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Abstract—Tropical cyclones are one of the costliest natural disas-
ters globally because of the wide range of associated hazards. Thus,
an accurate diagnostic model for tropical cyclone intensity can save
lives and property. There are a number of existing techniques and
approaches that diagnose tropical cyclone wind speed using satellite
data at a given time with varying success. This article presents
a deep-learning-based objective, diagnostic estimate of tropical
cyclone intensity from infrared satellite imagery with 13.24-kn
root mean squared error. In addition, a visualization portal in a
production system is presented that displays deep learning output
and contextual information for end users, one of the first of its kind.

Index Terms—Deep learning, machine learning lifecycle, model
interpretation, research to production, wind speed estimation.

I. INTRODUCTION

HURRICANES can cause upwards of 1000 deaths in a sin-
gle event and are responsible for more than 100 000 deaths

worldwide [1]. Economical losses from several hurricanes over
the last few years is estimated to be more than $50 billion and
accounting for inflation, some historical storms caused more
than $100 billion in damage [1]. The Insurance Institute reports
there is more than $10 trillion in an insured coastal property that
is vulnerable to landfalling hurricanes in the U.S. alone. There
are a number of hazards associated with hurricanes and many
factors that can contribute to the final death toll and damage
losses. Hurricane damage models approximate risk using an
exponential [2] or power [3] of the wind speed. Thus, being able
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to accurately diagnose the intensity of a tropical cyclone (defined
as the maximum sustained surface wind speed) is essential for
disaster preparedness and response.

Direct measurements of the winds within a tropical cyclone
are sparse, particularly, over open ocean. Thus, diagnosing the
intensity of a tropical cyclone is initially performed using satel-
lite measurements. An accurate assessment of intensity using
satellite data remains a challenge as the National Hurricane
Center (NHC) estimates a 10–20% uncertainty in its postanal-
ysis intensity estimates when only satellite observations are
available. Similarly, the average 24-h forecast intensity error
for any given storm is on the order of 10–20%, as reported
by the NHC. Thus, improving initial intensity estimates from
satellite imagery could mean significant improvements in short-
term intensity forecasting; thereby, improve our nation’s disaster
readiness and response.

Operational forecasters primarily rely on adaptations of the
Dvorak technique, a satellite image-based technique developed
in the 1970s [4]–[8] for estimating the tropical cyclone intensity
when direct measurements from aircraft are not available. These
techniques utilize brightness temperatures from infrared satellite
measurements and employ human visual inspection of features
with the cloud field, such as symmetry of the inner core and
curvature of the outer rainbands. There are known limitations
with Dvorak-based techniques, namely, the subjectivity of hu-
mans in classifying storm intensity based on cloud features. Two
well-trained analysts using this technique can derive different
intensity estimates for the same storm at the same time. Even
if they agree with each other to within 0.5 Tropical Number
(or T-Number; the intensity classification scale utilized by the
Dvorak technique), the precision of Dvorak-based estimates,
there can be a 12 kn or approximately 6 ms−1 difference in
wind speed estimates for hurricane-forced storms. Furthermore,
based on anecdotal evidence, large differences are sometimes
seen in cases with complex cloud structures, and when compar-
ing estimates from different agencies. One such example of a
complex case is given by the NHC advisory on Tropical Storm
Ophelia, October 10, 2017 UTC 1500:

“Dvorak intensity estimates range from T2.3/33 kn from Uni-
versity of Wisconsin—Cooperative Institute for Meteorological
Satellite Studies (UW-CIMSS) to T3.0/45 kn from the Tropi-
cal Analysis and Forecast Branch (TAFB) to T4.0/65 kn from
the National Oceanic and Atmospheric Administration/National
Environmental Satellite, Data, and Information Service Satellite
Analysis Branch (SAB). For now, the initial intensity will remain
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at 45 kn, which is an average of the scatterometer winds and all
of the other available intensity estimates.”

