
4214 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Drill-Core Hyperspectral and Geochemical
Data Integration in a Superpixel-Based Machine

Learning Framework
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Abstract—The analysis of drill-core samples is one of the most
important steps in the mining industry for the exploration and
discovery of mineral resources. Geochemical assays are a common
approach to represent the abundance of different chemical ele-
ments and aid at quantifying the concentrations of the important
ore accumulations. However, their acquisition is time-consuming
and usually averages of long core portions. Hyperspectral data are
increasingly being used in the mining industry to complement the
analysis of drill-cores due to their efficiency and fast turn-around
time. Moreover, hyperspectral imaging is a technique able to pro-
vide data with high spatial resolution. In this article, we propose to
integrate the complementary information derived from hyperspec-
tral and geochemical data via a superpixel-based machine learning
framework. This framework considers the difference in spatial res-
olution through segmentation. We extract labels from the geochem-
ical assays and select, from the hyperspectral data, representative
samples for each measurement. A supervised machine learning
classification (composite kernel support vector machine) is then
used to extrapolate the elements relative abundance to the entire
core length. We propose an innovative integration of hyperspectral
data covering different regions of the electromagnetic spectrum in
a kernel-based framework to facilitate the identification of a larger
amount of elements. A qualitative and quantitative evaluation of
the results demonstrates the capabilities of the proposed method,
which provides approximately 20% more accurate results than the
pixel-based approach. Results also imply that the method could be
beneficial for the reduction of geochemical assays needed for the
detailed analysis of the cores.

Index Terms—Data integration, drill-cores, geochemical
data, hyperspectral data, machine learning (ML), superpixel
segmentation.

I. INTRODUCTION

M INING companies dedicate part of their revenues (about
10 billion USD in 2018 [1]) to the discovery and explo-

ration of new mineral resources in commercially viable concen-
trations. Drilling is a required procedure for the exploration of
subsurface mineral deposits. For this purpose, drilling machines
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extract cylindrical rock samples (of few centimeters in diameter
and several meters in length) known as drill-cores. Drill-cores
are considered as unaltered specimen of rocks, which provide
valuable geological information to characterize potential ore
accumulations [2].

The initial analysis of the drill-cores is performed visually
by geologists when logging the core characteristics (e.g., rock
type, texture, alteration facies, ore-forming minerals, and struc-
tures). However, this task is time-consuming and relies on the
knowledge and experience of the geologist for consistent results.
Considering the cost and importance of drilling, extracting quan-
titative and unbiased information is crucial. Thus, the logging
is always supported by other analytical techniques performed
on specific and small sections of few selected samples. Optical
microscopy [3], X-ray diffraction [4], X-ray fluorescence [5],
scanning electron microscopy (SEM) [6], and laser ablation
inductively coupled plasma mass spectrometry [7] are examples
of the analytical techniques employed. These analyses provide
information on the model mineralogy and mineralogical texture
(quantified mineralogy) and geochemistry of the samples (ele-
ment concentrations), among others.

Minerals have different spectral responses in specific regions
of the electromagnetic spectrum. These responses are mainly
related to the fundamental electronic and vibrational processes
of the different molecular bonds; the mineral assemblages and
grain sizes also influence the responses [8], [9]. Hyperspectral
imaging is an emerging technique in the mining industry, which
offers a noninvasive and nondestructive tool to scan a large num-
ber of cores in a fast turn-around time [10]–[14]. Hyperspectral
data are recorded in several tens of spectral bands to capture
spectral information over a wide range of wavelengths. This
rich spectral information can be effectively exploited for the
characterization and determination of the spatial distribution of
different minerals, so-called mineral mapping [8], which support
the geologists on the delineation of the deposits and to target
important ore accumulations.

The analysis of drill-core hyperspectral data has often been
described as a chain of techniques available in well-established
software [10], [11], [15]–[20]. A manual or semiautomatic anal-
ysis of the spectrum absorption properties (e.g., depth, width,
and wavelength position) has also been applied in the literature
to map specific minerals [9], [21]–[27]. All the aforementioned
strategies require a great number of human interactions and
expertise, particularly visual interpretations and comparisons
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Fig. 1. Illustration of the drill-core hyperspectral and geochemical data. Hyperspectral data are commonly acquired from the surface of half of the drill-core
sample kept for the archive, and geochemical data are obtained from either point measurements performed along the core or crushed material.

with available reference spectral libraries (e.g., USGS Spectral
library [28]) [29].

Recently, machine learning (ML) based methods have been
suggested for the analysis of drill-core hyperspectral data to
improve accuracy, speed, and robustness [30]–[32]. The ML
techniques offer automatic means to unravel underlying rela-
tionships in large amounts of data. However, defining mean-
ingful mineral classes and obtaining representative samples to
train an ML model is not straightforward in drill-core samples.
In our previous attempts [33]–[35], we proposed the use of
high-resolution mineralogical data, obtained with SEM-based
Mineral Liberation Analysis software, to generate reference data
and train a supervised ML algorithm. This strategy allows up-
scaling the very detailed mineralogical information from small
and relevant sections of the core to entire drill-core sections.
Although SEM-based analytical techniques provide valuable
submicrometer mineralogical information, their usage is still
limited in the mining industry due to their costs and availability;
one single thin section takes up to 6 h for its acquisition and
analysis in a specialized laboratory.

