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A Deep Neural Network Combined CNN and GCN
for Remote Sensing Scene Classification
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Abstract—Learning powerful discriminative features is the key
for remote sensing scene classification. Most existing approaches
based on convolutional neural network (CNN) have achieved great
results. However, they mainly focus on global-based visual features
while ignoring object-based location features, which is important
for large-scale scene classification. There are a large number of
scene-related ground objects in remote sensing images, as well as
Graph convolutional network (GCN) has the potential to capture
the dependencies among objects. This article introduces a novel
two-stream architecture that combines global-based visual features
and object-based location features, so as to improve the feature
representation capability. First, we extract appearance visual fea-
tures from whole scene image based on CNN. Second, we detect
ground objects and construct a graph to learn the spatial location
features based on GCN. As a result, the network can jointly capture
appearance visual information and spatial location information. To
the best of authors’ knowledge, we are the first to investigate the
dependencies among objects in remote sensing scene classification
task. Extensive experiments on two datasets show that our frame-
work improves the discriminative ability of features and achieves
competitive accuracy against other state-of-the-art approaches.

Index Terms—Convolutional neural networks (CNNs), deep
learning, feature representation, graph convolutional network
(GCN), remote sensing scene classification.

I. INTRODUCTION

R EMOTE sensing scene classification aims to automatically
classify remote sensing images into specific categories

based on semantic content, which has attracted great attention
in recent years due to the wide range of applications, such
as natural disaster monitoring, land cover analysis, and urban
planning [1]–[4]. Up to now, there are a variety of approaches
have been proposed for remote sensing scene classification. Ac-
cording to the form of feature extractor, they can be divided into
three groups, i.e., low-level, mid-level, and high-level feature
descriptors.

In the early days, most of approaches are based on low-level
features, which extract the color or texture like histograms of
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oriented gradients [5], local binary patterns (LBPs) [6], and
scale invariant feature transform [7]. However, these approaches
based on hand-crafted features may not well represent semantic
information. A major shortcoming of these hand-crafted features
is that they demand complex engineering skills that rely on
expert experience.

In contrast to low-level features, the mid-level features are the
coding and fusion of local visual features, such as bag-of-visual-
words (BoVWs) [8], spatial pyramid matching [9], vector of
locally aggregated descriptors [10], and Fisher vector [11]. The
most commonly used approach is BoVW, which encodes the lo-
cal features of image patches into visual dictionaries by k-means
clustering [12], [13]. Although these mid-level features are
highly efficient, they ignore the spatial distribution information
of remote sensing scene image leading to poor representation
capability. As a result, the abovementioned approaches only
perform well on some scenes with regular texture or spatial
arrangements, but have limited performance in dealing with
complex and challenging scene images.

Due to the impressive feature representation power of convo-
lutional neural networks (CNNs), it has been widely applied
to image classification [14], object detection [15], semantic
segmentation [16]. Meanwhile, the rapid development of deep
learning technologies accelerates the progress in remote sensing
scene classification. Many works employ networks pretrained
on the ImageNet dataset [17] as feature extractors for scene
classification, such as visual geometry group net (VGGNet) [18],
AlexNet [19], GoogLeNet [20]. And not only that, there are
many novel networks are designed for remote sensing scene
classification [21]–[31]. Wang et al. [25] employed the rich
hierarchical features of a CNN to form a discriminative image
representation for scene classification, which incorporates from
low-level, middle-level, and high-level features simultaneously.
Liu et al. [28] introduced a Siamese CNN model that combines
verification and identification models to boost the performance.
To allow the input images to be of arbitrary sizes, Xie et al.
[29] proposed a scale-free CNN to preserve key information
in high spatial resolution images. A multiscale CNN [30] is
proposed to merge the feature maps of different layers based on
feature maps selection algorithm and region covariance descrip-
tor. Several recent works have paid attention to local semantic
feature learning. Wang et al. [31] utilized attention mechanism
to adaptively select a series of critical parts of images, and
then to generate powerful features. There is also a research
regarded scene classification as a multiple-instance learning
(MIL) problem. Bi et al. [32] proposed an MIL framework to
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Fig. 1. Examples of AID datasets illustrate the challenge of remote sensing
scene classification: large intraclass variance and small interclass variance.
(a) and (b) Different scenes show high visual similarity. (c) Diversity within
the same scene varies largely.

highlight the local semantics relevant to the scene label. These
methods effectively discarded the useless information, thereby
enhancing the capability of local semantic representation.

