops on the platform
described in Section V-A. This platform has 4.29 Tflops theo-
retical peak performance and CUBLAS matrix multiplication
achieves 1470 Gflops on our platform.

D. Hybrid CPU-GPU Model

For our hybrid CPU–GPU experiments, we developed a model
to predict time performance, which used linear regression on
the data of Section V-B and Section V-C to obtain (1) and (2)
to estimate runtime on our CPU and GPU, respectively. Here,
N is the image size, Np is number of pulses, Nc is the number
of cores, and runtimes are for tile-based partitioning. Microsoft
Excel was used to run the regression with 0.999 adjusted R2

observed for each equation. Note that the number of pixels being
computed is N2 (i.e., full resolution)

TCPU = 0.275 + 6.951× 10−9 ×N2 ×Np ×Nc
−1 (1)

TGPU = 0.96 + 6.841× 10−11 ×N2 ×Np. (2)

From the above equations, we derive (3) and (4) that estimate
runtime for multiresolution images. Again, the estimated time

TABLE II
PREDICTED AND MEASURED OPTIMAL WORKLOAD PARTITIONING AND

RUNTIME FOR FULL RESOLUTION RECONSTRUCTION

is for tile-based partitioning

TnCPU = TCPU · (a+ b× 0.25 + c× 0.0625)/100 (3)

TnGPU = TGPU · (a+ b× 0.25 + c× 0.0625)/100 (4)

where (a, b, c) denotes the resolution tuple. Recall that a, b, and
c are, respectively, the percent of tiles being computed at full,
1/4th and 1/16th resolution.

The runtime Thybrid time for a hybrid computation (i.e., one
that uses both the GPU and the CPU cores) is approximated by

Thybrid ≈ max{TnCPU , TnGPU}. (5)

To minimize the overall runtime on a hybrid system, we
partition the workload between the CPU and GPU, so that
TnCPU ≈ TnGPU . Although (1)–(4) are for tile-based parti-
tioning, when attempting to equalize TnCPU and TnGPU , we
have the option of doing either pulse- or tile-based partitioning
between the CPU and GPU. So, for example, if we use the CPU
to compute all tiles using NCPU pulses, then the GPU does this
for the remaining Np −NCPU pulses. In this case, Np in (1)
and (2) is replaced by NCPU and Np −NCPU , respectively.
Tile-based partitioning is used to divide the workload among
the CPU and GPU cores.

We evaluated the accuracy of using the prediction model
defined by (1)–(5) to obtain optimal workload partitions. For this
evaluation, the true optimal workload partition was determined
by exhaustively trying different workload partitions in the neigh-
borhood of the partition obtained from the model. Note that the
model only gives the fraction of the total workload that should be
allocated to the CPU and GPU, which can be achieved by either
using pulse partitioning or tile partitioning. Table II gives the
workload partitioning and predicted runtime using the model for
the case when the image is to be computed at full resolution [i.e.,
(a, b, c) = (100,0,0)] as well as the workload partitioning and
corresponding measured runtime for an optimal partitioning. For
the latter runtime, the CPU and GPU computed the pixels in their
assigned tiles for using all pulses. So, for a 4096× 4096 image
using 23 cores and 40 000 pulses, our model predicted that best
time performance will be obtained by having the CPU do 18%
of the work, yielding a runtime of 38 s. The exhaustive search
in the neighborhood of an 18% allocation to the CPU resulted
in optimal time performance when the CPU was assigned only
16% of the work; the exhaustive search distributed work between
the CPU and GPU using tile partitioning. The column labeled

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4681

TABLE III
PREDICTED AND MEASURED OPTIMAL WORKLOAD PARTITIONING AND

RUNTIME(S) FOR MULTIRESOLUTION RECONSTRUCTION

TABLE IV
OPTIMAL HYBRID FULL RESOLUTION RECONSTRUCTION OF A 16384× 16384

IMAGE USING 40 000 PULSES

“Deviation of time” gives the percent deviation in the measured
optimal runtime from that predicted by the model. For these
tests, measured deviation from the model is within 6% when
only 1 core is used and within 0.75% when 23 cores are used.

Table III gives the model predictions and measured runtimes
for multiresolution reconstruction using 23 cores. In experi-
ment 1 (Exp 1), (a, b, c) = (60,20,20) and in experiment 2,
it is (20,30,50). Both experiments used 40 000 pulses. For a
8192× 8192 pixel image with (a, b, c) = (60,20,20) (Exp 1),
our model predicts optimal time performance when the CPU is
assigned 19.29% of the work; the predicted runtime is 13.24 s.
An exhaustive search in the neighborhood of 19.29% work being
assigned to the CPU (the CPU is assigned x% of the tiles, where
x � 19.29) resulted in optimal time performance when the CPU
was assigned 17% of the tiles; the optimal runtime was 12.96 s.
When the neighborhood search was done by assigning x% of the
pulses (x � 19.29), best time performance was observed when
x = 16.79%; the runtime for this x was 12.8 s. Dt and Dp give
the deviation in the measured optimal times using the tile and
pulse-based exhaustive searches relative to the model predicted
optimal runtime, respectively. The maximum deviation in our
experiments was 6.04%, indicating that our model is accurate
within practicable constraints.

