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Subpixel Mapping of Hyperspectral Images Using a
Labeled-Unlabeled Hybrid Endmember Library and
Abundance Optimization

Yifan Zhang

Abstract—Classification at subpixel level for a low resolution
hyperspectral image (LR HSI) is considered in this article. Using
selected labeled samples as labeled endmembers and unsupervised
clustering centers of LR HSI as unlabeled endmembers, a hybrid
endmember library is constructed for spectral unmixing of LR HSI.
The abundances of unlabeled endmembers are used to optimize the
estimated fractional abundances of labeled classes within mixed
pixels to improve the estimation accuracy. A more accurate sub-
pixel mapping result is then obtained by applying subpixel spatial
attraction model with the optimized fractional abundances. To
incorporate spatial contextual information and further improve
the subpixel mapping performance, a subpixel level segmentation
map is generated by applying unsupervised clustering to the up-
sampled LR HSI, and integrated with the initial subpixel mapping
result by decision fusion. Experimental results demonstrate that
the proposed method remarkably outperforms state-of-the-art sub-
pixel mapping methods, including the corresponding ones with or
without spatial contextual information incorporation.

Index Terms—Abundance, classification, endmember library,
hyperspectral image (HSI), subpixel mapping.

I. INTRODUCTION

YPERSPECTRAL image (HSI) possesses hundreds of
H continuous spectral bands of observed objects, and pro-
vides abundant spectral information to improve the ability to
distinguish different objects. As aresult, itis widely used in clas-
sification [1], [2]. Meanwhile, due to the tradeoff between spatial
and spectral resolution of hyperspectral sensors, the spatial
resolution of HSI is usually limited, resulting in wide existence
of mixed pixels. It is obvious that classic hard classification
techniques, which assign a single class label to a pixel, are not
appropriate. To address this issue, soft classification is used to
estimate the proportion/probability of each class within a mixed
pixel. More recently, spectral unmixing is also employed to
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decompose mixed pixels into several pure spectral constituents
and quantitatively estimate their proportion [3].

Linear spectral mixture model [4] is usually employed to
describe the spectral mixing behavior inside mixed pixels due
to its simplicity and effectiveness. In spectral unmixing, end-
members play an important role in quantitatively representing
spectral constituents of mixed pixels. Appropriate endmember
extraction and selection from HSI is critical. Popular pure pixel
based endmember extraction algorithms include pixel purity
index [5], vertex component analysis [6], simplex growing algo-
rithm [7], iterative error analysis [8], N-FINDR [9], etc. In cases
with available training samples assigned to determined class
labels, endmembers can also be selected from these training
samples. In [10], an adaptive method is used to select the best
endmember candidates from the training samples in the vicinity
of a considered pixel. Unfortunately, the limited number of
training samples for HSI is always a problem in practice, which
greatly degrades accuracy of the following abundance estima-
tion. Semisupervised classification methods [11]-[13] deal with
the limited training samples by selecting informative unlabeled
samples with active learning methods to enlarge the training
sample set. Recently, novel feature extraction and unsupervised
classification methods are also proposed to deal with the cases
without any training samples [14]-[17].

Abundance fraction estimation following endmember extrac-
tion and selection also plays an important role in spectral unmix-
ing. Fully constrained linear spectral unmixing (FCLSU) [18]
and mixture-tuned matched filtering [19] are commonly used for
abundance fraction estimation. As the linear mixing model gen-
erally satisfies two constraints: abundance sum-to-one constraint
(ASC) and abundance nonnegative constraint (ANC) [20], abun-
dance fractions can be interpreted as probabilities of endmember
occurrence. By summing up abundance fractions of the end-
members (training samples) belonging to the same class, the
proportion/probability of each class within the considered pixel
(soft classification result) can be obtained.

Nevertheless, neither soft classification nor spectral unmixing
is capable of providing any information about spatial distribution
for each constituent/class within a mixed pixel. To account for
this issue, subpixel mapping techniques are usually employed.
The idea of subpixel mapping is originally proposed by Atkin-
son [21], which aims to arrange class spatial location inside each
mixed pixel given their obtained abundances. Subpixel mapping
techniques are employed for transforming an abundance map
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into a finer classification map, according to abundance con-
straints (ASC and ANC) and spatial dependence [21] inspired by
Tobler’s first law [22]. The spatial dependence theory is imple-
mented by the assumption that adjacent pixels most likely have
the same class label. Many subpixel mapping techniques have
been developed based on this theory, such as the direct neighbor-
ing subpixel mapping, the spatial attraction model [23]-[25], the
pixel swapping subpixel mapping [26]-[29], the Hopfield neural
network based techniques [30], [31], maximum a posteriori-
based techniques [32]-[34], multiagent systems [35], genetic
algorithms [36]—[38], differential evolution [39], etc. It has been
illustrated that abundance map with higher accuracy normally
leads to a finer subpixel mapping result [40].