Remote sensing scene classification is a challenging task due
to the diversity, multiresolution and complex spatial distribu-
tions of remote sensing image data [33], which result in large
intraclass variance and small interclass variance. As shown in
Fig. 1, both center and stadium scenes show high appearance
similarity and the diversity within the school scene varies largely.
The abovementioned methods are mainly to learn the global
representation of images and neglect the local information. Al-
though these existing CNN-based methods have achieved a great
performance to some extent, some complex scene classes are still
easily misclassified since only visual information is utilized. The
most of the previous methods [21]–[30] only learn the global
features representation of images, which may neglect the local
details. Even though there are several works [31]–[32] attempt
to focus on the critical local image patches and discard the
useless information, they still only utilize the visual information.
All these methods ignore the spatial location and distribution
information. To overcome the drawback, we consider learning
the spatial information by exploring the dependencies among
ground objects in scene images. Our proposed method takes
advantage of appearance visual information as well as spatial
location and distribution cues to make better predictions for
remote sensing scene classification.

Recently, a novel model called graph neural network [34] has
drawn wide attention due to its ability to deal with the data in
graph domain. The graph convolutional network (GCN) [35]
is an extension of the CNN, which aims to operate convolu-
tional on non-Euclidean space. In contrast with the classical
CNN method, GCN would be more effective for learning the
feature representation of the graph-structured data. GCN has
been widely used in the tasks with rich relational structure, such
as recommender systems [36], relation detection [37], multil-
abel image recognition [38], and 3-D point cloud classification
[39]. GCN aggregates information from the neighbors of each
node [40], which can be utilized to explore the dependencies
among objects in remote sensing scene images. There are a
large number of scene-related ground objects in remote sensing

Fig. 2. Overview of the proposed approach. We propose to classify scene
categories by jointly learning feature from whole image and local graph structure.

images, which represent different scene semantic categories by
different combinations and spatial arrangements. Therefore, we
are motivated to employ the effective architecture GCN to model
the dependencies among objects and explore the potential spatial
location and distribution information.

To further improve the performance of the remote sensing
scene classification, we propose a novel two-stream architecture,
which can jointly learn both the global-based visual features and
the object-based location features. Motivated by the powerful
feature representation capability of CNN and the potential of
relation inference of GCN, our proposed model combined CNN
and GCN as shown in Fig. 2. First, we extract appearance visual
features from whole scene image based on CNN. Second, we
detect ground objects and construct a graph to learn the spatial
location features based on GCN. Unlike the classical CNN-based
methods, our proposed model can take advantage of spatial
location and distribution cues to make better predictions on scene
category. The main contribution of this article is jointly learning
appearance visual information and spatial location information
for remote sensing scene classification. In summary, the major
contributions of this article are as follows.

1) To further improve classification accuracy, we propose a
novel two-stream architecture, which combined CNN and
GCN to learn both the global-based visual features and
the object-based location features.

2) Our network allows the input images to be of arbitrary
sizes by using global average pooling layer and region of
interest (ROI) pooling layer, which can preserve detailed
information in high spatial resolution images as much as
possible.

3) By combining the CNN and GCN, our proposed method
improves the discriminative ability of features and
achieves competitive accuracy against other state-of-the-
art approaches.

The rest of this article is organized as follows. Section II
introduces our proposed architecture combined CNN and GCN
in detail. The experimental results and analysis are presented in
Section III. Finally, Section IV concludes this article.

II. PROPOSED METHOD

The overall architecture of our proposed model is illustrated
in Fig. 3, which composes of three parts: CNN-based branch,
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Fig. 3. Architecture of our proposed method. The model consists of: 1) CNN-based branch: the visual appearance feature is modeled by CNN. 2) GCN-based
branch: we detect object proposals and use ROI pooling layer to form the node features, which are sent into GCN to capture the spatial location information. 3)
Feature fusion: the feature descriptor extracted from the two branches are integrated and delivered to the classifier.

Fig. 4. Architecture of CNN-based branch, which is modified from VGG16.

GCN-based branch, and feature fusion. For the CNN-based
branch, the input image goes forward through the VGG16 back-
bone network to extract the global feature. For the GCN branch,
we detect ground objects by Faster R-CNN [41] algorithm in
each scene image, and the object proposals are fed into ROI
Pooling layer [42] to extract the regional feature representation.
Then, we construct a graph to model the dependencies among
objects. Finally, the fusion of features extracted from the two
branches is delivered to the classifier to make the final prediction.
By combining the CNN and GCN, our framework improves the
discriminative ability of features. The three parts of our model
will be further elaborated, respectively.