Two human experts at TAFB and SAB differed by 20 kn in
their Dvorak analyses, and the automated version at the Univer-
sity of Wisconsin was 12 kn lower than either of them. Passive
microwave imagery from modern satellites can reveal structural
details that can mitigate some of the difficulties associated with
the Dvorak technique, but such imagery is not available at a
temporal frequency required by operational forecasters. This
need was noted by the hurricane science community and is
prominently highlighted at the 2017 Tropical Cyclone Oper-
ations and Research Forum/71st Interdepartmental Hurricane
Conference with a focused session specially dedicated to “Tech-
niques to improve the utility of microwave satellite and radar
data for tropical cyclone intensity and location analysis (e.g.,
a ‘Dvorak-like’ technique using microwave imagery).” Thus,
there is clearly a vital need to develop automated, objective,
accurate tropical cyclone intensity estimation tool from satellite
data. To take advantage of such an automated tool, a full system
that can be deployed and operate on all storms in real time
is required. Such a system would have a profound impact on
disaster preparedness.

The main contributions presented in this article are as follows
1) The development of the deep learning model for the

objective estimation of tropical cyclone intensity using a
convolutional neural network (CNN) on satellite images.

2) Extensive evaluation of the deep learning model and anal-
ysis of how the model makes a decision for classification.

3) The systematic process of transitioning the model to a
production environment.

4) The design and implementation of a tropical cyclone mon-
itoring and intensity estimation system.

5) Interactive portal for situational awareness and evaluation
of wind speed estimation.

6) Labeled training images of hurricanes with maximum
wind speed.

The rest of this article is organized as follows: Section II
provides related work. Section III outlines our methodology,
and Section IV concludes this article with possible future work.

II. RELATED WORK

Some related work in estimation of wind speed from satel-
lite images are discussed here along with existing portals that
provides real-time information on tropical cyclones. We also
provide background information on the CNN, which is the basis
of our deep learning model.

A. Dvorak Technique

The Dvorak technique is a satellite image-based tropical
cyclone intensity estimation method that has been influential
for more than 30 years. With modifications and improvements
of this method over the years, including automated versions [9],
variations of the Dvorak technique are considered the gold
standard for the satellite image-based tropical cyclone intensity
estimation among tropical meteorologists. The main premise of
the Dvorak technique is that the shape and coverage of the cloud

Fig. 1. Dvorak’s illustration of common development patterns and correspond-
ing intensities [5].

field is related to the intensity of the cyclone. Features such
as the length and curvature of the storm’s outer rainbands are
analyzed to arrive at a particular T-number as shown in Fig. 1.
Given this visual analysis, certain objective rules are applied
based on prior intensity estimates that are used to determine
the current intensity. The longevity of the Dvorak technique
within the tropical community serves as proof that there is a
physical relationship between spatial cloud patterns and tropi-
cal cyclone intensity. That said, because the Dvorak technique
relies on human interpretation of features in a tropical cyclone
cloud field, two well-trained analysts can assign different in-
tensity estimates. Additionally, subtle differences in T-number
can result in differences in maximum wind speed by 12 kn or
more at hurricane intensities. Furthermore, larger differences
are sometimes seen in storms with complex cloud structure, and
when comparing estimates from different agencies in different
centers.

B. Advanced Dvorak Technique (ADT)

Olander and Velden [33], [34] built upon the manual Dvorak
technique and introduced the ADT that uses satellite imagery
as input to an automated algorithm that assigns a T-number.
Additional improvements have been incorporated into the ADT
such as the inclusion of aircraft measurements and passive
microwave data as well as improved tropical cyclone center-
ing; a critical component of the automated algorithm. While
the ADT improves upon the manual Dvorak technique, model
performance struggles on weaker storms that tend to have a
more disorganized cloud distribution and empirical thresholds
are retained to constrain the change in cyclone intensity with
time.

C. Deviation-Angle Variance Technique (DAVT)

The DAVT was described and applied to the North Atlantic
by Pineros et al. [10], [11] and Ritchie et al. [12] and in
North Pacific by Ritchie et al. [13]. This technique quantifies
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the symmetry of tropical cyclones in the infrared (IR) satellite
imagery. It performs a directional gradient statistical analysis
of the brightness of those images. The level of alignment of
the gradient vector is the amount of deviation from the perfect
radial axis. The variance of this deviation angle is used in the
quantification of the cyclone. This technique has the following
two main limitations: 1) it requires images with properly marked
tropical cyclone centers and 2) it uses different models and fitting
parameters for tropical cyclones in different regions, reducing
broader, global application.

