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A Twice Optimizing Net With Matrix Decomposition
for Hyperspectral and Multispectral Image Fusion
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Abstract—Fusing a low-resolution hyperspectral (LRHS) im-
age and a high-resolution multispectral (HRMS) image to gen-
erate a high-resolution hyperspectral (HRHS) image has grown
a significant and attractive application in remote sensing fields.
Recently, the popularization of deep learning has injected more
possibilities into the fusion work. However, there still exists a
difficulty that is how to make the best of the acquired LRHS and
HRMS images. In this article, we present a twice optimizing net
with matrix decomposition to fulfill the fusion task, which can
be roughly divided into three stages: pre-optimization, deep prior
learning, post-optimization. Specifically, we first transform this
fusion problem into a spectral optimization problem and a spatial
optimization problem with the help of matrix decomposition. These
two optimization problems can be handled sequentially by solving
a linear equation, respectively, and then we can obtain the initial
HRHS image by multiplying the two solutions. Next, we establish
the mapping between the initial image and the reference image
through an end-to-end deep residual network based on local and
nonlocal connectivity. In order to get better performance, we have
customized a loss function specifically for the fusion task as well.
Finally, we return the predicted result again to the optimization
procedure to get the final fusion image. After the evaluation on
three simulated datasets and one real dataset, it illustrates that the
proposed method outperforms many state-of-the-art ones.

Index Terms—Convolutional neural network (CNN),
hyperspectral image, image fusion, loss function, super resolution.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) with hundreds of
bands, which contain sufficient spectral characteristics

are widely used in many remote sensing fields [1]–[8], such
as military surveillance, farming, geographic information moni-
toring and weather report. In order to do analysis more precisely
and make decisions more appropriately, HSIs had better posses
resolution as high as possible. While owing to the deficiencies
of current satellite sensors, it seems impossible to acquire high-
resolution hyperspectral (HRHS) images directly. Fortunately,
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low-resolution hyperspectral (LRHS) and high-resolution multi-
spectral (HRMS) images can be conveniently obtained by nowa-
days imaging sensors, respectively. As a result, using HRMS
and LRHS images to integrate desired HRHS images via a list of
algorithms have become an appropriate and efficient option in re-
search front. Recently, compared with traditional methods, deep
learning has achieved overwhelming performance in many fields
especially in image processing. Convolutional neural network
(CNN), by virtue of its local connectivity and weight sharing
properties, is widely used in HSI classification [9]–[13]. For
instance, Chen et al. [10] applied CNN for HSI classification
to extract the spectral-spatial features and enhanced the per-
formance. Besides the classification task, CNN also performs
outstandingly in single HSI super-resolution (SHSISR) [14]–
[18], which aims to reconstruct a high-resolution image only
by a single low-resolution image. For example, Li et al. [14]
combined a spatial constraint strategy with a deep spectral
difference CNN to acquire images with high spatial-resolution
while protecting the spectral information. Yamanaka et al. [15]
proposed a deep CNN with skip connection and network in
network (DCSCN) to extract features and reconstruct details,
which achieved outstanding performance in both accuracy and
running time.

Unlike the SHSISR, the LRHS and HRMS image fusion
contains two inputs, which indicates its difficult to fully integrate
them. To deal with this problem, there has appealed two kinds
of methods. One is to simply concatenate the upsampled LRHS
image and the HRMS image into a whole and then feed it as input
to the CNN to obtain the HRHS image. However, these methods
will lead to the size inequality of input and output, which is
not beneficial for the network design and can limit the speed
of training. The other is using two separate networks to extract
spectral and spatial features, respectively, and then fusing the
two kinds of features to reconstruct the HRHS image. Not only
are the spectral and spatial features hard to extract separately, but
also the information distortion in the features fusion is difficult to
control. As is known to all, image prior modeling can translate
the fusion problem into an optimization problem constrained
by HSI priors. In this article, we adopt a way based on image
priors to acquire HRHS image via a twice optimizing net with
matrix decomposition (TONWMD), as shown in Fig. 1. With the
pre-optimization, we obtain a composite image, which has the
same size as the desired HRHS image and contains spectral and
spatial information, as rich as possible. Taking the composite
image as the input and the reference image as the target, a deep
residual network based on local and nonlocal connectivity is
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Fig. 1. Scheme of the proposed TONWMD method.

established to train the mapping model. When the model can
achieve excellent performance, we feed the composite image
from the test data to the model to predict the HRHS image. Since
the predicted image can still be improved, we return it to the
post-optimization to get the final fusion image. Our contributions
are described briefly as follows.

1) We formulate a complicated fusion problem into a spectral
optimization problem and a spatial optimization problem
with the help of matrix decomposition. These two opti-
mization problems can be simply handled sequentially
by solving a linear equation, respectively. To get better
performance, the optimization procedure is executed a
total of twice before and after the prior learning. The
pre-optimization is helpful for the design and training of
the network while preserving both the spatial and spectral
information well. The post-optimization can enhance the
final performance.