Table IV gives the measurements for an optimal hybrid full
resolution reconstruction of a 16384× 16384 pixel image using
40 000 pulses. For example, when the number of cores is 23,
14.5% of the work is done on the CPU and the balance (85.5%)
on the GPU; this reconstruction took 594.9 s and consumed
212 780 joules of energy. The time-energy data of Table IV is
plotted in Fig. 10 to obtain the pareto-optimal front for time and
energy tradeoff. The percentage of the load processed by the
CPU cores and the GPU for each of the data points in Fig. 10 is
given in Table IV. These work distributions are observed when
the optimum runtime is achieved.

We present a pareto-optimal front for energy and time per-
formance trade-off in Fig. 10. Every point on this curve can be
reached by changing the loading on the CPU and GPU, and this

Fig. 10. Time performance and energy tradeoffs in our hybrid system. Both
CPU and GPU are set to run at the highest frequency.

Fig. 11. Processing time using 23 cores and highest resolution for different
image sizes and number of pulses.

can be used to achieve the required energy savings by trading
time performance.

E. Dynamic Voltage and Frequency Scaling

DVFS is used to adjust voltage and frequency dynamically
to reduce power usage of a processor. Dynamic power and
leakage power are the two main power consumption methods in
a CMOS processor [22], [23]. Dynamic power is mainly utilized
for execution of instructions and is linearly proportional to the
frequency and to the square of the voltage [24], [25]. The idea of
using DVFS was first introduced by Weiser et al. [26]. A critical
analysis on energy management using DVFS is discussed in [27]
where the author described categories of applications which can
be benefited from DVFS.

We investigated the time performance, power, and energy
behaviors with varying clock frequencies for both CPU and
GPU, and in this section we present a DVFS model which can
be used to obtain energy and time performance tradeoffs.

1) DVFS CPU Results: Figs. 11– 13 present SAR recon-
struction runtime, power, and energy when tile-based parti-
tioning was employed. 3000, 4000, and 5000 pulses were used
with 2048× 2048 pixel and 4096× 4096 pixel image sizes.
CPU clock frequencies used in our experiments were 1200 to
2400 MHz, with step size of 100 MHz. Number of cores were
set to 23 and resolution was set to the highest level.

4682 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 12. Average CPU power using 23 cores with varying frequency levels.

Fig. 13. CPU energy consumption with varying frequencies, image sizes, and
number of pulses.

From Fig. 11, we see that runtime is inversely proportional
to the CPU clock frequency. This is expected as the number of
instructions executed per second is linearly proportional to the
CPU clock frequency. Fig. 12 shows how the power varies with
the frequency when 23 CPU cores are used. Fig. 13 gives the en-
ergy consumption for different frequencies for the experiments
discussed above. Note that energy consumption decreases with
frequency.

2) DVFS GPU Results: We measured time performance,
power, and energy for our GPU implementation of our SAR
reconstruction algorithm for varying GPU clock frequencies for
various number of pulses and image sizes: 666, 745, 810 and
875 MHz were used as frequency levels with 10 000 and 5 000
pulses, and 4096× 4096, 8192× 8192, and 16384× 16384
pixel image sizes.

Fig. 14 presents runtime as a function of GPU clock fre-
quency, number of pulses and image size. As expected, runtime
is inversely proportional to the GPU frequency. As shown in
Fig. 15, GPU power increased linearly with frequency. This
behavior is expected, as dynamic power is linearly propor-
tional to the frequency. Energy consumed by the GPU is de-
creased sublinearly with the frequency decrement as shown in
Fig. 16. Even though time increased with the frequency decre-
ment, decreased in power resulted in overall decrease in energy.

3) Time Performance and Energy Tradeoffs for DVFS:
Fig. 17 shows the energy-time performance tradeoff when
different frequencies and cores are used for CPU and GPU.
4096× 4096 pixel image size is used with 5000 pulses. When
high frequencies are used, we observe a decrease in runtime

Fig. 14. GPU time for highest resolution with varying frequencies, image
sizes, and number of pulses.

Fig. 15. GPU average power for different clock frequencies.

Fig. 16. Energy consumption on a GPU for various clock frequencies.

but an increase in energy consumption. This graph presents a
pareto-optimal front for energy and time performance.