D. Passive Microwave Imagery-Based Tropical Cyclone
Intensity Estimation

Passive microwave satellite measurements provide more de-
tailed information on the inner structure of the cyclone as
microwaves are able to penetrate clouds revealing precipita-
tion within the storm (e.g., [14]). Initial attempts to estimate
the tropical cyclone intensity directly from passive microwave
imagery [15], [16] were not as successful as initial infrared im-
agery; however, [34] have incorporated microwave data into the
ADT that has reduced estimation errors. Microwave information
in the ADT is only applied during periods of storm intensification
and when the cyclone has no visible eye. One of the primary
limitations of using passive microwave measurements for op-
erational diagnosis of cyclone intensity is the limited temporal
frequency of observations compared to infrared geostationary
satellite measurements.

E. Convolutional Neural Network (CNN)

Learning “features” is a core idea behind deep learning,
which consists of machine learning, computer vision, and pattern
recognition algorithms that have multiple layers, where each
layer performs feature detection. The fundamental issue in image
classification is bridging the semantic gap of using low-level
features (image pixels) to derive high-level abstractions. Deep
learning’s hierarchical layered learning approach attempts to
bridge that semantic gap. Recent advancements in deep learning
techniques have produced state-of-the-art image classification
results in many domains [25] mostly using CNNs.

CNNs have been used for many different computer vision
tasks ranging from image classification [17]–[19] to object
detection [20] and even visual saliency detection [23]. Each
task uses a slightly different network layout depending on the
objective. However, their basic components are all very similar,
consisting of convolutional layers, pooling layers, and fully
connected layers.

The primary function of the convolutional layer is to learn
feature representations of the inputs, where a feature can be
viewed as any type of input pattern (e.g., a cloud band in
a satellite image). Convolution is the main operation in this
layer where the weights of the convolution filters are learned
during each iteration of the network. Feature maps are obtained
by convolving the input with a convolution filter, and then,
applying an element-wise nonlinear activation function on the
results. The activation function, typically the rectified linear unit
(ReLU) [22], introduces nonlinearities to the network.

The pooling layer is generally placed in between convolu-
tional layers. It is used to reduce the spatial size of the rep-
resentation, which in turn reduces the number of parameters
and computations in the network. The pooling layer operates
independently on every input (feature map) and resizes the input
spatially using average pooling or max pooling [24]. By stacking
more and more convolutional and pooling layers, the network
can potentially generate progressively more abstract features at
higher layers of representations [25].

The fully connected layer is typically located after multiple
convolutional and pooling layers and is just like a typical neural
network with full connections to all activations in the previous
layer. The purpose of the fully connected layer is to perform
the high-level reasoning and classification, typically using a
softmax classifier. Stochastic gradient descent (SGD) [27] is the
most common back-propagation algorithm used to update the
parameters during training. Each parameter update in SGD is
computed with respect to a minibatch to help reduce variance in
the parameter update and to lead to a more stable convergence.
The learning rate controls the speed at which convergence
occurs.

Our previous work [28] has demonstrated that a CNN can be
used successfully to estimate tropical cyclone categories. Our
results show improvement using CNNs when compared to the
existing techniques. We used up to 5-kn interval estimation of
the wind speed with the data available from the Naval Research
Laboratory. We extend this past work by including new real-time
Geostationary Operational Environmental Satellite (GOES) im-
agery, further enhancing the model to estimate the wind speed
at a 1-kn interval, performing extensive evaluation and building
and deploying a production system.

Other research efforts have also used CNNs for hurricane
intensity estimation application. Wimmers et al. [36] used CNNs
to estimate cyclone intensity using passive microwave imagery
(37- and 89-GHz bands) as input to the model. The approach
uses images from years 1987 to 2012. The wind speed labels
are obtained from best track records in the hurricane database
(HURDAT2) and joint typhoon warning center in 5-kn intervals.
Linear interpolation is then used to get wind speed estimates for
training images. The model achieves root mean squared error
(RMSE) of 14.3 in the test set obtained from years 2007 to 2012.
Lee et al. [38] used 3-D CNNs to estimate hurricane intensity.
The input to their proposed model is satellite imagery from
Communication, Ocean and Meteorological Satellite - Meteoro-
logical Imager (COMS-MI) and Joint Typhoon Warning Center
advisories are used to obtain wind speed labels. The research
is mainly conducted on the Western Northern Pacific (WNP)
region. The training data are over sampled through wind speed
interpolation and image rotation to have a balanced distribution
of images.