Analytical techniques that provide geochemical information
(e.g., element concentrations) are by far the most common
approach in operational exploration. One reason for this is that
geochemical data are used for whole-rock composition analyses,
which aid to the delineation of lithological boundaries and
units [36], [37]. Moreover, drill-core geochemical data are useful
for targeting important concentrations of elements that reveal
specific and relevant minerals of the geological systems and,
therefore, serve as proxies for economically viable accumula-
tions [38]–[40]. Although the geochemical data provide valuable
information, they suffer from a scale limitation. Geochemical

data are frequently obtained either from point measurements
or the so-called assays, performed on crushed material from
specific drill-core sections. Usually, geostatistical interpolation
techniques are used to estimate missing information across the
drill-cores, which introduces uncertainties. On the contrary,
hyperspectral data provide high-resolution and large-scale in-
formation but lacks the ability to provide quantitative concen-
trations of critical elements.

Fig. 1 demonstrates the links between drill-core geochemical
and hyperspectral data. Typically, the drill-core samples are
cut in halves, and one half is crushed and used for laboratory
analyses. The other half that is often kept for the archive can be
scanned to acquire the hyperspectral data. Geochemical data are
usually represented as a table including the analytical values of
chemical elements determined, for example, by laboratory as-
says of the crushed materials. Hyperspectral data are represented
in the form of a 3-D data cube, in which a reflectance spectrum
is associated with each pixel. Theoretically, the integration of
hyperspectral and geochemical data is beneficial to estimate the
detailed spatial distribution of elements concentrations across
the whole drill core. Details on the fundamental links between
hyperspectral and geochemical data are presented in Section II.

Previous studies have suggested the combined use of geo-
chemical and hyperspectral data for the interpretation and vali-
dation of the results [25], [39], [41]–[44]. For example, in [42],
the geochemical and hyperspectral datasets are processed and
analyzed separately, and their results are compared and used
for a complete understanding and analysis of the correlation
between stratigraphic control as well as mineralogical alter-
ations. In [45], the authors proposed a combination strategy and
linked hyperspectral and geochemical data to successfully infer
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geochemical and mineralogical characteristics of a specific rock
type from hyperspectral data. From their results, it can be seen
that the predicted geochemistry showed greater detail than the
geochemical data. This is because of the better spatial resolution
of hyperspectral data. Although drill-core geochemical data have
been applied in the previously mentioned studies to interpret
and validate hyperspectral data, to the best of our knowledge, a
systematic link of hyperspectral and geochemical data has not
been addressed in the literature.

In this article, we develop a new ML-based technique for the
integration of drill-core geochemical and hyperspectral data.
We propose to exploit both datasets to upscale the element
abundance information obtained from the geochemical assays
to the entire borehole by means of the hyperspectral data.
The hyperspectral data have a higher spatial resolution (i.e.,
1.6 mm/pixel) than the geochemical data (i.e., assays cover
around 1 m long). To tackle the difference in spatial resolution,
we perform a superpixel segmentation of the hyperspectral data.
Each superpixel corresponds to an object that contains spatially
connected and spectrally similar pixels [46]. Our proposed
method integrates geochemical data as a complementary source
of information within an ML classification system. It fills the
gap between the scales of the measurements in these two data
sources by applying a superpixel-based approach.

In our proposed method, we extract labels from the geo-
chemical data obtained from the assay measurements along an
entire drill-core, and for each of the extracted labels, consid-
ering the superpixels, a representative spectrum is assigned.
Then, the geochemical labels with the representative spectra
are used as input to train an ML model. Once the training is
performed and the model parameters are estimated, the model
is used to automatically classify the superpixels derived from
the complete drill-core hyperspectral data and, thus, spread the
chemistry. This approach requires minimum human interaction,
and therefore, the results are not impacted by different expert
interpretations.

Another important contribution of this article is the integration
of hyperspectral data covering different regions of the electro-
magnetic spectrum, i.e., visible to near-infrared (VNIR), short-
wave infrared (SWIR), and the long-wave infrared (LWIR). This
integration allows a more comprehensive and complete analysis
including not only the elements that influence the diagnostic
spectrum absorptions in the VNIR-SWIR but also in the LWIR.
There are several studies in the literature confirming the ad-
vantages of such integration [45], [47]–[51]. In this article, we
suggest to use the composite kernel support vector machine
(ckSVM) algorithm [52], [53] to balance the spectral informa-
tion contained in the hyperspectral data covering the VNIR-
SWIR and LWIR regions of the electromagnetic spectrum.
We chose ckSVM because it has been proven to improve the
performance of the classification by simultaneously exploiting
information from two datasets [52]–[54]. Moreover, it allows
considering a priori knowledge, which can be beneficial if there
is a tendency in the mineralogy of the samples towards minerals
with diagnostic spectrum absorptions in specific regions of the
electromagnetic spectrum.

In our experiments, we considered geochemical and hyper-
spectral data of a core of about 330 m long drilled from the
Rajapalot gold–cobalt prospect located at the Ylitornio and
Rovaniemi municipalities in northern Finland. The hyperspec-
tral data cover the VNIR-SWIR region of the electromagnetic
spectrum with 340 bands and the LWIR region with 94 bands.
Regarding the geochemical data, 190 measurements assays com-
prising the concentrations of 49 chemical elements in parts per
million (ppm) are available.

The rest of this article is organized as follows. Section II
explains the fundamental links between geochemical and hy-
perspectral data. Section III presents the proposed framework.
Section IV describes the datasets used in this study and the
experimental results achieved. Section V presents the discussion.
Finally, Section VI concludes this article.