When the timing constraints are introduced, the energy-time
performance tradeoff can be stated as an energy optimization
problem

minimize
XCPU ,XGPU

ECPU (Nc, fc) + EGPU (fg)

subject to TCPU (Nc, fc) ≤ T1

TGPU (fg) ≤ T1

XCPU +XGPU = 1

Nc ∈ {1, 2, 4, 12, 23}
fc ∈ {1200, 1300, 1400, . . ., 2400}
fg ∈ {666, 745, 810, 875}

where Nc is the number of CPU cores, T1 is the target runtime,
XCPU and XGPU are the, respective, CPU and GPU work-
load, fc is the CPU frequency and fg is the GPU frequency.

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4683

Fig. 17. Time performance and energy tradeoff in the hybrid system when
different frequencies and cores are used.

ECPU (Nc, fc), TCPU (Nc, fc), and EGPU (fg), TGPU (fg) are
the energy and time consumed by Nc CPU cores under fc
frequency and GPU device under fg frequency, respectively.
We developed a model to predict time and energy performance
using regression analysis for the results shown in Section V-E,
as follows:

TCPU = a1/(Nc · fc) (6)

TGPU = a2/fg (7)

ECPU = a3 + a4 · �Nc/12�/(Nc · fc) (8)

EGPU = a5 − a6/fg (9)

where a1 = 2.185× 10−5 · P , a2 = 5.418× 10−8 · P , a3 =
2.933× 10−8 · P , a4 = 0.001 · P , a5 = 1.497× 10−8 · P ,
a6 = 1.92× 10−6 · P . Here P = N2 ·Np where N is the
image size and Np is number of pulses. Microsoft Excel was
used to run the regression with above 0.99 adjusted R2 for each
of the equation.

It is possible to predict the minimum energy by solving the
above optimization problem under the given time constraint, pro-
viding CPU and GPU workload percentages with CPU and GPU
frequencies and the number of CPU cores when the minimum
energy configuration is achieved.

We used this method to find energy-time performance tradeoff
for a SAR image reconstruction of 4096× 4096 pixels with
5 000 pulses. The MATLAB linprog function was used to solve
the problem repeatedly for each value of Nc, fc, and fg , to
find the minimum energy for all possible configurations. When
we set T1 = 4.7 s, theoretical results indicate that a minimum
energy of 1504.2 J can be achieved with Nc = 12, fc = 2400,
and fg = 875 by allocating 9.5% workload to CPU cores and
90.5% workload to the GPU. Experimentally, this configuration
consumed 1486.8 J. Energy and the runtime for the best run-
time configuration is 1702 J and 4.53 s, respectively. So it is
possible to get 12.64% more energy efficiency by sacrificing
only 3.75% runtime. Furthermore, if the time limit is set to
6.1 s, our theoretical model yields a configuration of Nc = 12,
fc = 2400, and fg = 745, by allocating 0.3% workload to CPU
cores and 99.7% workload to the GPU with a minimum energy
consumption of 1052 J . Experimentally, energy consumed for

TABLE V
COMPARISON OF RUNTIME AND ENERGY BETWEEN OUR MODEL AND

ACTUAL RESULTS

this configuration is 1026 J yielding 39.72% energy efficiency
by sacrificing 34.66% on runtime.

To validate the derived time and energy values from our
model, we compared actual runtime and energy with estimated
runtime and energy obtained using (6) to (9). A 4096× 4096
pixel image was used with 5000 pulses. Table V shows the
estimated and actual time and energy results and the error
percentage for each case. Configuration column represents CPU
frequency, GPU frequency, CPU cores, CPU workload, respec-
tively. According to Table V, error percentage between estimated
and actual runtime and energy is less than 3%.

F. Dynamic Programming Model

Dynamic programming model can be used to solve the re-
source allocation optimization problem efficiently [28]. An anal-
ysis on thermal versus energy optimization for DVFS-enabled
processors is presented in [29] and a discussion on resource
allocation via dynamic programming in activity networks is
presented in [30]. In this section, we present an optimization
strategy based on dynamic programming for the SAR image
reconstruction on hybrid multicore system.