In[41], taking a high resolution (HR) color image as auxiliary,
a multisource subpixel mapping framework is exploited, and
improved subpixel mapping results can be achieved by incor-
porating abundant and detailed spatial contextual information
enclosed in the auxiliary image. However, this framework cannot
be applied when there is no HR auxiliary image available [41],
which is the most common case in practice. The collaborative
representation based subpixel mapping (CRSPM) method pro-
posed in [42] retains the two-branch structure in [41], while
adopts the low-resolution HSI (denoted as LR HSI) as the only
input. Two subpixel level classification maps are generated and
fused by decision fusion to produce the final subpixel mapping
result, one of which is achieved by classifying the upsampled
LR HSI using collaborative representation-based (CR-based)
classifier, the other is generated by using CR-based classification
combined with spectral unmixing and subpixel spatial attraction
model (SPSAM). Nevertheless, the adopted supervised classifier
is quite critical to its performance. An advanced classifier usually
results in better subpixel mapping result.

In this article, a new subpixel mapping method is proposed us-
ing the two-branch structure adopted by both [41] and [42], while
taking the LR HSI as the only input. In one branch, an initial
subpixel mapping result is produced by employing supervised
classification, spectral unmixing, and SPSAM. Specifically, in
spectral unmixing, a hybrid endmember library is constructed
by using selected available labeled training samples as labeled
endmembers and unsupervised clustering centers of LR HSI as
unlabeled endmembers. The labeled abundances are optimized
with the unlabeled ones to form a more accurate abundance map,
so that the following SPSAM can produce a better subpixel
mapping result. In the other branch, a segmentation map is
generated by applying unsupervised clustering to the upsampled
LR HSI. Results of these two branches are integrated by decision
fusion to produce the final subpixel mapping result, incorporat-
ing spatial contextual information by using the segmentation
map as a guide. Simulation experiments are employed to vali-
date the correctness and effectiveness of the proposed method.
Experimental results demonstrate its obvious outperformance
over several state-of-the-art subpixel mapping methods by ex-
hibiting less misclassification and better evaluation measure-
ments. The comparison results also illustrate that the proposed
method is less dependent on the employed supervised classifier,
which can be attributed to introduction of the augmented hybrid
endmember library incorporating both labeled and unlabeled

5037

endmembers as well as the following abundance optimization
strategies adopted.

The remainder of this article is organized as follows. Section II
provides a detailed description of the proposed subpixel mapping
method. Section III shows the experimental results and analysis
with different data sets. Section IV draws the conclusion.

II. METHODOLOGY

Framework of the proposed subpixel mapping method us-
ing hybrid endmember library and abundance optimization
(HASPM method) is illustrated in Fig. 1. It is composed of three
main parts: first, LR HSI subpixel mapping: Subpixel mapping
is applied to the LR HSI to obtain an initial classification map
at subpixel level. Second, HR segmentation: Unsupervised clus-
tering is applied to the upsampled LR HSI (denoted as HR HSI)
to obtain a segmentation map at subpixel level. Third, decision
fusion: The obtained subpixel level segmentation map and initial
classification map are combined with specific fusion strategy to
generate the final subpixel level classification map.

The proposed HASPM method possesses the following main
merits: first, the subpixel mapping resultis obtained from a single
LR HSI, without any auxiliary HR image (such as multispectral
image or panchromatic image) available, which is a common
case in practice. Second, to deal with the limited training sam-
ples (denoted as labeled endmembers in spectral unmixing)
issue, unsupervised cluster centers are employed as unlabeled
endmember to augment the endmember library to be a hybrid
one. Meanwhile specific abundance optimization strategies are
designed to improve the abundance estimation accuracy, which
leads to improved subpixel mapping performance. Third, to
incorporate spatial contextual information, segmentation map
of the upsampled LR HSI is employed as a guideline for final
subpixel mapping decision, based on the fact that spatially and
spectrally close samples are more likely to belong to the same
class.

A. LR HSI Subpixel Mapping

In this part, an initial classification map at subpixel level
is produced by SPSAM based subpixel mapping, with abun-
dance fractions estimated using specifically designed hybrid
endmember library and corresponding abundance optimization
strategies. For convenience, this part is denoted as InHASPM
method.

1) Supervised Classification: An LR classification map is
obtained by applying supervised classification to LR HSI, which
provides a reference for endmember selection in the following
spectral unmixing. Theoretically, any supervised classifiers can
be adopted. For the purpose of validation and comparison with-
out losing generality, two commonly used representative clas-
sifiers, support vector machine (SVM) and joint collaborative
representation (JCR)-based classifiers, are adopted.