II. BASIS FOR THE INTEGRATION OF GEOCHEMICAL AND

HYPERSPECTRAL DATA

The acquisition of geochemical assays in drill-cores is rou-
tinely performed over sections covering areas ranging from few
centimeters to couple of meters, depending on the purpose of the
study [55]. Geochemical data refer to the abundance of different
chemical elements (e.g., major, minor, and trace elements) in
the form of proportions or percentages of the whole sample
[e.g., weight percent or parts per million (ppm)] subject to
a constant sum [56]. Although geochemical data represents a
key factor in characterizing geological deposits and calculating
grade of the ore resource, the precision and accuracy of the ore
body valuation are related to the amount of data available [55].
This is an issue since hundreds of meters of cores are extracted
during exploration campaigns, and geochemical data acquisition
is generally destructive, time-consuming, and costly.

Hyperspectral data are represented by reflectance spectrum
profiles, where minima, called absorptions features, occur due
to different physical and chemical processes when incoming
electromagnetic radiations (light) interact with the elements
and molecular bonds of the samples under observation. These
absorption features illustrate the relation between geochemical
and hyperspectral data. For example, in the SWIR region of the
electromagnetic spectrum, molecular bonds in CO3 generate an
absorption feature between 2306 and 2365 nm, and in this region,
the main absorption feature of calcite (CaCO3) is located [57]
(see example in Fig. 2). In the LWIR, the most intense spectrum
absorptions are due to stretching and bending processes within
molecules of e.g., Si–O, Si–O–Si, Si–O–Al, CO3, and SO4 [58].
For more details on the minerals with diagnostic responses
in the VNIR-SWIR and LWIR regions of the electromagnetic
spectrum, we refer readers to [33].

III. PROPOSED APPROACH

The proposed system to integrate geochemical and hyper-
spectral data for the analysis of drill-core samples is summa-
rized in Fig. 3. The algorithm is divided into two main steps:
the training and the prediction phase. In the training phase,
first, the Gaussian mixture model (GMM) is applied to label
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Fig. 2. Example spectra from the USGS spectral library and major spectral
absorption bands in the SWIR [28], [57].

the transformed geochemical data. In a parallel process, the
hyperspectral VNIR-SWIR and LWIR data are concatenated
and segmented into superpixels. For the regions where the
geochemical assays were performed, the weighted mean spectra
of the extracted superpixels are calculated and linked with the
computed geochemical labels. To finalize the training phase, the
labels and their respective spectra are used to train a ckSVM
model. In the prediction phase, the trained model is used to
classify the superpixels and derive a classification map. Details
of the approach are presented in the following subsections.

A. Geochemical Data Labeling

The transformation of the geochemical data consists of
collinearity removal, logarithmic transformation, and dimen-
sionality reduction. In general, variables are considered collinear
if the data vectors representing them lie on a subspace of lower
dimension. For two variables, this subspace is linear. A broader
definition considers two variables collinear if they lie almost on
the same line and, thus, if the angle between the data vectors is
small [59]. The Belsley diagnostics [59] are implemented to as-
sess the strength and source of collinearity among the variables.
The Belsley method identifies the linearly correlated variables by
setting a threshold for the variance-decomposition proportions
known as the tolerance threshold. The variance-decomposition
proportions refer to the group of variables affected by dependen-
cies and their influence [60]. A transformation is then needed
before applying ML algorithms to transfer the geochemical
data from a constrained sample space into an unconstrained
space. In such a way, the constant-sum constraint embedded
in any compositional data is removed, while the true covariance
structure of the data remains the same [61]. The data are adapted
using the centered log-ratio (CLR) algorithm [62]. CLR is a
logarithm transformation of the data scaled by its geometric
mean [63]. Finally, the dimension of the data is reduced using

principal component analysis (PCA) [64] to transform the set of
interrelated variables to a new set of uncorrelated variables. The
first principal components retain most of the variance present in
the original variables.

Once the geochemical data are transformed, the number of
classes that better summarizes the geochemical data, k, is esti-
mated using the Elbow method. This method is based on the
within-cluster sum of square errors metric [65]. This metric
corresponds to the squared average Euclidean distance of all
the points within each class to the centroid of the class to which
they are assigned. After estimation of the appropriate number
of classes, the geochemical data are finally clustered using the
GMM [66], [67]. We chose the GMM due to its well-known
flexibility and advantages of finding the probability of belonging
to different components within the dataset.

The GMM has gained significant attention due to its capa-
bility of capturing non-Gaussian statistics of multivariate data.
This method is a parametric model that considers the data as
originated from a weighted sum of several multivariate Gaus-
sian sources that allows computing posterior probability density
functions for each observation [66]. A GMM with k number of
components can be expressed as

f x(x) =
K∑

k=1

πkN
(
x;μk,T

−1
k

)
where x is a multidimensional random vector and the multi-
variate normal probability density function is N(x;μk,T

−1
k ).

The probability density function is characterized by the mean
vector μk, the inverse covariance matrix Tk, and a mixing
proportion weight πk ≥ 0, which is subject to the constraint∑K

k=1 πk = 1 [68]. The learning of the GMM algorithm is
performed by maximizing the likelihood function with the
expectation–maximization approach, which estimates the mix-
ture parameters from the data once k is specified [67]. The
algorithm will iterate over these steps until convergence and
each geochemical assay will be then assigned to their specific
class. To estimate the composition of each class, the average of
the chemical composition of the assays belonging to each class
is considered.