Giffard-Roisin et al. [37] uses track data and 3-D reanalysis
data as input to CNN, along with other features such as loca-
tion information and maximal sustained windspeed to develop
storm track models. They formulate the tracking problem as
estimating the displacement between the current location and
future location of the cyclone. Other variations of CNNs (CNN-
long-short-term memory (ConvLSTM), U-Net) have also been



4274 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

successfully used in tracking and forecasting climate events
such as hurricanes [32], [35], [39]. The model presented in this
article does not consider storm track or forecasts and is purely
a diagnostic model for estimating the tropical cyclone intensity.

III. METHODOLOGY

Development and deployment of the diagnostic tropical cy-
clone intensity estimation system follows the end-to-end ma-
chine learning lifecycle described by Maskey et al. [29]. The
machine learning lifecycle is a systematic iterative process of
training, testing, and deploying a model to develop an optimized
model ready for ingestion into a production system and con-
sumption by the targeted end-users.

A. Machine Learning Lifecycle

The machine learning lifecycle mainly consists of four phases:
problem definition, data collection and analysis, model devel-
opment and evaluation, and deployment to production system.
Many machine learning projects end after demonstration of
model’s improvement in accuracy compared to the state of the
art. Thus, the steps of the machine learning lifecycle usually
omitted are the robust evaluation in understanding of how the
model makes decisions and the deployment of the model in
a production environment where the model can be evaluated
with new real-time data. In this article, we use the full machine
learning lifecycle as a road map to develop our production
system.

1) Problem Definition: The problem relates to objectively
estimating tropical cyclone wind speed using satellite images.
During a tropical cyclone, the main factors that contribute to
the resulting death toll or damage amount are often attributed
to the cyclone’s wind speed. Thus, being able to accurately
estimate tropical cyclone intensity (wind speed) is essential for
disaster preparedness and response. There are inherent issues
with current techniques used to estimate tropical cyclone wind
speed because of the subjectivity of the Dvorak technique and
the empirical thresholds used to constrain the change in cyclone
intensity as a function of time. In addition, current techniques are
run at an hourly temporal frequency or lower, and thus, high fre-
quency intensity estimates between official forecast advisories
would also provide tropical forecasters with another data point
when assessing the maximum wind speed of the cyclone.

2) Data Collection and Analysis: The initial training im-
age dataset for this application was constructed using tropical
cyclone satellite images from the tropical cyclone repository
of the Marine Meteorology Division of U.S. Naval Research
Laboratory (NRL).1 These satellite infrared (IR) images are
captured every 15 min and contain additional information such
as year, date, time, and name of the hurricane.

After several iterations of the beginning phases of the machine
learning lifecycle, we realized that NRL image database was not
sufficient and more samples were required at a higher temporal
frequency. However, real-time image generation from the NRL
data was not possible. Thus, we transitioned to raw GOES

1[Online]. Available: http://www.nrlmry.navy.mil

Fig. 2. Distribution of number of images with specific wind speed in knots.

TABLE I
MODEL PERFORMANCE METRICS ON TEST DATASET (2018 + 2019)

data available from NOAA’s Comprehensive Large Array-data
Stewardship System (CLASS) [30] and wind speed informa-
tion from HURDAT2, the tropical cyclone best track reanalysis
data [40]. HURDAT2 is a storm database that provides various
characteristics of any tropical storm. We utilize the location,
time, and wind speed features from the database. We use storms
from year 2000 through 2019, out of which storms from year
2000 to 2016 are used for training and storms from 2017 are used
for validation to avoid any intrastorm bias. Storms from 2018
and 2019 were used for model testing. The model was then used
in the production system to estimate wind speeds 2019 storms.

The training dataset for the intensity estimation model is
generated using the following steps.