Consider a system that has Nc number of CPU cores, Ng

number of GPU cores, Fc number of CPU frequency levels,
and Fg number of GPU frequency levels. Energy minimization
problem for this system can be written as

minimize E(nc, fc, ng, fg, S)

subject to T (nc, fc, ng, fg, S) ≤ T

nc ∈ Nc, ng ∈ Ng, fc ∈ Fc, fg ∈ Fg

where S is the total problem size, T (nc, fc, ng, fg, S) is the
total execution time for the problem and T is a given time limit.
If we assume discrete distribution of workload among CPUs
and GPUs, we can denote the cardinality of the set of workload
distribution s as X . As an example if the workload distribution
set W = {0.000, 0.001, 0.002, . . .1.000}, then X = 1000. In
order to determine the best energy optimization configuration
for this system, number of evaluations required is

T = Nc ·Ng · Fc · Fg ·X. (10)

When the parameters used in (10) become large enough,
total number of evaluations can be practically infeasible. In this
section we proposed a dynamic programming approach to make
these evaluations more feasible by decomposing the problem
into separate subproblems. The energy and time consumed by
the CPU cores is independent of the energy and time consumed

4684 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

by GPU cores and depends with the workload processed by each
core, which made this decomposition possible.

The energy consumed by CPU cores (ECPU) is a func-
tion of the number of CPU cores used (nc), the CPU fre-
quency (fc), the CPU workload fraction (xc), and can be written
asECPU (nc, fc, xc). The energy consumed by GPUs (EGPU) is
a function of the number of GPUs used (ng), the GPU frequency
(fg), the CPU workload fraction (xg), and can be written as
EGPU (ng, fg, xg).

The time taken by the CPU cores to process a given com-
putational workload, is given by TCPU which is the maximum
time taken by a CPU core to process xc · S/nc amount of load.
Similarly, the time taken by the GPUs to process the load is
given by TGPU which is the maximum time taken by a GPU
to process the remaining xg · S/ng amount of load. In order to
satisfy the given time limit, both CPU and GPU cores have to
finish the execution before the given time limit. Now we can
rewrite the energy optimization problem with separate CPU and
GPU subproblems as follows:

minimize E(nc,fc,xc)CPU + E(ng,fg,xg)GPU

subject to T(nc,fc,xc)CPU ≤ T1

T(ng,fg,xg)GPU ≤ T1

xc + xg = 1

nc ∈ Nc, ng ∈ Ng, fc ∈ Fc, fg ∈ Fg.

To find the minimum energy consumption for a given problem
and under a given deadlineT , one can separately evaluateECPU

and EGPU . To evaluate ECPU , the number of combinations one
has to consider are Nc · Fc ·R, and similarly to evaluate EGPU

one has to consider Ng · Fg ·R combinations. So, a total of A′

evaluations are required where

A′ = (Nc · Fc +Ng · Fg) ·R. (11)

We can further reduce the search space by using the observa-
tion that energy may be derived from power consumption and
execution time on the generic system. So

ECPU (nc, fc, xc) = TCPU (nc, fc, xc) · PCPU (nc, fc, xc)
(12)

EGPU (ng, fg, xg) = TGPU (ng, fgxg) · PGPU (ng, fg, xg).
(13)

From our experiments we found that power consumption on
CPU and GPU depends on the clock frequency of the processor
and the number of processors used, and does not generally de-
pend on workload. Also, execution time is directly proportional
to frequency so, we can write

PCPU (nc, fc, xc) ≈ PCPU (nc, fc) (14)

TCPU (nc, fc, xc) ≈ fcmax

fc
· TCPU (nc, fcmax, xc) (15)

PGPU (ng, fg, xg) ≈ PGPU (ng, fg) (16)

TGPU (ng, fg, xg) ≈ fgmax

fg
· TGPU (ng, fgmax, xg). (17)

So practically, by evaluating different numbers of CPU cores
and GPUs for the available frequencies, we can derive power
consumption for any given load. Thus the number of possible
evaluations for determining power consumption is

P = Nc · Fc +Ng · Fg (18)

where Nc and Ng are cardinalities of the set of CPU cores
and GPUs, respectively, while Fc and Fg are, respectively, the
number of available CPU and GPU frequencies.

On the other hand, to determine execution time to reconstruct
SAR images, we can simply run the CPU workload on nc CPU
cores at the maximum frequency, and the rest of the workload on
Ng GPUs also at the maximum frequency. Hence the number of
possible evaluations for determining required processing time is

T = (Nc +Ng) ·R. (19)

Given the above discussion, we can derive an energy efficient
system configuration by solving the given problem on the system
using A′′ different evaluations where

A′′ = P + T = Nc · Fc +Ng · Fg + (Nc +Ng) ·R. (20)

1) Experimental Results: To demonstrate the usability of
our dynamic programming approach, we perform a case study
on a heterogeneous platform, for the application SAR image
reconstruction. The details of our case study are presented in
this section.