B. Superpixel Segmentation

To account for the differences in spatial resolution between
hyperspectral and geochemical data, the hyperspectral datasets
are segmented into superpixels. These superpixels are used
in both training and prediction phases. In the training phase,
the superpixels that cover the regions of geochemical assays
are used to derive the training spectra. For each geochemical
region, a representative spectrum is calculated by the mean
of the corresponding superpixels weighted by the size of the
superpixel. The usage of the mean tends to average and smooth
the variability in the spectra; however, in this work, this is
negligible because each geochemical measurement summarizes
information extracted from a region of around 1 m long. In the
prediction phase, the classification is performed at the object
level; it means that the superpixels are being classified instead
of the pixels. For each superpixel, the average of all the pixels
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Fig. 3. Flowchart of the proposed approach to integrate geochemical and hyperspectral data for the analysis of drill-core samples.

belonging to that superpixel is calculated. Thus, a superpixel
data cube is generated for each hyperspectral dataset.

The segmentation is performed with the well-established en-
tropy rate superpixel (ERS) segmentation [69]. ERS is known
for considering boundary adherence, meaning that it is able to
capture small details. A good boundary adherence influences
compactness, regularity, and smoothness. ERS is considered
a stable algorithm since it has been shown that the standard
deviation in the generated superpixels is low [70]. The ERS
belongs to the family of graph-based algorithms. These methods
treat the images as indirect graphs and perform the segmentation
based on edge weights [70]. Each graph is partitioned into a
connected subgraph by choosing a subset of edges A ⊆ E [71].

The objective function in the ERS algorithm consists of two
terms. The first is an entropy rate term H(A) of a random
walk on a graph, which favors the formation of compact and
homogeneous superpixels. The second, B(A), is a balancing
term that fosters superpixels with similar sizes and, thus, reduces
the number of unbalanced superpixels. Both terms optimize the
superpixel segmentation process

A∗ = argmax Tr{H(A) + αB(A)}, s.t. A ⊆ E.

α is used to balance the contributions of the entropy rate and
the balancing term. E corresponds to the edge set [69], [71].

C. Classification

Once the labels and the representative samples are selected,
they are given as input to a supervised ML algorithm. For this,

the ckSVM algorithm [52] was chosen. This algorithm is an ex-
tension of the well-known support vector machine (SVM) [72],
[73], and it allows a more advanced integration of the VNIR-
SWIR and LWIR hyperspectral data since different kernels are
built for each dataset. We suggested to use SVM because it has
been proven to give good results for mineral mapping [33], and it
has a good generalization ability. Moreover, SVM is an effective
classification method that performs well with limited number of
training samples, which tend to be the case in drill-cores where
usually detailed a priori information is only available in small
sections of the core. The good performance of SVM with a small
set of training samples is because the training samples close to
the class boundary, so-called support vectors, are the ones that
influence the most the location of the hyperplane [73]–[75].

SVM exploits the training data and searches for a sepa-
rating class boundary, known as hyperplane, with the largest
margin [72]. It was originally developed as a linear classifier
to solve binary classification problems. However, the decision
boundaries in classification problems are nonlinear. SVM makes
use of kernel methods to tackle this issue. The data are projected
into a high-dimensional feature space, where the samples are
linearly separable [76]. The final hyperplane decision function
in a binary SVM classifier is defined as

f (x) =

(
n∑

i=1

αiyiK(xi,x) + b

)

where xi ∈ IRd, i = 1, . . . , n, is a set of n training samples with
their corresponding class labels yi ∈ {1,+1}, αi denotes the
Lagrange multipliers, and b refers to the bias. K denotes the
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kernel function which can be defined, for a mapping function φ,
asK(xi,xj) = 〈φ(xi), φ(xj)〉. SVM can be converted to a mul-
ticlass classification problem with the well-known one-against-
one or the one-against-all strategies. For a detailed review on the
SVM technique, we refer readers to [76].

Composite kernels were originally developed to enhance clas-
sification accuracies by incorporating spatial content in addition
to the spectral information [52]. In this work, the datasets to be
combined are the VNIR-SWIR and LWIR hyperspectral data.
For this, the two generated kernels are Ks(xs

i ,x
s
j) that refers

to the VNIR-SWIR kernel and Kl(xl
i,x

l
j) that refers to the

LWIR kernel. For the kernel combination, different approaches
have been developed. In this study, we implement the weighted
summation kernel because it has the advantage of introducing a
priori knowledge in the classifier by specifying different weights
(ω) for each source of information [52]

φ(xi) = {ϕ1(x
s
i ), ϕ2(x

l
i)}

whereϕ1 andϕ2 are the two nonlinear transformations ofxs
i and

xl
i, respectively. Thus, the sum of the VNIR-SWIR and LWIR

dedicated kernels matrices can be performed. Moreover, ω, a
positive real-valued free parameter (0 < ω < 1), is considered
to introduce a weight for each kernel. From this, the kernel
function can be computed as follows:

K(xi,xj) = ωKs(x
s
i ,x

s
j) + (1− ω)Kl(x

l
i,x

l
j).

ω represents the tradeoff between both datasets, and it is tuned
in the training process.

IV. EXPERIMENTAL RESULTS

A. Data Description

Geochemical and hyperspectral data of a complete drill core
of about 330 m long provided by Mawson Resources Limited
company were used to showcase the proposed approach. The
drill core was cut every 1 m and stored in boxes containing
around 5 m of core.