Initially, the objective of a binary SVM is to search for an
optimal hyperplane that separates the feature space into two
classes [43]. While the training set is usually nonlinearly sepa-
rable in practice, an effective way is to project them onto another
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Fig. 1. Framework of the proposed subpixel mapping method.

higher dimensional space through a positive definite kernel [44],
to acquire extended multiple-class classifier [45], [46].

Recently, it has been argued that it is the collaborative nature
of atoms rather than competitive nature imposed by sparseness
constraint that actually improves the classification accuracy.
Thus, CR-based classifiers were developed for HSI classifi-
cation for their better classification performance with much
lower computational cost than the previous sparse representation
based ones. The pixel-wise CR-based classifier using nearest
regularized subspace (NRS) is proposed in [47]. To incorpo-
rate the spatial contextual information during classification, the
spatially joint version of NRS, i.e., JCR, is proposed in [48] by
considering neighboring test and labeled samples, and improved
classification results can be acquired. The classifier using col-
laborative representation with Tikhonov regularization (CRT)
is proposed in [48]. The essential difference between NRS and
CRT is that the former employs within-class training samples for
collaborative representation (also called prepartitioning) while
the latter uses all the training data from different classes simulta-
neously (also called postpartitioning). It has been demonstrated
that postpartitioning is more appropriate, particularly in the
kernel-induced feature space [48]. To further improve the classi-
fication accuracy, CRT is extended to the spatially joint version
(JCRT) by incorporating spatial contextual information [42].
It is notable that both CRT and JCRT based classifiers are
more time-consuming than JCR-based classifier. To maintain a
balance between classification accuracy and computational cost,
JCR-based classifier is adopted in this work.

2) Spectral Unmixing: In this article, linear spectral mixing
model (LMM) is adopted to describe the spectral mixing behav-
ior of endmembers within mixed pixels. The spectral signature
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Fig. 2. Spectral unmixing with a hybrid endmember library and different
abundance optimization strategies.

of a mixed pixel is represented with a linear combination of
endmember spectral signatures. It is adopted for the following
reasons: first, LMM is simple with clear physical meaning and
is easy to be applied. Second, in most cases, LMM is capa-
ble of better approximating the spectral mixing behavior in a
real scene with satisfactory accuracy for practical application
requirements.

The obtained fractional abundances are used as the input for
the following SPSAM to produce the initial subpixel mapping
result. Since, it has been illustrated that abundance map with
higher accuracy normally leads to a finer subpixel mapping
result [40], more accurately estimated abundances are highly
expected. Fig. 2 depicts the spectral unmixing scheme adopted
in this article, which employs a hybrid endmember library and
different abundance optimization strategies.

Labeled training samples are the most credible endmember
candidates, which accurately describe spectral properties of land
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TABLE I
ENDMEMBERS AND CORRESPONDING ABUNDANCES

Labeled endmember

Unlabeled endmember

Endmember | x;
Abundance | o

X2
(85)]

Y1 Y2 YK
B B Bx

XN
ayn

cover classes. While in practice, the available labeled training
sample set usually exhibits limitation in both quantity and diver-
sity, which greatly affects the accuracy of abundance estimation.
Considering their good performance as global representatives,
cluster centers of the LR HSI are also employed to serve as end-
members. Therefore, a hybrid endmember library is constructed,
with selected labeled training samples as labeled endmembers
and unsupervised cluster centers as unlabeled endmembers.

To mitigate spectral variability, N training samples spa-
tially closet to a testing sample z, instead of the entire la-
beled training sample set, are selected to form labeled end-
member set X = {x1,X2,...,Xy}. LR HST is unsupervisedly
clustered to K clusters, and all the K cluster centers serve
as unlabeled endmembers to form the unlabeled endmember
setY = {y1,y2,...,¥x}. Thus, the labeled-unlabeled hybrid
endmember matrix for z becomes [X, Y].

The FCLSU algorithm is employed to estimate abundance
for each endmember depicted in Table I. Different labeled end-
members may belong to the same class. The labeled abundance
of each class within the considered mixed pixel z can be obtained
by summing up abundances of labeled endmembers sharing the
same class label:

P = Zaj, J = {j|class(x;) =i} (1)

jeJ

with ¢ ={1,2,...,C} and C is the number of land cover
classes.

It is notable that, unlike labeled endmembers, there is no one-
to-one relation between unlabeled endmembers (cluster centers)
and land cover classes. The informative unlabeled endmembers,
which can hardly be pure material, can be represented by labeled
ones with LMM, so that the unlabeled abundances can be used
to optimize fractional abundances. Three optimization strategies
are proposed in this article.

Strategy 1: The abundance of each class within a mixed pixel
can be regarded as the probability of the class to appear within
the mixed pixel. The higher the abundance of a class, the more
likely this class appears within the mixed pixel. In this strategy,
all the unlabeled endmembers are categorized to the class with
the highest labeled abundance, that is the class most likely to
appear. The optimized abundance for class ¢ in the mixed pixel
is then calculated as follows:

P - {Pi + > B

| = C > 2
(3 al"g max, 1 c ( )
P’L OtheI'S.