A. CNN-Based Branch

It is critical for remote sensing scene classification to learn
powerful appearance visual feature, especially there are some
categories of images do not contain objects, such as beach,
desert, and forest. For these images, we can only utilize the
appearance visual information. In general, remote sensing scene
classification can use any classification network as the backbone.
As shown in Fig. 4, our CNN-based branch network is modified
from the simple and effective model VGG16 [18]. The convolu-
tional layers are assembled within five convolution blocks each
ending with a max-pooling operation. The size of feature map

output of convolution block is defined as h × w × d, where h
and w are spatial dimensions and d is the number of channels.

To be specific, two modifications have been made in our
CNN-based branch network. First, we remove the max-pooling
layer in last convolution blocks. Max Pooling is a down-sample
operation that chooses the maximum element from the region of
the feature map covered by the filter. As the spatial size of the
features reduced, some detailed information is missing. In con-
sideration of the global convolutional feature map will be shared
with GCN-based feature to extract the local object feature, we
did not reduce the feature map size too much. Generally, the size
of feature map performed by standard VGG16 network is 1/32
of the input image. It can be seen that our network makes the
feature map size 1/16 that of the input image, which effectively
preserves detailed information in high spatial resolution scene
images. Second, we remove the last three fully connected layers
and add a global average pooling layer [43]. Global average
pooling layers are used to reduce the spatial dimensions by
computing the mean of the height and width dimensions of the
feature map. The equations of global average pooling can be
given as follows:

gc,i =

∑W
w=1

∑H
h=1 xw,h,c,i

W ×H
(1)

where x is the input feature map, w, h, and c are the width,
height, and the number of channels, respectively. It can be seen
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Fig. 5. Architecture of GCN-based branch. 1) A set of objects are extracted in the scene image. 2) Construct a graph with node and edge. 3) Graph convolution
network is applied to update each node from the neighbor nodes. 4) The graph-based features are generated by max-pooling layer.

that the global average pooling layer converts a 3-D tensor with
the size of 14 ×14 × 512 to a 1-D feature vector with the
size of 512-dim. Our network allows the input remote sensing
scenes to be of arbitrary size since the global average pooling
layer, which can preserve detailed information in remote sensing
images as much as possible. In addition, the fully connected
layers have a large number of weight parameters, which cause
high computational cost. By replacing fully connected layer and
by global average pooling layer, our model eliminates a large
number of parameters.

B. GCN-Based Branch

In our work, we view remote sensing scene classification task
as a graph classification problem. GCN is a novel neural network
that learns feature by gradually aggregating information in the
neighborhood. Fig. 5 shows the architecture of our GCN-based
branch. The process is described as follows. First, we detect
the ground objects in scene images through the object detection
algorithm. Second, the scene images can be modeled by graphs,
the nodes of which stand for the detected objects and the edges of
which represent distance between the nodes. Then, we use graph
convolutional operation to capture the dependencies among
objects. Finally, the object-based location features are generated
by the pooling layer.

1) Object Proposals: In remote sensing images, a scene is
a combination of objects and backgrounds. There are scene-
related local objects in remote sensing images. For instance,
in school scene image, there are usually ground objects such
as baseball diamond, tennis court, basketball court, and track
field. And in the port scene image, there are usually ground
objects such as ship and harbor. These objects form different
scene semantic categories in different combinations and spatial
arrangements. The prerequisite of learning spatial dependency
is accurate object detection. Although object detection has
achieved great successes in natural images, it is hard to apply

to remote sensing image due to the large scale variations and
arbitrary orientations of objects. Therefore, the object detectors
learned from natural images are not suitable for aerial images.

In this work, our object detection model is trained on dataset
for object detection in aerial images (DOTA) dataset [44], which
can recognize 15 object categories, including plane, ship, storage
tank, baseball diamond, tennis court, basketball court, ground
track field, harbor, bridge, large vehicle, small vehicle, heli-
copter, roundabout, soccer ball field, and swimming pool. Due to
the high accuracy of faster R-CNN [41], we adopt it to detect the
ground objects in remote sensing scene images. When the train-
ing is finished, we employ the model to detect objects on aerial
image dataset (AID) and NWPU-RESISC45 datasets for graph
construction. Each object proposal is associated with a spatial
region {xi, yi, wi, hi}, where xi and yi are the coordinates of
the top-left corner and wi and hi are the width and height of
bounding box, respectively. In addition to location information,
each object proposal has a confidence score, which stands for
the probabilities of the coordinates of objects. In this article, we
set the threshold as 0.3. For scores over our chosen threshold,
we choose the corresponding object proposals detected in the
image as our nodes in the graph.