1) Identify HURDAT2 storm intensity, time, and location
(latitude and longitude of storm center).

2) Create a bounding box around storm using start and end
date time of the storm.

3) Use the bounding box and time to download GOES-
8, GOES-10, GOES-11, GOES-12, GOES-13, GOES-
15, and GOES-16 IR channel (band 4 GOES-8 through
GOES-15 and band 13 for GOES-16) data from the NOAA
CLASS data catalog.

4) Create a padding of +/−5 ° from the center of the storm on
both latitude and longitude for every file available through
NOAA CLASS.

5) Match HURDAT2 wind speed to the closest file if there is
not an exact match in time.

6) Inperpolate location information and wind speed (1-kn
interval) between consecutive HURDAT2 observations.

7) Apply random rotation, random shear, and random zoom
on training data to create more training samples (only for
the training set).

http://www.nrlmry.navy.mil
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Fig. 3. CNN model architecture used for wind-speed estimation.

Any image with more than 70% missing data were removed
from the training set. Note: training set included all wind speed
data and images from the East Pacific and Atlantic from year
2000 to 2016. The validation set included all wind speed data
and images from East Pacific and Atlantic for year 2017. The
test set included all wind speed data and images from East
Pacific and Atlantic for year 2018 and 2019. The resulting sets
included 97 152 training samples, 4 840 validation samples, and
6 118 test samples. Fig. 2 shows the number of tropical cyclone
images used for training at 1-kn wind speed interval from 20 to
140 kn.

3) Model Development and Evaluation: Using this training
dataset, we design a deep learning model for the objective
estimation of tropical cyclone intensity using a CNN on satellite
images. Development of the CNN required several iterations
through the machine learning lifecycle to arrive at the final
model configuration. Since the work of Pradhan et al. [28],
further model iterations revealed that image classification to
the Saffir–Simpson scale storm intensity and 5-kn wind speed
intervals did not perform as well as linear output at 1-kn wind
speeds. Thus, this model inputs training samples at 5-kn speed
intervals and outputs a maximum wind speed at 1-kn resolution;
however, model precision cannot exceed the 5-kn resolution of
the input training data. Overall, the linear model RMSE was
13.62 kn for all storms occurring in 2018 and 2019 in both the
Atlantic Ocean and Eastern Pacific Ocean basins (see Table I).

4) Performance Metrics: The metrics used in Table I for
evaluating the model performance are listed as follows.

1) Mean absolute error (MAE)

1

n
∗
∑

|Xp −Xt|. (1)

2) RMSE √
1

n
∗
∑

(Xp −Xt)2. (2)

3) Bias

1

n
∗
∑

(Xp −Xt). (3)

4) Relative RMSE √∑
(Xp −Xt)

2

n− 1

Xp

(4)

Fig. 4. Training accuracy: Model loss MSE.

where Xp in the predicted intensity value and Xt is the
actual intensity value. n denotes the number of samples.

The final CNN model architecture is shown in Fig. 3 . A
mean-squared-error (MSE) loss function is used by computing
error between the actual wind speed and the estimated wind
speed. Thus, the output is treated as a regression output rather
than a classification output. The architecture we chose is a
variation of the VGG-16 model [21]. It differs from he VGG-16
model in that the VGG-16 model uses 13 convolutional layers
and max-pooling layer between each two or three consecutive
layers and our CNN model includes four convolutional layers
where each layer is followed by a max-pooling layer. This
was done heuristically to reduce the model complexity and
avoid model overfitting. Our model also includes four dense
layers including the output layer that uses a linear activation.
Model hyperparameters include: learning rate of 1e-5, batch
size of 60, ReLU activation function, pooling with overlaps, and
adaptive moment estimation (Adam) optimization. The model
was trained on 12-GB Nvidia p100-PCIE Tesla GPU with Keras
2.0.8, Tensorflow 1.2.1, and CUDA-8. Eventually, the model
reached the RMSE of 10.16 kn for 2017 cyclone data (validation
set) as shown in Fig. 4.