Strategy 2: As abovementioned, unlabeled endmember is
hardly pure material, and is composed of different labeled end-

members. It is appropriate to assume that within a given mixed
pixel, unlabeled endmembers share the same class abundance

distribution as labeled endmembers. This leads to the following
abundance optimization strategy, in which the unlabeled abun-
dance is proportionally added to labeled abundance of each class.
The abundance can then be optimized as follows:

E:PﬁZ%ﬁk with P =Y " P;. 3)
k 7

Strategy 3: As mentioned in Strategy 1, lower labeled abun-
dance of a class implies less occurrence probability. For exam-
ple, classes with labeled abundance less than 1/ S2 (52 is the
number of subpixels within a mixed pixel), denoting proportion
of those classes within the mixed pixel is less than one subpixel,
are less likely to appear. Therefore, a threshold ( is set in this
strategy to keep the small labeled abundances unchanged. The
abundance optimization is applied as follows:

Py ,
B[P Pz I =R 2 ¢
P P, <¢

“

where ( is the predefined threshold within [0, 1].

3) Subpixel Mapping: For a given mixed pixel, fractional
abundances for land cover classes within it are obtained by
spectral unmixing, whereas the physical distribution of classes
within itis still unknown. Subpixel mapping is capable of dealing
with this issue by predicting the location of all class labels
within a mixed pixel [21]. To accomplish the rearrangement,
most subpixel mapping algorithms (such as genetic algorithms,
algorithms using neural networks, and simulated annealing)
adopt iterative strategies, which are computationally expensive.
SPSAM-based subpixel mapping algorithm directly estimates
subpixel classes according to the class proportions in neighbor-
ing pixels without any random initialization [25]. It is adopted
in this work for its simplicity and good performance. The basic
assumption of SPSAM-based subpixel mapping algorithm is
spatial dependence, as proposed by Atkinson in [21], which
refers to the tendency for spatially approximate observations
of a given property to be more alike than distant observations.
To quantify this spatial dependence, attraction value between a
subpixel within a coarse pixel and its eight neighboring coarse
pixels is calculated. After attraction value calculation, subpixels
are assigned to different classes according to the criterion that
subpixels with highest attractions are first assigned [21].

B. HR Segmentation

To extract spatial contextual information, unsupervised clus-
tering is applied to the upsampled LR HSI, that is the artificial
HR HSI, to acquire a segmentation map. One coarse pixel in
LR HSI is supposed to be divided into S? subpixels, as a result,
LR HSI is spatially upsampled by a spatial scale factor S to
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form the corresponding HR HSI. Then, unsupervised clustering
is applied to it. In the obtained unsupervised clustering result,
neighboring pixels with the same numerical label makes up a
segment. It is notable that the size of segment (number of pixels
enclosed in a segment) should be small enough, so that pixels
inside a segment can better exhibit local spectral similarity and
spatial proximity. Thus, the number of clusters should be greater
than or equal to that of actual land cover classes in the observed
scene.

C. Decision Fusion

There are two inputs at subpixel level for decision fusion: a
segmentation map and an initial classification map. A specific
fusion strategy is designed to incorporate spatial contextual
information for accuracy improvement. Modification is applied
to the initial classification map using the segmentation map at
subpixel level as a guide, complying with the principle that
subpixels within a segment share the same class label, while
training samples always retain their original class labels. This
principle is based on the fact that spatially and spectrally close
subpixels are most likely belonging to the same land cover
class. The detailed fusion rules are as following. First, subpixels
enclosed within training samples remained their original class
labels. Second, other subpixels are assigned with the class label
which most frequently occurs within the segment they belong to.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data Sets and Experimental Setup

Simulation is employed in this article. The original HST (HR
HSI) is downsampled with a spatial scale factor S to generate
a LR HSI, to which subpixel mapping is applied. By applying
subpixel mapping, each coarse pixel in LR HSI is divided into 2
subpixels, and a unique class label is allocated to each subpixel
to obtain a classification map in subpixel level. The ground truth
of the original HSI serves as a reference to evaluate the sub-
pixel mapping performance. To validate the proposed method
and make a comparison with some state-of-the-art methods,
objective measurements are also employed besides subjective
assessment, including overall accuracy (OA) and kappa coeffi-
cient (k), as well as the averaged producer accuracy (APA) and
user accuracy (AUA) over all classes.