We used nine frequency levels as indicated below (in MHz)

Fc = {1200, 1300, 1500, 1700, 1900, 2100, 2200, 2300, 2400}.
(21)

Frequency levels used for GPU evaluation is (in MHz)

Fg = {666, 745, 810, 875}. (22)

Our workload distribution set W = { 4
4096 ,

8
4096 ,

12
4096 , . . ., 1}

and Cardinality of W is 1024. We used 5 CPU core combi-
nations, Nc = {1, 2, 4, 12, 23} and 1 GPU core. According to
the (10) we would have to evaluate 5× 1× 9× 4× 1024 =
184, 320 combinations to find the best energy optimum con-
figuration exhaustively. With the approach we used to derive
(11), this will be reduced to (5× 9 + 4× 1) · 1024 = 50176
combinations. Furthermore with the method used to derive (20),
total evaluations will be reduced to 5× 9 + 4× 1 + (5 + 1) ·
1024 = 6193.

a) CPU Evaluation: In this section we present results that will
validate the assumptions we made to derive (14) and (15).

CPU power PCPU depends on the CPU frequency and the
number of CPU cores used. CPU power consumption increases
with the number of CPU cores used as well as the increment
of the CPU frequency. Theoretically we can represent this re-
lationship as PCPU ∝ fc × fn. From our experimental results
we derived an equation for CPU power as follows using Excel
linear regression model:

PCPU = 20.67295 + 0.001844× nf × nc. (23)

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4685

Fig. 18. Frequency of error percentage between actual power and predicted
power for CPU using (23) for 5550 test cases.

Fig. 19. Frequency of error percentage between actual power and predicted
power by using (24) to (28) for 5550 test cases.

We used 5550 evaluations to derive (23). Error percentage
between actual power consumption and predicted power con-
sumption for some cases is more than 20% as shown in the
Fig. 18.

As the error is higher than an acceptable percentage we
derived power equations separately for each core as follows:

PCPU (1, f) = 12.49386255 + 0.008055874× nf (24)

PCPU (2, f) = 9.317893545 + 0.011280284× nf (25)

PCPU (4, f) = 8.144109452 + 0.014376154× nf (26)

PCPU (12, f) = 7.572171362 + 0.023166177× nf (27)

PCPU (23, f) = 21.25981 + 0.044759× nf . (28)

Fig. 19 shows the error percentage between actual power and
predicted power, calculated using (24) to (28) and projected in
to one graph for 5550 test cases. As we can see maximum error
percentage is less than 10%.

CPU time, TCPU is inversely proportional to the CPU fre-
quency. Proportionality is removed by introducing a constant as
shown by

TCPU (nc, fc, xc) =
2400

fc
· TCPU (nc, 2400, xc). (29)

Fig. 20 shows the error percentage between actual time and
predicted time for 1394 cases. Error percentage lies in an ac-
ceptable range as the maximum error percentage is less than
5%.

Fig. 20. Frequency of error percentage between actual time and predicted time
for CPU evaluation for 1394 test cases.

Fig. 21. Frequency of error percentage between actual power and predicted
power for GPU evaluation.

b) GPU Evaluation: In this section we present results that will
validate the assumptions we made to derive (16) and (17).

We used only one GPU for our experiments. Hence GPU
power PGPU depends only on the GPU frequency. From our
experimental results we derived an equation for GPU power as
follows using Excel linear regression model

PGPU = −13.283 + 0.240312× fg. (30)

We used 2504 evaluations to derive (30). Error percentage
between actual power consumption and predicted power con-
sumption is less than 3% as shown in Fig. 21.

GPU time, TGPU is inversely proportional to the GPU fre-
quency. proportionality is removed by introducing a constant as
shown by

TGPU (fc, xc) =
875

fg
· TGPU (875, xc). (31)

Fig. 22 shows the error percentage between actual time and
predicted time for 2504 test cases for a single GPU. Maximum
error percentage is less than 6%

c) Hybrid Evaluation: We present results from our dynamic
programming approach to determine the best energy optimum
configuration for our hybrid system. We used CPU only and
GPU only evaluations given in Section V-F1 a and Section V-F1
b, to generate the energy and time requirements for the hybrid
system.

Fig. 23 shows the total energy against runtime for the esti-
mated results for 4× 4k image with 5000 pulses. As discussed in

4686 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 22. Frequency of error percentage between actual time and predicted time
for GPU evaluation.

Fig. 23. Energy versus Runtime for the estimated results for 4k × 4k image
with 5000 pulses. Pareto-optimal front is denoted by the red curve.

TABLE VI
SET OF CONFIGURATIONS FOR THE POINTS ON THE PARETO CURVE. CPU AND

GPU FREQUENCIES ARE IN MHZ

Section V-F1 a and Section V-F1 b, we used lookup tables which
consisted actual evaluations only for the maximum frequencies
for CPU and GPU separately to obtain the points on the 23. To
calculate the energy consumption for the hybrid system, energy
consumed by CPUs and the GPU are summed up.

Table VI shows the set of configurations that lies on the pareto-
optimal curve shown in Fig. 23.