2) Graph Construction: For the scene images containing
objects, we build a graph based on the object location. The graph
structure consists of nodes and edges, where the nodes of which
stand for the detected objects and the edges of which represent
distance between the nodes. Therefore, we extract the initial
node features and compute the adjacency matrix.

Each object proposal i is associated with a spatial region, and
then we use ROI pooling layer [42] to generate the node feature
representation ni. The ROI pooling layer takes two inputs: a
global feature map and spatial region location. The operation of
ROI Pooling is as follows:

ni = R (fi, xi, yi, wi, hi) (2)
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where fi is the global feature shared from the CNN-based
branch. Each object proposal location is defined by a four-tuple
{xi, yi, wi, hi}. The ROI pooling layer outputs feature ni for
each proposal with fixed size and the kernel size as 3 × 3 in
our work. Finally, the node feature is constructed with regional
feature and location, i.e., {ni, xi, yi, wi, hi}.

GCN works by aggregating features between nodes based on
the adjacency matrix [45]. In this article, we build this adjacency
matrix through Euclidean distance. The dependencies among
objects are highly correlated to the distance among them, we
define the adjacency matrix according to the spatial coordinates.
We first calculate the center coordinates of object proposal as
follows:

ci =

(
xi +

wi

2
, yi +

hi

2

)
. (3)

Then, adjacency matrix is established by Euclidean distance
and normalized with Gaussian kernel, which can be defined as

ai,j =

⎧⎨
⎩e

‖ci−cj‖2
−2γ2 if ||ci − cj ||2 > τ

0 otherwise
(4)

where the parameter γ is a scale factor, where we set it to 1.6.
Considering node is assumed to be connected to each other in our
work, the adjacency matrix is symmetric. In this way, we embed
the spatial information into the adjacency matrix. If two nodes
ni and nj are so far away in the space that distance exceeds τ ,
the corresponding ai,j will be set to zero.

3) GCN: Since graph is a non-Euclidean structure data, we
leverage the GCNs to learn the spatial dependencies among
objects. A graph can be defined as G = (V,E), where V =
{vi | i ∈ {1, . . . , N}} and E = {ei,j | ∀i, j ∈ {1, . . . , N}} are
the sets of nodes and edges, respectively. The initial feature
descriptions of nodes V are extracted by ROI pooling and
defined as X ∈ Rn×d. Every node is assumed to be connected
to each other and the adjacency matrix is defined as A ∈ Rn×n.
Here, n denotes the number of nodes and d denotes the feature
dimension. In our GCN-based branch model, we stacked two
graph convolutional layers, which take graph feature description
X and the adjacency matrix A as inputs. Mathematically, we
can represent the output feature of first layer of the graph
convolution as

h(1) = σ(AXW (0)) (5)

where A is the adjacency matrix, W (0) ∈ Rm×d is a weight
matrix of trainable parameters at first layer, andσ is the activation
function, which is implemented by rectified linear units (ReLU)
in our model. By stacking layers, we can aggregate higher-order
feature from neighbors as follows:

h(l+1) = σ(Ãh(l)W (l)) (6)

where l denotes the number of graph convolution layer and
h(0) = X . W (l) is the weight matrix of trainable parameters
at lth layer. GCN propagates messages on a graph structure and
aggregates feature information from the neighbors of each node.
Actually, GCN updates the hidden state of nodes by a weighted

Algorithm 1: The Proposed Method for Remote Sensing
Scene Classification.
Input:

Input image; number of iterations T ; learning rate η;
number of graph convolutional l; parameter γ.

Output:
Predict label for input image.

Algorithm:
1: Fine-tune VGG16 model on training datasets.
2: Forward inference and generate global-based feature

map.
3: Generate object proposals {xi, yi, wi, hi}Ni=1.
4: Compute the adjacency matrices A according to (4).
5: ROI Pooling extracts regional feature fi and generates

node features ni.
6: Construct the graph G for input image.
7: for t = 1 to T do
8: Calculate the outputs of the lth layer h(l).
9: Calculate the loss according to (9).