Two widely used HSI data sets collected by different hyper-
spectral imagery sensors are employed for simulation. The first
data set (Indian Pines data set) was gathered by the airborne
visible infrared imaging spectrometer (AVIRIS) over the Indian
Pines test site in north-western Indiana and consists of 224
spectral reflectance bands in the wavelength range 400-2500 nm
with 145 x 145 pixels in each band. The Indian Pines scene
contains two-thirds agriculture, and one-third forest or other
natural perennial vegetation. The data set is designated into 16
classes and is not all mutually exclusive. The number of bands
is reduced to 202 by removing water-absorption bands, and
144 x 144 pixels are retained within each band for the purpose
of calculation convenience.

The second data set (Pavia University data set) was gathered
by the reflective optics system imaging spectrometer (ROSIS)
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over the urban area of University of Pavia, northern Italy and
consists of 115 spectral reflectance bands in the wavelength
range 430-860 nm with 610 x 340 pixels in each band. Ninth
classes of interest are considered. The number of bands is
reduced to 103 by removing the noisy ones, and 609 x 339 pixels
are retained within each band for calculation convenience.

The ground reference data are also downsampled with the
spatial scale factor .S as well, to select pure pixels (i.e., coarse
pixels within which all original subpixels belong to the same
class) as the training samples. The spatial scale factor S is
critical because inappropriate (normally too high) S may raise
the danger of lacking training samples for some classes in LR
HSI. It is obvious that the higher S is, the less training samples
exist.

For Indian Pines data set, there is no pure coarse pixel in
LR HSI for the ninth class (Oats) when S = 3, leading to
unavailability of training samples for the ninth class. And S
greater than three causes absence of pure coarse pixels (training
samples) for even more classes. For Pavia University data set,
S = 4 has already caused absence of pure coarse pixels (training
samples) for several classes. To apply effective experiments
without loss of generality, S is set to be 2 for Indian Pines data
set and 3 for Pavia University data set. For Indian Pines data set,
after downsampling with a spatial scale factor S = 2, 2213 pure
pixels remain, 15% of which are used as training samples, that
is, 333 training coarse pixels. For Pavia University data set, after
downsampling with a spatial scale factor S = 3, only 206 pure
pixels remain, all of which are employed to form the training
set.

Specifically, for the proposed HASPM method, to acquire the
HR HSI used in segmentation, the LR HSI is upsampled using
cubic interpolation with the spatial scale factor .S. As for unsu-
pervised clustering involved, the classic K -means clustering is
employed.

B. Parameter Settings

1) Number of Clusters: For LR HSI K-means clustering, the
number of clusters K represents the number of unlabeled end-
members. These unlabeled endmembers (clustering centers) are
used to optimize the acquired fractional abundances of labeled
endmembers. Theoretically, K; could be any positive integer.
While the clusters are inconsistent with land cover classes, there
is no one-to-one relationship between class labels and cluster
centers. Thus, given the spectral variation and the difference
of pixel numbers within different land cover classes, the value
of K should be larger than the number of actual land cover
classes. Fig. 3(a) depicts OA of the proposed InHASPM method
with varied K. OA exhibits an increase as /; increases for
small K and no salient changes after K reaches around 20.
Considering the high computation complexity with increasing
K, without losing generality, K; = 19 for Indian Pines data
set and Ky = 18 for Pavia University data set in the following
experiment.

For HR HSI, K-means clustering is applied to produce a
segmentation map, which is used to fine-tune the acquired initial
subpixel mapping result in decision fusion. The number of
clusters K represents the number of segments. The selection of
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TABLE II
OA (%) WITH DIFFERENT {
Indian Pines data set
¢ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S3-InHASPM 9494 9498  95.03 9500 9495 9503 95.03 9507 95.05 9503 94.96
S3-HASPM 96.02  96.05 96.07 96.10 96.09 96.15 96.15 96.12 96.11  96.07  96.09
Pavia University data set
¢ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S3-InHASPM ~ 89.94  90.05 90.12 9034  90.66 90.54 90.50 90.46  90.55 90.27  90.11
S3-HASPM 96.28  96.28 9629  96.30 9631 9631 9631  96.30 9631  96.30  96.30

K, generally depends on the spatial distribution of land cover
classes in HSI, which is normally unknown in practical appli-
cations. Therefore, K is usually decided empirically. Fig. 3(b)
depicts OA of the proposed HASPM method with varied K.
It can be observed that excellent performance can be obtained
with K5 big enough, and no salient performance differences
can be observed with K5 big enough. Furthermore, for Pavia
University data set, optimal performance can be obtained when
K5 is around 9, which is the number of actual land cover
classes. The reason might be that in the ground truth of Pavia
University scene, areas belonging to the same land cover class
are distributed in a relatively connected manner. While for Indian
Pines data set, in which the areas with the same class label
may distribute in blocks within unconnected regions, /5 should
be much higher than the number of actual land cover classes.
Considering the high computation complexity with increasing
K5, K5 =9 (the exact number of actual land cover classes)
for Pavia University data set and Ks = 51 (approximate to the
number of disconnected blocks) for Indian Pines data set are
employed in the following experiments.