We validated energy and runtime for the configurations given
in Table VI by executing them on our hybrid platform. Runtime
of the estimated results are compared with the actual runtime
and the results are shown in Fig. 24. Fig. 25 compares estimated
total energy consumption and actual energy consumption for the
configurations given in Table VI.

Table VII shows the error percentage between actual and
estimated runtime and energy. According to Table VII estimated

Fig. 24. Comparison of estimated runtime based on our model and the actual
runtime for the configurations given in Table VI.

Fig. 25. Comparison of estimated energy based on our model and the actual
energy for the configurations given in Table VI.

TABLE VII
ERROR PERCENTAGE IN RUNTIME AND ENERGY BETWEEN ESTIMATED VALUES

AND ACTUAL VALUES

runtime and energy values are within 2% of the respective actual
runtime and energy values.

Fig. 26 gives a graphical representation of the pareto-optimal
curve for the estimated values and the actual energy and runtime
values for the points in the pareto-optimal curve.

In order to validate the pareto-optimal curve obtained using
estimated results, we evaluated over 5000 different configura-
tions in our hybrid platform for 4096× 4096 image with 5000
pulses. Fig. 27 shows pareto-optimal curves obtained using esti-
mated results and actual results. According to the pareto-curves
we can decide that the pareto-optimal curve obtained using
estimated results are almost similar to the pareto-curve of the
actual results.

WIJAYASIRI et al.: MULTIOBJECTIVE OPTIMIZATION OF SAR RECONSTRUCTION ON HYBRID MULTICORE SYSTEMS 4687

Fig. 26. Estimated and actual energy and runtime values for the points on the
pareto-optimal curve. Configuration is given in the order or number of tiles on
CPUs, CPU frequency, GPU frequency, number of CPU cores, and energy.

Fig. 27. Separate pareto-optimal curves for the estimated results and the actual
results. Red color points and the curve shows estimated values and pareto curve
for the estimated results where blue color points and the curve shows actual
values and pareto curve for the actual results.

Fig. 28. Pareto-optimal curves for different image sizes with 5000 pulses.

We estimated energy and runtime values for different image
sizes such as 4096× 4096 (4 k), 3584× 3854 (3.5 k), 3072×
3072 (3 k), 2560× 2560 (2.5 k), 2048× 2048 (2 k), and 1536×
1536 (1.5 k) and pareto-optimal curves for these image sizes are
shown in Fig. 28. As expected energy and runtime decreases for
the smaller image sizes while preserving the shape of the curve.

VI. CONCLUSION

In this article, we discuss methods for SAR image reconstruc-
tion on a single GPU, a multicore CPU system, and a CPU–GPU
hybrid system. We addressed the work allocation challenges
and presented methods to distribute work efficiently between
CPU and GPU cores using static work allocation methods.
We discussed the problems that arise in hybrid reconstruction
when multiple resolution levels are required in the reconstructed
image. We generated models to predict time performance and
compared the predicted optimum work allocation with the actual
optimum allocation concluding that the developed prediction
models work well. We investigated how the time performance,
power, and energy varies with the use of DVFS on CPU and GPU
and presented a pareto curve to obtain tradeoffs between energy
and time performance. Furthermore, we developed a model to
find the minimum energy configuration when a time constraint is
given. The dynamic programming approach we proposed in this
article allows to obtain better configurations under the given
constraints. This approach drastically reduces the exhaustive
search space to find the best configurations while keeping the
accuracy of the estimated results to more than of 90%. In future,
we will extend our model to multiple GPUs.

REFERENCES

[1] C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson,
Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach.
New York, NY, USA: Springer, 2012.

[2] G. C. Walter, S. G. Ron, and M. M. Ronald, Spotlight Synthetic Aperture
Radar, Signal Processing Algorithms. Boston, MA, USA: Artech House,
1995.

[3] I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aper-
ture Radar Data: Algorithms and Implementation. Norwood, MA, USA:
Artech House, 2005.

[4] M. I. Duersch, “Backprojection for synthetic aperture radar,” Ph.D. dis-
sertation, Dept. Elect. Comput. Eng., Brigham Young Univ., Provo, UT,
USA, 2013.

[5] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, L. Moore, and B. Elton, “A
framework for rendering high resolution synthetic aperture radar images
on heterogeneous architectures,” in Proc. IEEE Symp. Comput. Commun.,
2014, pp. 1–6.

[6] A. Wijayasiri, T. Banerjee, S. Ranka, S. Sahni, and M. Schmalz, “Dynamic
data driven image reconstruction using multiple GPU,” in Proc. IEEE Int.
Symp. Signal Process. Inf. Technol., 2016, pp. 241–246.