The borehole was drilled in the Rajapalot gold-cobalt prospect
located at the northern edge of the Peräpohja Belt, specifically in
the Ylitornio and Rovaniemi municipalities of northern Finland.
The Rajapalot prospect lays within an approximately 10 ×
10 km gold-enriched area, known as Rompas-Rajapalot, and
comprises several gold rich occurrences. The rock types in the
area are mostly altered quartzites, carbonate-bearing rocks, and
amphibolites [77]. In general, the host rocks consist of an
isoclinally folded package of amphibolite facies. This package
has been divided into two sequences separated by an interpreted
unconformity. A series of siliciclastic, dolomitic carbonate, and
albite-altered metasedimentary rocks characterize the first se-
quence. The second sequence is metasedimentary consisting of
pelitic turbidites, arkosic sands, carbonates, various quarzitic
sandstones, and sulphidic bituminous rocks [78]. The unconfor-
mity between the two sequences is a boundary between largely
oxidized rocks from the first sequence and reduced rocks from
the second sequence [79]. Two main mineralization styles can be

TABLE I
USED SENSOR SPECIFICATIONS OF THE HYPERSPECTRAL CAMERAS

described: a sulphidic Fe–Mg formation, which includes chlo-
rite, Fe–Mg amphiboles, tourmaline, and pyrrhotite (often asso-
ciated with quartz veins) in the upper part [80], and a sulphidic
K–Fe alteration including muscovite, biotite, chlorite, quartz,
albite, Mg–Fe amphiboles, tourmaline, pyrrhotite, scheelite,
pyrite, chalcopyrite, bismuth tellurides, gold, and cobaltite
[78], [79].

B. Data Acquisition

1) Geochemical Data: The geochemical data available from
the drill-core comprise the ppm concentrations of 49 chemical
elements: Ag, As, Au, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu,
Ga, Ge, Hf, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Re, S,
Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Tl, U, V, W, Y, Zn, Zr, Al, Ca,
Fe, K, Mg, Na, and Ti. A total of 190 assays were performed
covering regions of approximately 1 m long in the suspected Au
grade intersections and adjacent regions. The wall rock sections
with inferred mineralizations were sampled at lengths between 2
and 3 m.

The geochemical data were provided by Mawson Resources
Limited company and were acquired using several analytical
methods to cover a variety of elements: atomic absorption spec-
troscopy, inductively coupled plasma–atomic emission spec-
troscopy, and fire assay were used to measure gold; inductively
coupled plasma–mass spectrometry was used for a multielement
work. For more details on these methods, the readers are referred
to [81].

2) Hyperspectral Data: For the acquisition of the hyperspec-
tral data, three cameras were used on the SPECIM SisuRock
scanner: a high-resolution RGB, a SPECIM FENIX, and a
SPECIM OWL cameras. The scanner is an automatic imaging
workstation equipped with a mobile tray that carries the drill-
core boxes under the field of view of the cameras. The FENIX
camera provides coregistered VNIR-SWIR hyperspectral data.
It contains two sensors to cover both regions of the electromag-
netic spectrum. The OWL is a cooled LWIR camera. Both the
FENIX and OWL cameras are push-broom sensors. The pixel
size in both the VNIR-SWIR and LWIR hyperspectral data is
around 1.6 mm/pixel. More details on the specifications used for
the acquisition of the data are shown in Table I.
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Fig. 4. Comparison of superpixel segmentation algorithms: ERS segmentation, SLIC, and SLIC-HSI.

The entire system used for the acquisition of the hyperspectral
data is capable of acquiring data from up to 200 boxes per day.
For this study, the surface of the drill-core halved with a diamond
saw was scanned. The drill-core covers around 325.80 m and is
stored in 74 trays.

The preprocessed hyperspectral data were provided by the
mining company at a processing level that includes coregistra-
tion, radiometric corrections, masking of boxes, and corrections
for any possible wavelength shift and dead pixels. Data were
available for further processing after a final quality control
check.

C. Experimental Setup

To derive the labels from the geochemical data, a collinear-
ity test with tolerance threshold of 0.5 was implemented. We
chose this value because it is commonly considered that for
variables highly associated, a decisive factor for collinearity
relying on high variance-decomposition proportions sets the
threshold greater than 0.5 [60]. It means that all the variables
with a variance-decomposition proportion exceeding 0.5 are
assumed to exhibit collinearity and are discarded. At this stage,
ten elements were removed: As, Ce, Ga, Hf, La, Sc, Ta, V, Zr,
and Ti. From the PCA, a total of seven principal components
were chosen because they contain 99% of the total variance of
the data. Finally, the GMM method was implemented to label
the geochemical data. For this, the Elbow method estimated the
appropriate number of classes, k, as 5.

The superpixel segmentation was performed in two differ-
ent setups that were chosen after testing different settings and
taking special care at the differences in resolution between
the hyperspectral and geochemical data and the homogeneity

of the superpixels. These two setups consider different spatial
resolutions to assess the performance of the segmentation in
compensation of the difference between the hyperspectral and
geochemical spatial resolution. The first setup, referred from
now on as SP-765, derives superpixels with higher spatial res-
olution that are intended to cover almost half of the diameter.
Considering that the diameter of the cores used in this study
is of approximately 50 mm, the size of the superpixels in this
first setup was planned to be about 18 × 18 mm to also ensure
a buffer for possible variations. In the hyperspectral data, the
diameter of the cores encompass around 30 pixels, therefore, to
achieve the desired superpixel segmentation the ERS algorithm
was needed to be set to derive a maximum of 765 superpixels.
In the second scenario, SP-125, with coarser resolution, the
superpixels are intended to cover almost the entire diameter of
the core. Therefore, the size of the superpixels was planned to
be around 45 × 45 mm to keep the mentioned buffer. To be able
to obtain this, the number of superpixels was set to 125.