10: Update the weight matrices W using gradient
descent.

11: end for
12: Calculate the network output according to (8) and

conduct label prediction.

sum of the features of their neighbors as follows:

Ãih
(l) =

n∑
j=1

Ai,jh
(l)
j . (7)

Therefore, the complex dependencies among nodes can be
modeled by gradually aggregating information in the neighbor-
hood. Then, we employ simple global max-pooling strategy on
graph features. GCN passes information among neighbor nodes
and updates each node according to the predefined adjacency
matrix [46], which allows us to effectively capture the spatial
dependencies among objects.

C. Feature Fusion

In order to enable our network to simultaneously obtain the
appearance characteristics of the whole image and the spatial
dependency between objects, we design a simple feature fusion
block. The feature descriptor extracted from the two branches is
integrated and delivered to the final classifier. The operation of
feature fusion can be described as follows:

zi = W (f) · (gi ⊕ λhi) (8)

where gi is the features of CNN-based branch and hi is the
features of GCN-based branch, W (f) is the weight matrix of
trainable parameters at final fully connected layer, ⊕ represents
element-wise addition, and λ is a parameter that controls the
fusion ratio. We adjusted λ manually based on experience and
set it to one. To fine-tune the VGG network on remote sensing
datasets, we replace the final fully connected layer of the CNN
model to the number of scene category. The fused feature is
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fed into the softmax layer to obtain the probability that each
image belonging to each class. During the training stage, the
cross-entropy loss function is used to optimize the parameter
values in our model, which is

L = −
N∑
i=1

yi log
ezi∑N
j=1 e

zj
+ (1− yi) log

(
1− ezi∑N

j=1 e
zj

)

(9)
where yi denotes the ground truth label of ith class, with 1
representing the image belonging to the corresponding class
while 0 for not. N is the number of scene category and zi is
the outputted probability from the model. And during the testing
stage, the feature descriptor is used to make the final prediction
of scene category. The process of our proposed method is sum-
marized in Algorithm 1. By combining the CNN and GCN, our
proposed method effectively improves the discriminative ability
of features.

III. EXPERIMENT

In this section, we conduct exhaustive experiments on
two challenging datasets and make comparison between the
proposed method and state-of-the-art approaches, where two
metrics including overall accuracy and confusion matrix are
adopted.

A. Experimental Datasets

We choose two large-scale datasets AID [47] and NWPU-
RESISC45 [48] to demonstrate the effectiveness of our method.
In detail, AID dataset contains 10 000 images and 30 scene
categories with 600 × 600 pixels, where the number of im-
ages in each category ranges from 220 to 420. The spatial
resolution ranges from 8 to 0.5 m/pixel. NWPU-RESISC45
dataset is the largest remote sensing scene dataset up to now,
which contains 31 500 images and 45 scene categories with
256 × 256 pixels. Each category contains 700 images with
spatial resolution ranging from 30 to 0.2 m/pixel. These two
datasets all contain rich scene categories, which can provide
a large number of scene-related ground objects to learn the
spatial information. The images of two datasets are collected
from Google Earth imagery, which are captured from different
remote imaging satellites at different times, so as to rich image
variations and diversity. In particular, some confusing scene
categories with high similarity like basketball courts and tennis
courts are designed in NWPU-RESISC45, which intensifies the
characteristic of small interclass variance.

B. Evaluation Protocol

For the task of remote sensing image scene classification,
overall accuracy and confusion matrix are two common quan-
titative evaluation metrics. The overall accuracy is a holistic
measure to show the classification performance on the whole
dataset, and the confusion matrix is a more detailed table used for
visualizing the performance of each category. To obtain reliable
results, we randomly select the training samples and repeat it

TABLE I
NUMERICAL RESULTS (%) OF OUR OBJECT DETECTION MODEL ON EACH

CATEGORY OF THE DOTA TESTING SET

10 times. The mean and standard deviation of overall accuracies
are also reported.