[7] T. Banerjee, J. Rabb, and S. Ranka, “Performance and energy benchmark-
ing of spectral solvers on hybrid multicore machines,” Sustain. Comput.:
Inform. Syst., vol. 12, pp. 10–20, 2016.

[8] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-core parallel
programming environment,” in Proc. Workshop General Purpose Process.
Graph. Process. Units, vol. 28, 2007.

[9] S. W. Keckler, H. P. Hofstee, and K. Olukotun, Multicore Processors and
Systems. New York, NY, USA: Springer, 2009.

[10] M. Soumekh, Synthetic Aperture Radar Signal Processing. New York, NY,
USA: Wiley, 1999, vol. 7.

[11] M. D. Desai and W. K. Jenkins, “Convolution backprojection image
reconstruction for spotlight mode synthetic aperture radar,” IEEE Trans.
Image Process., vol. 1, no. 4, pp. 505–517, Oct. 1992.

[12] L. M. Ulander, H. Hellsten, and G. Stenstrom, “Synthetic-aperture radar
processing using fast factorized back-projection,” IEEE Trans. Aerosp.
Electron. Syst., vol. 39, no. 3, pp. 760–776, Jul. 2003.

[13] L. A. Gorham and L. J. Moore, “SAR image formation toolbox for MAT-
LAB,” in Proc. SPIE Defense, Secur., Sens., 2010, pp. 769 906–769 906.

[14] A. Capozzoli, C. Curcio, and A. Liseno, “Fast GPU-based interpolation for
sar backprojection,” Prog. Electromagnetics Res., vol. 133, pp. 259–283,
2013.

4688 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

[15] W. Chapman et al. “Parallel processing techniques for the processing of
synthetic aperture radar data on GPUs,” in Proc. IEEE Int. Symp. Signal
Process. Inf. Technol., 2011, pp. 573–580.

[16] A. Fasih and T. Hartley, “GPU-accelerated synthetic aperture radar back-
projection in cuda,” in Proc. IEEE Radar Conf., 2010, pp. 1408–1413.

[17] M. Garland et al. “Parallel computing experiences with cuda,” IEEE Micro,
vol. 28, no. 4, pp. 13–27, Jul./Aug. 2008.

[18] J. Li, S. Ranka, and S. Sahni, “GPU matrix multiplication,” Multicore
Comput., Algorithms, Architectures, Appl., vol. 345, 2013.

[19] CUDA Programming Guide, NVIDIA Developer, Santa Clara, CA, USA.
(2016).

[20] C. Lomont, “Introduction to Intel advanced vector extensions,” Intel, Santa
Carla, CA, USA, White Paper, 2011.

[21] A. Tanikawa, K. Yoshikawa, T. Okamoto, and K. Nitadori, “N-body simu-
lation for self-gravitating collisional systems with a new simd instruction
set extension to the x86 architecture, advanced vector extensions,” New
Astron., vol. 17, no. 2, pp. 82–92, 2012.

[22] F. M. M. ul Islam and M. Lin, “Hybrid DVFS scheduling for real-time
systems based on reinforcement learning,” IEEE Syst. J., vol. 11, no. 2,
pp. 931–940, Jun. 2017.

[23] M. K. Bhatti, C. Belleudy, and M. Auguin, “Hybrid power management in
real time embedded systems: An interplay of DVFS and DPM techniques,”
Real-Time Syst., vol. 47, no. 2, pp. 143–162, 2011.

[24] J. M. Rabaey, Digital Integrated Circuits: A Design Perspective. Engle-
wood Cliffs, NJ, USA :Prentice-Hall, 1996.

[25] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold
voltage scaling for low power CMOS,” IEEE J. Solid-State Circuits,
vol. 32, no. 8, pp. 1210–1216, Aug. 1997.

[26] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced
CPU energy,” in Mobile Computing. Boston, MA, USA: Springer, 1994,
pp. 449–471.

[27] E. Le Sueur, “An analysis of the effectiveness of energy management on
modern computer processors,” Master’s Thesis, School Comput. Sci. Eng.,
Univ. New South Wales, Sydney, Australia, 2011.

[28] E. V. Denardo, Dynamic Programming: Models and Applications. Chelms-
ford, MA, USA: Courier, 2012.

[29] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang, “Thermal vs energy
optimization for DVFS-enabled processors in embedded systems,” in Proc.
IEEE 8th Int. Symp. Qual. Electron. Des., 2007, pp. 204–209.

[30] S. E. Elmaghraby, “Resource allocation via dynamic programming in
activity networks,” Eur. J. Oper. Res., vol. 64, no. 2, pp. 199–215, 1993.