To demonstrate the efficiency of the ERS algorithm, Fig. 4
shows a comparison with two versions of the simple linear
iterative clustering (SLIC) segmentation algorithm: the tradi-
tional SLIC algorithm [82], [83] and a SLIC modification for
hyperspectral images (SLIC-HSI) [84]. The comparison is per-
formed using 125 superpixels because this represents a low
number of superpixels, but it is still enough to highlight the main
patterns in the data. In general, results in Fig. 4 show that SLIC
superpixels tend to have sharper edges than the ERS superpixels.
Structures such as vein and fractures are better segmented with
the ERS algorithm. Moreover, the processing time of the ERS
algorithm is quite acceptable, i.e., slightly more than SLIC and
significantly less than SLIC-HSI algorithms. To complement the
analysis of our proposed method and evaluate the advantages of



ACOSTA et al.: DRILL-CORE HYPERSPECTRAL AND GEOCHEMICAL DATA INTEGRATION IN A SUPERPIXEL-BASED ML FRAMEWORK 4221

TABLE II
TOTAL NUMBER OF SAMPLES AVAILABLE PER CLASS IN THE

TRAINING AND TEST SETS

the superpixel segmentation, a pixel-based (PB) approach was
also considered. For this PB procedure, the mean of the regions
from where the geochemical data were available was selected
as the representative spectra for the labels.

For the ckSVM algorithm, radial basis function (RBF) kernels
were implemented due to the simplicity to calibrate their pa-
rameters. An equal weight, ω = 0.5, was given to both kernels,
the VNIR-SWIR and the LWIR kernels, to avoid influencing
the results according to the mineralogical knowledge known
from the samples. Moreover, a traditional SVM and the Random
Forest (RF) algorithms were also implemented as a comparison
to complement the analysis of our proposed method. For the
implementation of SVM and RF, the VNIR-SWIR and LWIR
hyperspectral data were integrated at the feature level. Thus,
a total of 434 bands were available in the integrated data
cube. In the case of SVM, only one kernel was required and
an RBF kernel was used. The optimal hyperplane parameters
for both SVM and ckSVM were determined using fivefold
cross-validation. When tuning the parameters in SVM, cross-
validation is commonly chosen over arbitrarily initializing the
hyperplane parameters, because it automatizes the algorithm,
results are more reliable, and it also overcomes the sensitivity to
the regularization parameters characteristic of SVM. The typical
number for the cross-validation when tuning an SVM classifier
is 5 because with a higher number, the probability of finding the
best parameter increases, and this leads to higher computational
time, and with a lower number, suboptimal parameters might
be selected [85], [86]. Parameters for the RF algorithm were
set as in [33] because these parameters showed stable results in
our previous experiments when mapping minerals in drill-core
hyperspectral data.

As shown in Table II, an equal number of samples per class
were considered for the training of the ML models. For all the
classes, except for class 4, ten samples were used. For class 4,
only six samples were available in total. Thus, five samples were
used for the training of class 4 and one for testing. The sampling
was performed randomly, and the experiment was repeated 15
times to avoid any bias and to obtain statistically sound results.

D. Assessment of the Geochemical Data Labeling

Training labels derived from the processing of the geochem-
ical data described in Section III-A are shown in the left plot of
Fig. 5 (DC). The white areas represent regions where geochem-
ical data were not available. Seven chemical elements (i.e., Al,
Fe, Mg, Na, K, S, and Ca) are used for the visualization of the
main composition of each class shown in the bar plots on the

right side of Fig. 5. These are the chemical elements, available
in the geochemical data, forming molecules that have the main
diagnostic responses in the VNIR-SWIR and LWIR regions
of the electromagnetic spectrum. In general, from these seven
elements, Al is the most abundant element in all the classes. After
Al, Fe tends to be the most dominant except for class 2, where
K is the second most abundant element. In classes 1 and 5, main
differences are with the concentration of Na, K, and S. Classes
3 and 4 have similar patterns for the mineral concentrations,
and their occurrence is highly interrelated at around 240–260 m.
However, classes 3 and 4 are dominant in Na and S, respectively.
This similar pattern could suggest that class 4 is located closer
to the mineralized region, whereas class 3 maps the transition
toward the more altered regions. From the spider plot in Fig. 5,
the relative abundance of each class can be seen, being class 1
the most abundant (see Table II for more details on the number
of samples available per class).

For each of the geochemical measurements and assigned
labels, a representative spectrum was obtained from the cor-
responding hyperspectral data. As an example, Fig. 6 shows the
segmentation of one drill-core tray using a maximum of 125
superpixels; the area enclosed in the red boxes is the region
where one geochemical assay was performed. The spectra in
dashed lines correspond to the mean of each superpixel found
in this region. The spectrum in blue is the mean of the region,
and the spectrum in red is the weighted mean of the region.
For both superpixel segmentation setups, the weighted mean is
considered as the representative spectrum. The region enclosed
in the red boxes covers from 251.10 to 252.15 m, and the
assigned label for the entire region corresponds to class 1. For
each of the superpixels derived in this region, a class label is
then predicted during the classification step.

E. Quantitative and Qualitative Assessment

The models trained using the geochemical and hyperspectral
data of the drill-core training samples were used to classify all
the remaining hyperspectral data of the drill-core boxes. The
classification was performed at the object level (i.e., classifying
the superpixels data cube). The drill-core test samples were used
to quantitatively assess the different approaches. Accuracies
were calculated at the pixel level, to ensure the availability of
enough test samples, and are reported in Table III. From these
results, it can be seen that, in general, the accuracies per class
increase with the use of superpixels, and as it is expected, lowest
accuracies are obtained for class 4 due to the limited number of
test samples (see Table II). The overall accuracies also show
that the superpixel-based approach outperforms the classifica-
tion at the PB level. Between the two superpixel segmentation
setups, the segmentation using 125 superpixels outperforms
the scenario with 765 superpixels. The improvement in the
accuracies when using superpixels is because superpixels better
compensate the difference in the spatial resolution between
the hyperspectral and geochemical data. Accuracies improved
especially when using 125 superpixels because the SP-125 setup
is the one that better resembles the resolution of the geochemical
data.
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Fig. 5. Labels derived from the available geochemical data of the drill-core (DC). Main composition of each class and their relative abundances are shown in the
bar plots and the spider plot. Abundances of the main chemical elements linkable with VNIR-SWIR and LWIR hyperspectral data (HSI) are used for this purpose.