C. Implementation Details

We implement our proposed architecture with the PyTorch
framework. All experiments are performed on Intel Core i7
2.93 GHz CPU with NVIDIA GeForce GTX 1080 GPU for
acceleration. We use the pretrained VGG16 model on ImageNet
dataset and fine-tune it on remote sensing scene dataset. We use
stochastic gradient descent [49] optimizer with a momentum of
0.9 and weight decay of 5e−4. The initial learning rate starts
at 0.0001 and is divided by 10 when epoch reaches 20, 40, and
60. We train our model for 80 epochs with a mini-batch size
of 4. We also adopt some effective augmentation schemes like
shuffle the whole dataset to use the random order of the images
during training. Moreover, all input images are augmented by
randomly rotating 90◦, 180◦, 270◦, flipping horizontally, and
flipping vertically. As same as the previous works [23], we adopt
two training ratios for each dataset for a fair comparison. For
the AID dataset, we set the ratios of training set to 20% and
50%, and the rest 80% and 50% for testing. Similarly, for the
NWPU-RESISC45 dataset, the training ratios are set to 10% and
20%, and the rest 90% and 80% for testing.

D. Object Detection Results

Our object detection model achieves 70.5% mAP on the
DOTA testing set and the numerical results of each category
are shown in Table I. Some object detection results of AID
dataset and NWPU-RESISC45 dataset are presented in Figs. 6
and 7. It can be seen that a number of planes, baseball diamonds,
and storage tanks are accurately detected in airport, baseball
field, and storage tanks, respectively. Our detection algorithm
still performs well even in the challenging scene classes, such
as school, park, and viaduct. In school scene images, there
are usually ground objects such as baseball diamond, tennis
court, basketball court, and ground track field. In park scene
images, there are usually ground objects such as bridge and
ground track field. And in port scene image, there are usu-
ally ground objects such as ships and harbor. The different
combinations and spatial arrangements represent specific scene
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Fig. 6. Examples of object detection results on AID dataset. (a) Airport. (b) Baseball diamond. (c) Bridge. (d) Park. (e) Resort. (f) School. (g) Storage tanks.
(h) Viaduct.

categories. Our method tries to explore the spatial dependen-
cies based on the rich object instances contained in scene
image.

E. Parameter Analysis

Three parameters are tested to analyze how these parame-
ters affect the classification result, including the kernel size of
ROI pooling layer, the hidden dimension of graph convolution
layer, and the scale factor of Gaussian kernel. We test on AID
dataset and NWPU-RESISC45 dataset under the training ratio
of 50% and 20%, respectively. Fig. 8 shows the influence on
the classification accuracy with different parameter settings. We
set the other parameters to the best value when evaluating each
parameter.

1) Kernel Size of ROI Pooling Layer: We use ROI pooling
layer to generate the regional feature representation of object
proposal with fixed size. Four different kernel sizes are tested
to analyze the effect on classification accuracy, including 1 × 1,
3 × 3, 5 × 5, 7 × 7. From Fig. 8(a), we can find that increasing
the kernel size can improve classification accuracy. For the
NWPU-RESISC45 dataset, the performance drops slightly when
the kernel size set to 5 × 5. This can be explained that most

small objects contained in images are better suited for small
kernel size. Combining the results of the two data sets, we set
the kernel size of ROI pooling layer as 3 × 3.

2) Scale Factor of Gaussian Kernel: GCN works by aggre-
gating features between nodes based on the adjacency matrix.
The dependencies among objects are highly correlated to the dis-
tance among them, we define the adjacency matrix according to
the spatial coordinates. We build this adjacency matrix through
Euclidean distance and normalize it with Gaussian kernel in
our method. Therefore, the scale factor γ is also defined as the
adjustment parameter to control the Gaussian kernel. As the
scale factor increases, the values in adjacency matrix gradually
decrease. From Fig. 8(b), we can find that the highest classifi-
cation accuracy is obtained when the scale factor of Gaussian
kernel is set to 1.6.

3) Distance Threshold of Adjacency Matrix: We define the
adjacency matrix according to the spatial coordinates in the
GCN-based branch. If the distance of two nodes are so far away
in the space that exceeds threshold τ , the corresponding will be
set to zero. Because nodes that are far apart almost not affect
the feature learning of each other. The main aim is to reduce
computation and speed up the running rate. From Fig. 8(c), we
set the distance threshold as 1e−5.
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Fig. 7. Examples of object detection results on NWPU-RESISC45 dataset. (a) Airplane. (b) Baseball diamond. (c) Basketball court. (d) Bridge. (e) Ground track
field. (f) Harbor. (g) Roundabout. (h) Storage tank.

Fig. 8. Parameter evaluation of our proposed method. (a) Kernel size of ROI pooling layer. (b) Hidden dimension of graph convolution layer. (c) Distance
threshold τ of adjacency matrix. (d) Scale factor γ of Gaussian kernel.
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Fig. 9. Confusion matrix of our method on AID dataset by fixing the training ratio as 20%.