It is notable that each run of K-means clustering for LR HSI
and HR HSI may lead to different results, which affects subpixel
mapping performance of both INHASPM and HASPM methods.
Therefore, mean accuracy for ten different runs are calculated
and displayed in the experiment.

2) Threshold (: In fractional abundance optimization Strat-
egy 3, threshold ( is introduced to determine which abundance
fractions should be modified (the ones not less than ). With a

wide range of experiments, it is found out that satisfied results
with little differences can be obtained when the threshold ¢
varying within the range of [0, 1]. OA of INHASPM and HASPM
methods using Strategy 3 with varied ¢ is shown in Table II. In
the following experiments, without loss of generality, ( is set to
be 0.5 for both data sets.

C. Validation Experiment

For the purpose of validation, the proposed subpixel map-
ping framework is compared with different supervised classi-
fiers (SVM-based classifier and JCR-based classifier) as well
as different abundance optimization strategies (Strategy 1-3)
using both ROSIS Pavia University data set and AVIRIS Indian
Pines data set. The corresponding subpixel mapping results and
values of evaluation measurements are depicted in Figs. 4-7
and Tables III-VI, in which S1, S2, and S3 represent Strategy 1,
2, and 3 respectively. It can be observed that the three different
strategies produce comparable performance. In Strategy 1, un-
labeled endmembers are directly assigned to the most probable
class. In Strategy 2, unlabeled endmembers are proportionally
assigned to all probable classes. Different from Strategy 2, Strat-
egy 3 proportionally assigns unlabeled endmembers to several
most probable classes rather than all probable classes. Mean-
while, it is worth noting that when threshold ¢ = 0, Strategy
3 is the same as Strategy 2. Strategy 2 and 3 are more theo-
retically reliable by emphasizing more probable classes, while
since Strategy 1-3 exhibit no salient difference in performance,
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Fig. 4.

Subpixel mapping results of different methods on Pavia University data set with SVM-based classifier. (a) Reference. (b) SI-InHASPM. (c¢) S2-InHASPM.

(d) S3-InHASPM. (e) ASPM. (f) JASPM. (g) SI-HASPM. (h) S2-HASPM. (i) S3-HASPM. (j) ACSPM. (k) CRSPM.
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Subpixel mapping results of different methods on Indian Pines data set with SVM-based classifier. (a) Reference. (b) S1-InHASPM. (c) S2-InHASPM.

(d) S3-InHASPM. (e) ASPM. (f) JASPM. (g) S1-HASPM. (h) S2-HASPM. (i) S3-HASPM. (j) ACSPM. (k) CRSPM.

Strategy 1 is more preferable in practice for its calculation
simplicity.

D. Comparison Experiment

The proposed framework is also compared with several state-
of-the-art subpixel mapping methods, including the attraction

based subpixel mapping (ASPM) and attraction based contextual
subpixel mapping (ACSPM) methods developed in [41], as well
as spatially joint attraction based subpixel mapping (JASPM)
and CRSPM methods developed in [42]. In the ASPM method,
the LR classification map is first obtained from the LR HSI
using SVM classifier, for the purpose of endmember selection
(to construct a labeled endmember library). Each mixed pixel
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Fig. 6. Subpixel mapping results of different methods on Pavia University data set with JCR-based classifier. (a) Reference. (b) S1-InHASPM. (c) S2-InHASPM.
(d) S3-InHASPM. (e) JASPM. (f) JASPM-JCRT. (g) SI-HASPM. (h) S2-HASPM. (i) S3-HASPM. (j) CRSPM. (k) CRSPM-JCRT.
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Fig. 7. Subpixel mapping results of different methods on Indian Pines data set with JCR-based classifier. (a) Reference. (b) SI-InHASPM. (c) S2-InHASPM.
(d) S3-InHASPM. (e) JASPM. (f) JASPM-JCRT. (g) SI-HASPM. (h) S2-HASPM. (i) S3-HASPM. (j) CRSPM. (k) CRSPM-JCRT.

is then unmixed by spectral unmixing, to acquire abundance of should be the inclusion of contextual information obtained
each class within it. Finally, the SPSAM is employed to produce  from the color image. However, just as mentioned in [41],
the subpixel mapping result. ACSPM method is composed of the ACSPM framework relies heavily on the availability of a
two parallel branches integrated by decision fusion: ASPM  multisource data set. When no additional source of information
method and unsupervised clustering of a complementary HR  (such as an HR color image) is available, it cannot be applied
color image. The major contribution of the ACSPM method at all.
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TABLE III
PERFORMANCE EVALUATION MEASUREMENTS OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATA SET WITH SVM-BASED CLASSIFIER