Fig. 6. Example of the selection of the representative spectrum for one of the geochemical assays available. The spectra shown in the plot belong to the area
where a geochemical measurement was performed, which is enclosed in the red boxes. The dashed lines correspond to the mean of each superpixel within the red
boxes.
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TABLE III
CLASSES AND OVERALL ACCURACIES (%)

Concerning the performance of the algorithms, although the
highest accuracies for the class with limited number of test
samples (class 4) were obtained by RF, in general, ckSVM
outperforms RF and SVM in all the tested scenarios, being
RF the one performing better after ckSVM. To complement
the quantitative analysis of the proposed method retrieving the
highest values (i.e., SP-125), we report the root-mean-squared
error (RMSE) metric. To calculate the RMSE, the average of
the element concentrations of each class was weighted by the
percentage of each class obtained in the resultant classified maps.
These values were compared against the concentrations obtained
from the geochemical data of the drill-core for each assay (for
more details on the element concentrations of each class, see
the main composition in Fig. 5). The RMSEs obtained by RF,
SVM, and ckSVM are 0.0457, 0.0493, and 0.0399, respectively.
These values also confirm the good performance of the proposed
method.

To qualitatively evaluate the proposed approach, the resulting
maps from the classification of the hyperspectral data were
resampled to the resolution of the geochemical data. The most
dominant label in the classification maps for each of the sections
where geochemical data were available was considered (see an
example of the SP-125 classification in Fig. 7). In general, the
reconstructed labels (HSI max) show a comparable distribution
of the classes, being, for example, class 2 and class 1 highly
abundant at the bottom and middle of the core, respectively.
Between 250 and 300 m, a more structure can be seen in the
HSI max labels (e.g., class 5 is alternating with classes 1 and
2). However, the relative abundance for each class (HSI classes
1–5) shows that the patterns of the derived labels from geo-
chemical data (DC) remain visible. To illustrate this, at around
290 m the geochemical data (DC) shows class 2, whereas the
hyperspectral data (HSI max) shows class 1. However, the HSI
class plots show that HSI class 2 is also highly abundant in this
region.

The classified maps illustrate that this method provides a good
estimation of the chemical elements distribution and relative
abundance. As an example, classes 3–5, which are the ones
with the higher concentration of S, were mapped at the bottom
of the drill core (see HSI max in Fig. 7), and based on the
description of the geological deposit presented in Section IV-A,
the mineralization expected to have the higher concentration of
S is the second one that is located at the bottom part of the
deposit. This second mineralization includes not only pyrrhotite
but also pyrite, chalcopyrite, cobaltite, amongst others, which
are minerals containing S.

Finally, the HSI plot in Fig. 8 reveals the significant per-
formance in the estimation of chemistry in the regions where
geochemical data are not available. For example, at around
50 m depth, geochemical assays were not available; however,
from the results of the proposed approach, it can be seen that
this region is dominated by classes 1 and 2. Going more into
details, Fig. 8 zooms into examples of the obtained classification
maps. The first map (covering from 44.17 to 48.53 m) shows
that not only classes 1 and 2 are present, but also class 3 has
been mapped. Similarly, the second map shows that although
from the labeling of the geochemical data (DC), this region
(around 260 m) belongs to classes 4 and 5, the region is not
that homogeneous and classes 1–3 are also present.

V. DISCUSSION

Our proposed superpixel-based approach considers hyper-
spectral data covering the VNIR-SWIR and LWIR regions of the
electromagnetic spectrum; this brings the advantage of identify-
ing a large range of elements and, thus, minerals. For example,
classes 1 and 5 have their main differences in composition with
Na and K (see classes main composition in Fig. 5). This would
show a slight shift in the spectrum absorptions in the SWIR.
Nonetheless, these two classes have been mapped individually
(see HSI max between 150 and 210 m in Fig. 7), which can be
attributed to the use of the LWIR data since S has an effect in
these wavelengths.

To select the representative hyperspectral sample that corre-
sponds to each geochemical assay, the mean of the regions cov-
ering the assays, weighted by the superpixels sizes, was selected.
The advantage of this weighted mean relies on the fact that the
composition of small grains, which can be reflected in the assays,
will not be smoothed in the spectra, and by giving a weight
to the mean according to the superpixels, its influence is also
perceived. Moreover, in this approach, the classification of the
hyperspectral data is also performed at the object level, meaning
that the superpixels are classified instead of the pixels. In general,
and as it is expected, the superpixel-based approach outperforms
the PB approach (see accuracies in Table III), and this is be-
cause the geochemical data encompass rather big sections in
comparison to the resolution of the pixels in the hyperspectral
data. Thus, the superpixels compensate for this difference in
the spatial resolution and better approximate the resolution of
the geochemical data. More specifically, the SP-125 setup is
generating the most accurate results because the superpixels in
this setup are large enough to balance the difference in resolution
between the hyperspectral and the geochemical data. Although
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Fig. 7. Classification results of the hyperspectral data by ckSVM using labels derived from the geochemical data and a maximum of 125 superpixels for the
segmentation. From left to right: labels derived from the available geochemical data (DC), hyperspectral classified map (HSI), most dominant labels (HSI max)
and relative abundances of the five classes (HSI classes 1–5) obtained per geochemical assay from the resultant hyperspectral classified maps.

the obtained values for the accuracies are relatively low, these
values, in general, represent a good performance considering
the low spatial resolution of the geochemical measurements. To
validate this performance, we applied the proposed approach on
a second bore-hole drilled during the same campaign in the same
geological deposit and several meters away from the drill-core
presented in this study. Results confirmed that the SP-125 setup
performs most accurately. To classify drill-cores with a different
diameter, we suggest performing the superpixel segmentation
considering almost the entire diameter of the cores but leaving a
buffer in the case of variations in the segmentation, as the SP-125
setup considers.