TABLE II
OVERALL ACCURACY (%) OF OUR PROPOSED METHOD AND THE

COMPARISON METHODS UNDER THE TRAINING RATIOS OF 50% AND 20%
ON THE AID DATASET

The best performance is highlighted in bold.

4) Hidden Dimension of Graph Convolution Layer: We
stacked two graph convolutional layers in our GCN-based
branch model. By stacking layers, we can aggregate feature
information from the neighbors of each node. GCN updates
the hidden state of nodes by a weighted sum of the features
of their neighbors. From Fig. 8(d), we can find that the highest
classification accuracy is obtained when the hidden dimension
between two graph convolutional layers is set to 256.

F. Experimental Results and Analysis

1) AID Dataset: To illustrate the superiority of the proposed
method, a comparative evaluation against several state-of-the-art
classification methods on the AID dataset is shown in Table II.

We select eight mainstream methods based on the deep learning
network and compare the performance of scene classification. As
can be seen from Table II, our proposed method, by combining
the CNN and GCN, achieved the highest overall accuracy of
96.70% and 94.93% using 50% and 20% training ratios, respec-
tively. It is worth mentioning that our method outperformed the
SFCNN [29] with increases in the overall accuracy of 1.27%
under the training ratio of 20%. The classification performance
of our method verifies the effectiveness of combining global-
based visual features and object-based location features on AID
dataset.

Figs. 9 and 10 show the confusion matrix generated by our
proposed method with the 20% and 50% training ratio. AID
dataset contains 30 scene categories, including airport, bare
land, baseball field, beach, bridge, center, church, commercial,
dense residential, desert, farmland, forest, industrial, meadow,
medium residential, mountain, park, parking, playground, pond,
port, railway station, resort, river, school, sparse residential,
square, stadium, storage tanks, and viaduct. As can be seen from
Fig. 9, the classification accuracy of 24 categories is greater
than 90% and 17 categories is greater than 95% in AID dataset.
The most notable confusion occurs between resort and school.
Specifically, 6% of images from resort are mistakenly classified
as park, 3% of images from school are mistakenly classified as
commercial. These two categories are very confusing because
of the appearance similarity, so that other methods usually get
much lower accuracy. For example, SFCNN [29] only achieves
70% for the class of resort but our method gets 75%. As can be
seen from Fig. 10, the classification accuracy of 29 categories
is greater than 90%. The categories of school and resort had
relatively high classification accuracies with 90% and 91%. It
confirms that our method is very good at capture spatial location
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Fig. 10. Confusion matrix of our method on AID dataset by fixing the training ratio as 50%.

TABLE III
OVERALL ACCURACY (%) OF OUR PROPOSED METHOD AND THE COMPARISON

METHODS UNDER THE TRAINING RATIOS OF 20% AND 10% ON THE

NWPU-RESISC45 DATASET

The best performance is highlighted in bold.

information to distinguish these categories with small interclass
variance.

2) NWPU-RESISC45 Dataset: We also evaluate our method
on the more challenging dataset, NWPU-RESISC45. The com-
parison of the proposed method and the existing state-of-the-
art classification methods on the NWPU-RESISC45 dataset is
shown in Table III. We select ten mainstream methods based on
the deep learning network and compare the performance of scene
classification. As we can see, our classification method outper-
forms all of the comparison methods, which achieved the overall
accuracy of 90.75% and 92.87% using 10% and 20% training

ratios, respectively. Specifically, our method outperforms the
SFCNN [29] with increases in the overall accuracy of 0.86%
under the training ratio of 20%. The classification performance
of our method demonstrates the effectiveness of combining
global-based visual features and object-based location features.

From the experimental results, we can find that NWPU-
RESISC45 is much more difficult than the AID dataset. There-
fore, it is absolutely essential to analyze the experimental re-
sult through the confusion matrix. Figs. 11 and 12 show the
confusion matrix generated by the proposed method with the
10% and 20% training ratio. There are 45 scene categories,
including airplane, airport, baseball diamond, basketball court,
beach, bridge, chaparral, church, circular farmland, cloud, com-
mercial area, dense residential, desert, forest, freeway, golf
course, ground track field, harbor, industrial area, intersection,
island, lake, meadow, medium residential, mobile home park,
mountain, overpass, palace, parking lot, railway, railway station,
rectangular farmland, river, roundabout, runway, sea ice, ship,
snow berg, sparse residential, stadium, storage tank, tennis court,
terrace, thermal power station, and wetland. As can be seen
from Fig. 11, the classification accuracy of 27 categories is
greater than 90% and 14 categories is greater than 95% in
NWPU-RESISC45 dataset. It is seen that the church and palace
are two confusing categories that get the lowest classification
accuracy. Specifically, 24% of images from church are mis-
takenly classified as palace and 12% of images from palace
are mistakenly classified as church. There are many similari-
ties between these two categories, which leads many existing
works to be unable to get a better performance. For example,
SFCNN [29] only achieves 67% for the class of palace but our
method gets 70%. By analyzing the confusion matrix on our
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Fig. 11. Confusion matrix of our method on NWPU-RESISC45 dataset under the training ratio of 10%.