Overall performance of one-branch methods

Measurement  S1-InHASPM  S2-InHASPM  S3-InHASPM  ASPM  JASPM
OA[%] 87.90 86.72 87.58 81.36 84.70
K 0.844 0.830 0.840 0.765 0.805
APA[%] 90.16 89.71 90.11 86.14 87.72
AUA[%] 84.16 83.09 83.94 78.92 82.33
Time(s) 143.17 142.95 143.21 92.73 109.71
Overall performance of two-branch methods
Measurement ~ S1-HASPM S2-HASPM S3-HASPM  ACSPM CRSPM
OA[%] 96.67 96.59 96.63 83.90 86.85
K 0.956 0.955 0.956 0.793 0.833
APA[%] 95.65 95.53 95.59 86.39 89.90
AUA[%] 95.26 95.02 95.16 83.81 85.83
Time(s) 171.84 171.79 171.88 97.61 124.32

The bold entities indicate the best results and the underlined entities indicate the second best results.

TABLE IV
PERFORMANCE EVALUATION MEASUREMENTS OF DIFFERENT METHODS ON INDIAN PINES DATA SET WITH SVM-BASED CLASSIFIER

Overall performance of one-branch methods

Measurement  S1-InHASPM  S2-InHASPM  S3-InHASPM  ASPM  JASPM
OA[%] 91.93 92.20 92.33 90.98 86.60
K 0.908 0911 0.913 0.897 0.847
APA[%] 89.51 89.95 90.04 88.64 87.18
AUA[%] 88.06 88.31 88.09 87.27 82.60
Time(s) 4391 44.03 43.98 21.38 21.84
Overall performance of two-branch methods
Measurement ~ S1-HASPM S2-HASPM S3-HASPM  ACSPM CRSPM
OA[%] 94.01 94.38 93.40 92.70 92.97
K 0.932 0.936 0.925 0.917 0.920
APA[%] 92.76 93.22 92.63 92.68 91.60
AUA[%] 90.19 90.76 88.39 90.36 91.56
Time(s) 71.80 71.66 71.91 22.42 28.39

The bold entities indicate the best results and the underlined entities indicate the second best results.

The CRSPM method in [42] is composed of three parts:
JASPM method, spatially joint collaborative representation
based high resolution hyperspectral image classification (JHHS)
method, and decision fusion. The JASPM method produces a
subpixel mapping result as ASPM method, while employing a
specifically designed spatially joint and post-partitioning CR-
based classifier (JCRT-based classifier) rather than SVM-based
classifier used in ASPM method, which can greatly improve the
subpixel mapping performance. JHHS method applies super-
vised classification to the upsampled LR HSI with JCR-based
classifier, to produce an HR classification map. This HR classi-
fication map is then integrated with the subpixel mapping result
produced by JASPM method with decision fusion, to generate
the final subpixel mapping result. Basically, supervised classi-
fication techniques other than JCRT-based classifier can also be
used in both JASPM and CRSPM methods. Therefore, besides
JCRT-based classifier, both SVM and JCR based classifiers are
also employed in comparison experiment.

Subpixel mapping results and performance of different meth-
ods using various supervised classifiers for both data sets are
depicted and evaluated in Figs. 4-7 and Tables III-VI. It is
notable that, all the compared methods can be divided into
one-branch methods (including ASPM, JASPM, and InHASPM
methods) and two-branch methods (including ACSPM, CR-
SPM, and HASPM methods) according to their framework
structure. In one-branch methods, subpixel mapping results
are directly obtained from the LR HSI. While in two-branch
methods, either a real auxiliary HR image (in ACSPM method)
or an artificial one (in CRSPM and HASPM methods) is used
to improve the initial subpixel mapping results obtained by the
corresponding one-branch methods. To make a fair evaluation,
comparison is made among methods belonging to the same
category (one-branch or two-branch).

Tables III and IV report the classification performance of
different methods with the SVM-based classifier. For one-
branch methods, the proposed InHASPM method remarkably
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TABLE V
PERFORMANCE EVALUATION MEASUREMENTS OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATA SET WITH JCR-BASED CLASSIFIER

Overall performance of one-branch methods

Measurement  S1-InHASPM ~ S2-InHASPM  S3-InHASPM  JASPM  JASPM-JCRT
OA[%] 90.70 89.94 90.54 86.97 87.87
K 0.878 0.869 0.876 0.830 0.843
APA[%] 89.11 88.82 89.06 85.78 87.61
AUA[%] 87.06 86.08 86.94 85.64 83.73
Time(s) 203.22 203.07 203.10 166.73 190.45
Overall performance of two-branch methods
Measurement ~ S1-HASPM S2-HASPM S3-HASPM  CRSPM CRSPM-JCRT
OA[%] 96.28 96.28 96.31 88.36 92.04
K 0.951 0.951 0.951 0.848 0.896
APA[%] 94.01 94.03 94.06 87.14 89.70
AUA[%] 94.44 94.44 94.48 89.85 90.48
Time(s) 255.62 255.40 255.71 794.84 846.56

The bold entities indicate the best results and the underlined entities indicate the second best results.