One of the major criticisms of machine learning techniques
from subject matter experts is that it is difficult to determine what
the model is actually learning to make classification decisions.
Thus, there is a trust factor between the machine learning experts
and the physical science community that hinders the transition
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Fig. 5. Hurricane Florence evaluation samples at different categories. (a) GOES: TS. (b) CAM: TS. (c) TB : TS. (d) GOES: Cat 1. (e) CAM: Cat 1. (f) TB : Cat
1. (g) GOES: Cat 2. (h) CAM: Cat 2. (i) TB : Cat 2. (j) GOES: Cat 3. (k) CAM: Cat 3. (l) TB : Cat 3. (m) GOES: Cat 4. (n) CAM: Cat 4. (o) TB : Cat 4.

of these models into a production system. As part of our model
evaluation, we use techniques to understand how cyclone inten-
sities are determined within the CNN. Our approach includes
tracing the CNN’s final intensity back to the original image to
discover which pixels contributed most to the classification by
using class activation maps (CAMs) [31]. CAMs show which
parts of the image the machine learning model uses to determine
the maximum wind speed. Encouragingly, the features (and

location of pixels) that contribute most to the model output
are also present in the cloud patterns used within the Dvorak
technique.

Fig. 5 shows CAMs for Hurricane Florence in 2018 at various
intensity categories. In Fig. 5, the images on the left are the
GOES-IR images used as input to the model; the images in
the center column are the corresponding CAM images; and the
images on the right are the corresponding Dvorak-enhanced
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Fig. 6. Hurricane intensity estimation portal.

brightness temperature. The Dvorak-enhanced brightness tem-
perature is a color enhancement applied to GOES-IR imagery
that enhances the contrast of the brightness temperature mea-
surements so the manual Dvorak technique can be more easily
applied. Ideally, a perfect model would produce CAMs that
match cloud patterns used for classification in the manual Dvo-
rak technique and the Dvorak-enhanced brightness temperatures
at a given storm intensity. Looking from the top of the image
down to the bottom, the storm increases in intensity from a Trop-
ical Storm up to a Category 4 Hurricane. A comparison between
the CAMs, the Dvorak-enhanced brightness temperatures, and
Fig. 1, shows that as the storm intensifies, the important features
for classification transition from the outer bands to the inner core
and the central dense overcast region. For lower T-numbers, the
cloud structure is disorganized, which makes it difficult for an
ML to learn meaningful information at these intensities. Thus,
at the Tropical Storm strength as in Fig. 5(b), CAM images
typically show a wide range of features as is shown in Fig. 1 for
T-numbers ≤ 3. Looking more closely at the Category 4 images
[see Fig. 5(n)], it can be seen that the CAM matches quite well
with the T-number 6 CF6 BF0 image in Fig. 1. This provides
confidence that the CNN is learning the desired cloud features
for classification, particularly, at higher intensities.

5) Deployment to Production System: Machine learning re-
searchers closely collaborated with domain experts, an end-
user engagement team, user-interface (UI) experts, software
engineers, and system architects to design an interactive real-
time production system: a tropical cyclone intensity estimation
portal.2 The portal consists of an interactive UI where users can
visually explore the estimated wind speed along with contex-
tual information. The contextual information includes a map
that shows storm location, the satellite image used for estima-
tion, temporal information such as past observations and esti-
mates, and several additional environmental layers (lightning,
sea surface temperature, and full-disk IR satellite imagery). The

2[Online}. Available: http://hurricane.dsig.net/

event-based workflow utilized by the production system is
shown in Fig. 9. The design consideration of the portal focuses
around a set of features, which are as follows.

1) Continuous monitoring of the NHC outlook for “invest”
areas or potential areas of the tropical cyclone develop-
ment for triggering the wind speed estimation workflow.

2) Displaying estimated wind speed and complementary in-
formation over a map.

3) Allowing comparison of the estimated wind speed against
operational forecasts.

4) Allowing download of archived estimation and satellite
images for historical storms for deep dive of specific
storms.