Adeesha Wijayasiri received the B.Sc. degree in
engineering with a first class honours from the Uni-
versity of Moratuwa, Sri Lanka, in 2013, and the
Ph.D. degree from the Department of Computer and
Information Science and Engineering (CISE) at the
University of Florida, Gainesville, FL, USA, in 2018.

He is a Lecturer with the Department of Com-
puter Science and Engineering at the University of
Moratuwa. Prior to joining the University of Florida,
he worked as a Contract Lecturer with the Department
of Computer Science and Engineering, University of

Moratuwa. He was a Volunteer for the Sri Lanka Police for Forensic video
analyzing and also worked as a Contractor for International Organization for
Migration, Sri Lanka, developing software for analyzing illegal immigrant
patterns. His research interests include parallel programming, high performance
computing, and image processing.

Tania Banerjee received the Ph.D. degree from the
Department of Computer and Information Science
and Engineering, University of Florida, Gainesville,
FL, USA.

She is a Research Assistant Scientist with the
Department of Computer and Information Science
& Engineering, University of Florida. Her research
interests include data structures, sequential and paral-
lel algorithms, high-performance and energy-efficient
computing, machine learning, and intelligent trans-
portation systems.

Sanjay Ranka received the B.Tech. degree in com-
puter science from Indian Institute of Technology,
Kanpur, India, and the Ph.D. degree in computer sci-
ence from the University of Minnesota, Minneapolis,
MN, USA.

He is a Professor with the Department of Computer
Information Science and Engineering at University
of Florida, Gainesville, FL, USA. From 1999–2002,
he was the Chief Technology Officer with Paramark,
Sunnyvale, CA, USA. At Paramark, he developed
a real-time optimization service called PILOT for

marketing campaigns. He has coauthored four books, 290+ journal, and ref-
ereed conference articles. His current research interests are high performance
computing and big data science with a focus on applications in CFD, health care,
and transportation.

Dr. Ranka is a fellow of the AAAS and a past member of IFIP Committee
on System Modeling and Optimization. He is an Associate Editor-in-Chief for
the Journal of Parallel and Distributed Computing and an Associate Editor for
ACM Computing Surveys, Applied Sciences, Applied Intelligence, IEEE/ACM
TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, Sustain-
able Computing: Systems and Informatics, Knowledge and Information Systems,
and International Journal of Computing.

Sartaj Sahni received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology,
Kanpur, Kanpur, India, and the Ph.D. degree in com-
puter science from Cornell University, Ithaca, NY,
USA.

He is a Distinguished Professor of Computer and
Information Sciences and Engineering with the Uni-
versity of Florida, Gainesville, FL, USA. He has
authored or coauthored over 400 research papers and
written 15 texts. He holds 15 US patents. His research
interests include the design and analysis of efficient

algorithms, parallel computing, interconnection networks, design automation,
and medical algorithms.

Dr. Sahni is a member of the European Academy of Sciences, a Fellow of
ACM, AAAS, and Minnesota Supercomputer Institute, and a Distinguished
Alumnus of the Indian Institute of Technology, Kanpur, India. He is also a
member of the steering committee of several international conferences. In 1997,
he was the recipient of the IEEE Computer Society Taylor L. Booth Education
Award “for contributions to Computer Science and Engineering education in the
areas of data structures, algorithms, and parallel algorithms,” and in 2003, he
was the recipient of the IEEE Computer Society W. Wallace McDowell Award
“for contributions to the theory of NP-hard and NP-complete problems.” He was
the recipient of the 2003 ACM Karl Karlstrom Outstanding Educator Award for
“outstanding contributions to computing education through inspired teaching,
development of courses and curricula for distance education, contributions
to professional societies, and authoring significant textbooks in several areas
including discrete mathematics, data structures, algorithms, and parallel and
distributed computing.” In 2016, he was the recipient of the IEEE Technical
Committee on Scalabale Computing (TCSC) Award for Excellence in Scalable
Computing for “fundamental contributions to scalable computing and leadership
in service to the scalable computing community.” He was an Editor-in-Chief for
ACM Computing Surveys, Co-Editor-in-Chief for the Journal of Parallel and
Distributed Computing, and is currently on the editorial board of 17 journals.

Mark Schmalz received the O.D. degree in optom-
etry and the Ph.D. degree in computer science from
the University of Florida, Gainesville, FL, USA.

He is an Associate Scientist with the Department
of Computer and Information Science and Engineer-
ing at University of Florida. He has authored or co-
authored over 170 book chapters or research papers
in open conference proceedings and journals, edited
over 15 books. His research interests are in high-
performance parallel computing, image and signal
processing, human and machine vision, automated

processing and understanding of digital imagery, data compression, and cryptol-
ogy. He is affiliated with UF’s Digital Arts and Sciences program, with research
interests in psychoacoustics and computer-generated music.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