Regarding the sampling strategy, the number of test samples
remaining in class 4 affected the class accuracy, having class 4
the lowest accuracy of all the classes. In general, having ten train-
ing samples per class is quite low, which indicates the method
capabilities in extrapolating the geochemical data from only a
few measurements to the entire drill-core. The drill-core training
set was used to train three supervised ML algorithms: RF, SVM,
and ckSVM. From the accuracies obtained, it can be seen that

ckSVM outperforms RF and SVM in all the tested scenarios and
RF outperforms SVM. A similar pattern has been observed in the
results from the second bore-hole, where ckSVM outperforms
RF and SVM classification with about 15% more accurate re-
sults. Another advantage of the ckSVM is that it permits to adjust
the impact of each data source (i.e., VNIR-SWIR or LWIR)
in the classification by tuning the weight, ω, of each kernel.
This allows considering specific weights for each dataset in
case the drill-core can be better evaluated with a specific dataset
according to the mineralogical composition of the geological
system. For example, in the case of an epithermal system where
most of the mineralogy has the diagnostic absorption features
in the SWIR region of the electromagnetic spectrum, giving a
higher weight to the VNIR-SWIR kernel could highlight relevant
patterns.

From the results, it can be seen that performing the geochem-
ical assays covering regions of about 1 m can lead to a biased
generalization of the composition of the core. To illustrate this,
the second map shown at the right side of Fig. 8 corresponds to
an area where geochemical measurements were taken. Here, the
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Fig. 8. Zoom to the classification results of the hyperspectral data by ckSVM using labels derived from the geochemical data and a maximum of 125 superpixels
for the segmentation. From left to right: labels derived from the available geochemical data (DC), hyperspectral classified maps (HSI), zoom to maps between
44.17 and 48.53 m and 257.62 and 262.06 m, respectively.

measurements covering the two first drill-core samples (from
257.62 to 259.62 m) were assigned class 4 in the geochemical
data (see DC in Fig. 8); however, as can be seen from the
hyperspectral classified map, this is not a homogeneous region
and class 4 is not the only class present here. Thus, reducing the
size and number of the geochemical assays and having a more
selective strategy to perform the measurements can be beneficial.
In addition, this highlights the capabilities of hyperspectral
data to support the analyses of drill-cores, especially because
the classification of one drill-core hyperspectral tray of about
143 640 pixels (i.e., as the data used in this article) takes between
1 and 3 min allowing a faster characterization than the analyt-
ical tests. Finally, the proposed approach to integrate drill-core
geochemical and hyperspectral data can be implemented on a
different set of drill-cores with only taking into consideration
the diameter size of the cores and tuning the parameters of the

classification algorithms. However, it is important to keep in
mind that a representative amount of samples for each class
should be available to avoid a low performance in the classes
accuracies as seeing in the obtained classification accuracies of
class 4.

VI. CONCLUSION

In this article, we developed a new ML-based technique to
integrate geochemical and hyperspectral data for the analysis
of drill-cores. Our proposed methodology follows a superpixel-
based approach where superpixels are considered to tackle the
difference between the spatial resolution of the geochemical
and hyperspectral data. Labels containing elements abundance
composition are derived from the geochemical assays, and a
representative sample is obtained from the hyperspectral data
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for each geochemical assay. These representative samples and
the extracted labels are then used as a training set to build a su-
pervised ML model using ckSVM. This allows upscaling of the
detailed information available in geochemical assays to entire
bore-holes. Moreover, the developed approach also considers
the integration of hyperspectral data covering the VNIR-SWIR
and the LWIR regions of the electromagnetic spectrum.

From the experimental results, we conclude that our de-
veloped method allows an effective integration of drill-core
geochemical and hyperspectral data. With this approach, the
composition of the chemical elements available in the geo-
chemical assays can be successfully extrapolated to entire drill
cores. Moreover, our proposed method provides an accurate
mapping tool, where, due to the integration of VNIR-SWIR
and LWIR hyperspectral data, a larger set of chemical elements
and, therefore minerals, is considered. This integration enables
a more comprehensive and complete analysis since a larger set
of elements is being mapped. Moreover, the availability of two
kernels, one for the VNIR-SWIR and one for the LWIR, and the
possibility of setting different weights for each of them could
be beneficial when relevant mineralizations with absorption
features in specific parts of the electromagnetic spectrum are
known and want to be emphasized. Experimental results show
that the upscaling capabilities of our proposed method could be
beneficial to support the selection of relevant samples and the
area where the more detailed qualitative and quantitative analy-
ses are appropriate. Moreover, this method allows reducing the
number of samples needed for such analyses and still supports
the geologist and experts with the analysis of the cores. To fully
validate the proposed approach, its implementation on a dataset
from a different site is suggested.

For our future developments, we will evaluate the possibility
and performance of the integration of drill-core geochemical
and hyperspectral data using spectral–spatial kernels. As part of
this, different possibilities for the extraction of the geochemical
labels and the extrapolation of the data will be considered.
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