The integral part of the portal is the UI. The primary goal of the
UI is to provide an intuitive interpretation of the model outputs
to the general science community. By default, an overview of
current storms is presented in the portal. Detailed information
about a particular storm, including current historical estimates
and observed wind speeds, is presented on demand as shown in
Fig. 6. Other data layers can be added to the default GOES-IR
layer to provide additional contextual information as shown in
Fig. 7. A separate panel, “information card,” is used to provide
a detailed snapshot of the storm a shown in Fig. 8. Within
the information card, the raw infrared image used for image
classification at a given time is shown at the top. Below the
image, a 36-h history of intensity estimates and forecasted wind
speeds from the NHC is shown by black dots and a green line,
respectively. Users can navigate through time with the vertical
line to display the GOES-IR image, the estimated wind speed,
and the official NHC wind speed for that time. At the bottom, a
time series of forecast and estimation is presented for the life of
the cyclone. The portal also allows users to download estimated
wind speeds along with corresponding times and images for
more detailed analysis of a given storm.

The system was successfully deployed prior to the 2018
hurricane season. The deployment allowed end users to explore
the model output visually and in real time. Initial response from

http://hurricane.dsig.net/
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Fig. 7. Sea surface temperature layer.

Fig. 8. Information card for a particular estimation. Here, the black points
represents the DL prediction (deep learning model intensity estimation) and the
green line represents the NHC advised wind speeds.

the end-user community has been very positive. The resulting
feedback is being addressed as part of our continuous improve-
ment of the estimation model and the production system.

B. System Architecture

Due to the event-based production system requirement and
iterative aspects of model transition, a cloud computing na-
tive solution, specifically, Amazon Web Services (AWS) was
used. The training of the model is done using on-premise GPU
servers to avoid high cost of processing requirements during

Fig. 9. Event-based workflow for the production system.

training. After the model is trained, the model is uploaded
to an AWS S3 bucket for use within the production system.
Future inferencing automatically uses the newest model in the
AWS cloud environment. The architecture of the production
system is shown in Fig. 10. The service stack was deployed via
AWS CloudFormation and leverages the existing open source
NASA project called Cumulus [41] for many out-of-the-box
features for workflow orchestration. Cumulus is a cloud-based
framework for data ingest, archiving, distribution, and man-
agement of the Earth observation data. In this deployment,
Amazon CloudWatch rules launch a new estimation process at
the desired temporal frequency. The machine learning model
executes on an Amazon Elastic Container Service (Amazon
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Fig. 10. Architecture of the production system.

ECS) cluster, and the results are stored in Amazon Relational
Database Service (Amazon RDS). They are then served to the
front-end application via the application programming interface
(API) gateway. Each process is run as a step function for easier
debugging and logging. The portal UI is a statically generated
site that invokes separate APIs to retrieve data. The site was
developed using React [42] and Redux [43] as the view and
state management frameworks. The display of geospatial data is
handled by Mapbox GL [44], a mapping technology to display
and style vector tiles. This technology provides great flexibility
to style the data in the browser, enable complex user interactions,
and display any necessary raster layers. The use of AWS provides
a stable production system that is easy to deploy and maintain
with scalable solution during periods of higher user demand
(e.g., hurricane season).

IV. CONCLUSION AND FUTURE WORK

In this article, we present an end-to-end deep learning-based
wind speed estimation system of tropical cyclones that is trig-
gered in real time. The system include the development of a new
CNN model used to objectively estimate the tropical cyclone
wind speed using just satellite images. The model is extensively
evaluated and systematically transitioned to production by com-
paring features identified in CAMs to Dvorak T-number images.
We also a present a novel way to monitor for new storms and
launch the workflow to provide wind speed estimates in real time
using a situational awareness portal.

In addition, we find that the amount of time spent on the
development of algorithm is considerably lower than creating a
large-scale reliable training dataset of images and corresponding
wind speeds. Deployment of the machine learning model is
a nontrivial task and requires several iterations with updated

training data and model configurations. From the software engi-
neering perspective, the model was treated like source code and
versioned appropriately. Finally, for the successful execution
of an end-to-end machine learning project, a diverse team of
machine learning experts, domain experts, end users, software
engineers, and UI designers is needed.

Various future work could be considered including use of
passive microwave data to estimate wind speed for tropical
cyclones at lower intensity as in [34]. In addition, a detailed
analysis of a particular storm to understand model performance
with storm structural changes during rapid intensification is
another future work that could be studied.
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