TABLE VI
PERFORMANCE EVALUATION MEASUREMENTS OF DIFFERENT METHODS ON INDIAN PINES DATA SET WITH JCR-BASED CLASSIFIER

Overall performance of one-branch methods

Measurement  S1-InHASPM  S2-InHASPM  S3-InHASPM  JASPM  JASPM-JCRT
OA[%] 94.83 94.94 95.03 93.59 93.04

K 0.941 0.942 0.943 0.927 0.921
APA[%] 94.23 94.10 94.27 90.14 91.68
AUA[%] 92.52 92.39 92.65 93.16 90.39
Time(s) 54.26 54.38 54.20 32.23 37.35

Overall performance of two-branch methods

Measurement ~ S1-HASPM S2-HASPM S3-HASPM  CRSPM  CRSPM-JCRT
OA[%] 96.14 96.02 96.15 95.48 95.74

K 0.956 0.955 0.956 0.948 0.951
APA[%] 96.00 94.73 96.34 93.43 94.09
AUA[%] 95.77 95.64 94.76 95.82 95.19
Time(s) 82.16 82.22 82.06 300.63 308.78

The bold entities indicate the best results and the underlined entities indicate the second best results.

outperforms the others, especially for Pavia University data set,
approximately 6% and 3% improvement in OA over ASPM and
JASPM methods are obtained. Furthermore, Tables V and VI
report the classification performance of different methods with
the JCR-based classifier, INHASPM method also surpasses the
others, especifically for Pavia University data set, nearly 4% and
3% improvement in OA over JASPM method and JASPM-JCRT
method (JASMP method with JCRT-based classifier) are ob-
tained. It can be observed that, among one-branch methods, the
proposed InHASPM method clearly outperforms the others, by
exhibiting much less misclassification. This improvement can be
attributed to the adopted labeled-unlabeled hybrid endmember
library and abundance optimization, since an abundance map
with higher accuracy leads to a more accurate subpixel mapping
result. While the improved accuracy comes at the cost of longer
calculation time.

Among two-branch methods, the proposed HASPM method
also clearly outperforms. The introduction of segmentation map
of upsampled LR HSI as guideline provides further improve-
ment in subpixel mapping accuracy, by incorporating spatial

contextual information effectively. In Tables III-VI, the pro-
posed HASPM method remarkably outperforms, especially for
Pavia University data set, where approximate 13% and 10%
improvement in OA over ACSPM and CRSPM methods can
be obtained with SVM-based classifier, and with JCR-based
classifier, approximate 8% and 4% improvement in OA over
CRSPM method and CRSPM-JCRT method (CRSPM method
with JCRT-based classifier) can be obtained. It is interesting to
find out that when more advanced (of course more complicated)
classifier (JCR-based classifier) is employed, the proposed
HASPM method exhibits higher calculation efficiency than the
others. It is also notable that two-branch methods normally
lead to better performance than the corresponding one-branch
methods by incorporating spatial contextual information.

The experimental results also illustrate that the proposed
HASPM method seems less dependent on supervised classifiers
employed. With SVM-based classifier and JCR-based one, com-
parable subpixel mapping results are produced: approximate
evaluation measurements are obtained for Pavia University data
set, and less than 3% difference can be observed in OA for Indian
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Pines data set. While the performance of CRSPM method is
highly dependent on the adopted supervised classifier, in which
more advanced classifier (JCRT-based classifier > JCR-based
classifier > SVM-based classifier) leads to better subpixel map-
ping performance. This merit of the proposed HASPM method
can be attributed to the labeled-unlabeled hybrid endmember
library and abundance optimization strategies adopted, which
greatly improves the accuracy of abundance estimation and
hence greatly improves the accuracy of subpixel mapping, even
when the supervised classification is less accurate.

IV. CONCLUSION

A new subpixel mapping method (called HASPM) is proposed
to deal with subpixel level classification of LR HSI. A hybrid
labeled-unlabeled endmember library is constructed by training
samples and unsupervised cluster centers of LR HSI. Abundance
optimization strategies are employed to obtain an abundance
map of LR HSI with improved accuracy. With the optimized
fractional abundances, a subpixel mapping result is obtained us-
ing SPSAM. To further improve the subpixel mapping accuracy,
spatial contextual information is incorporated by using unsuper-
vised segmentation result of the upsampled LR HSI as guidelines
for decision fusion. The experimental results demonstrate that
the proposed HASPM method remarkably outperforms some
state-of-the-art subpixel mapping methods both visually and
quantitatively. It is also illustrated that, the proposed HASPM
method is less dependent on supervised classifier adopted, which
makes it quite competitive in practical applications.
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