Fig. 12. Confusion matrix of our method on NWPU-RESISC45 dataset under the training ratio of 20%.

method, we can see that the number of misclassified categories
is relatively reduced. The abovementioned experimental results
demonstrate our proposed method works well on the large-scale
NWPU-RESISC45 dataset, which can reduce visual confusion
and improve the discriminative ability of feature descriptors.

G. Ablation Study

We further perform several extra ablation studies to verify
the effectiveness of our proposed model. Table IV represents
the classification performance of our proposed method with

and without graph structure, to analyze the effectiveness of
CNN-based branch, and their collaborative representation. We
also report the results of without modification of VGGNet. By re-
moving the max-pooling layer and adding a global average pool-
ing layer, we effectively preserve detailed information in high
spatial resolution scene images. Compared to the CNN branch,
there are almost 0.82% and 0.75% improvements yielded under
the two training ratios on the AID dataset, and 0.98% and
1.43% improvements yielded under the two training ratios on
the NWPU-RESISC45 dataset. Our proposed method achieved
a better performance compared to only using the CNN-based
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TABLE IV
ABLATION STUDIES ON THE AID AND NWPU-RESISC45 DATASETS

Fig. 13. Classification performance of certain categories on the AID dataset
with the training ratio of 20%.

branch method, which was a result of combining global-based
visual features by CNN and object-based location features by
GCN. Therefore, the experimental results reveal that a more
discriminative feature representation of the fusion of appearance
visual information and the spatial dependencies among objects
can generate superior performance.

Besides the abovementioned comparison results, the classi-
fication performance for certain scene categories is also shown
in Fig. 13. It is worth noting that these categories containing
scene-related local objects in remote sensing images, such as
school and resort, achieved promising improvement. In ad-
dition, there are also several categories performance reduced
after combining GCN. This can be explained that some error
detection results bring negative effect on the classification result.
On the whole, our proposed method improves the classification
accuracy by combining the CNN and GCN, especially these
categories contained a large number of scene-related ground
objects.

H. Evaluation of Size of Model

We also compared the number of parameters and floating point
operations per second (FLOPs) with other methods, representing
the size of model and the computation complexity, respectively.
The results are listed in Table V. During the process of imple-
mentation, we saved the object detection results offline. There-
fore, we evaluated the detection module and the classification

TABLE V
PARAMETERS COMPARISON WITH DIFFERENT METHODS

module separately. It can be seen the size of our proposed two
stream architecture is small. But our model has a higher calcu-
lation consumption, which is one of the improvement directions
in the future.

IV. CONCLUSION

In this work, to explore the potential spatial dependencies
among objects, we propose a novel two-stream remote sensing
scene classification architecture. By combining CNN and GCN,
our proposed network jointly learns global-based visual features
and object-based location features. It not only utilizes the excel-
lent feature extraction characteristics of the deep learning net-
work but also introduces graph structure model into our task. Our
network simultaneously obtains the appearance characteristics
of the whole image and the spatial dependency between objects,
which effectively reduces visual confusion and improves the
discriminative ability of features. Experiments are performed
on two challenging large-scale datasets, and the experimental
results prove the spatial location and distribution information
of objects is crucial for scene classification. In future work,
dynamic graph convolutional can be used to further improve
performance by reducing the impact of a negative predefined
graph. The approach that we presented in this article is based
on rich object categories and accurate object location. In the
future, we will annotate more object categories relevant to the
scene label on public datasets, so that more scene images can
be modeled by graph. And then we can expand our work into
hyperspectral images, which usually contain a large number of
pixels corresponding to many land-cover classes, respectively.
Therefore, our method is also suitable for classifying the pixels
of a hyperspectral image into certain land-cover categories.
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