2) To learn priors, we propose an effective deep residual
network, which considers the long-distance dependency,
the features of different levels and the multiscale analysis.

3) We also create a special loss function for this fusion work
to achieve further performance, which covers three aspects
of space, spectrum, and structure.

4) Experimental results evaluated on three simulated datasets
and one real dataset have demonstrated our TONWMD
method can achieve the state-of-the-art results both visu-
ally and quantitatively.

The remainder of this article is organized as follows. In
Section II, we give a brief review of the hyperspectral and
multispectral fusion methods. The proposed TONWMD method
and its blind version are introduced in Section III. In Section IV,
the experimental results and corresponding discussions on three
simulated datasets and one real dataset are presented. Conclusion
and future research directions are given in Section V.

II. RELATED WORK

HSI fusion algorithms can be roughly divided into three
categories: pan-sharpening-based methods [19]–[22], matrix

factorization-based methods [23]–[30], and deep learning-based
methods [31]–[39].

Pan-sharpening [40]–[43] is to obtain the HRHS image by
fusing the LRHS image with a high-resolution panchromatic
image, which mainly includes component substitution (CS),
multiresolution analysis (MRA), Bayesian-based approaches,
unmixing-based methods, and so on. Recently, some approaches
like CS and MRA for pan-sharpening has been introduced to
the LRHS and HRMS image fusion problem. Typically, Aiazzi
et al. [19] considered the effect of spectral response function in
original CS procedure, which could be extended to the fusion of
LRHS and HRMS images via constructing pan-sharpening sub-
problems. Each subproblem was to integrate one HRMS band
with its corresponding LRHS bands. Selva et al. [21] build a lin-
ear regression model between each band of the LRHS image and
all bands of the HRMS image to get the desired HRHS image.
Due to the low spectral resolution of the panchromatic image,
large spectral distortions caused by these methods are inevitable.

The essence of matrix factorization-based methods is to as-
sume that the HRHS image contains a small number of pure
spectral signatures and it can be estimated by multiplying the
spectral basis with the corresponding coefficients. Kawakami
et al. [23] utilized a sparse prior to learn the spectral basis
from LRHS image and then conducted sparse coding on the
HRMS image to get the coefficients. Furthermore, the priors of
spectral unmixing were used to regularize the fusion problem.
For instance, Yokoya et al. [24] adopted nonnegative matrix
factorization-based spectral unmixing to learn endmembers and
abundance from LRHS and HRMS images separately. In ad-
dition, to make full use of the nonlocal spatial similarities of
the HRHS image, in [25], a nonnegative dictionary-learning
algorithm was proposed to learn the spectral basis and the
structured sparse coding method was utilized to fit the coeffi-
cients. However, since the inherent spectral-spatial correlations
of HSI are hard to fully exploited, tensor-based approaches were
proposed to handle this issue. Based on the Tucker decomposi-
tion [26], Dian et al. [27] came up with the nonlocal sparse tensor
factorization and then Li et al. [28] put forward the coupled
sparse tensor factorization to address the fusion task.
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Recently, deep learning-based approaches have been widely
exploited for the HRMS and LRHS image fusion. Up to
now, these approaches can be roughly summarized into three
categories: input-level fusion, feature-level fusion, and prior-
exploited fusion. In the first kind, the LRHS and HRMS images
are simply concatenated into a whole as the input of CNN to
get the desired HRHS image. Typically, Masi et al. [31] directly
stacked the LRHS and HRMS images as a whole in the spectral
dimension and subsequently fed it into the super-resolution CNN
framework. Furthermore, in [32], the spatially decimated HRMS
image was concatenated with the spatially resampled principle
components of LRHS image as an input fed into a 3-D CNN.
In order to extract multiscale spatial features, Yuan et al. [33]
proposed a multiscale and multidepth convolution block. In the
second kind, the spectral features contained in the LRHS image
as well as the spatial features contained in the HRMS image are
extracted, respectively. Subsequently, these two kinds of features
will be further integrated to reconstruct the HRHS image. For
example, a two-branch CNN in [35] was designed to extract the
spatial and spectral features separately. Besides, Yang et al. [36]
utilized a 1-D CNN to learn spectral features from the LRHS
image and a 2-D CNN to learn spatial features from the HRMS
image, respectively. To gradually reconstruct the HRHS image
in the spatial domain from a global level to local level, Zhou
et al. [37] proposed a pyramid fully convolutional network where
a latent image containing spectral information was obtained
by the encoder subnetwork and then the HRMS image was
gradually integrated with the latent image in the form of gaussian
pyramid. Different from the first two kinds, the prior-exploited
fusion takes the prior knowledge including traditional priors and
learned priors into consideration to formulate the fusion problem
into a optimization problem. The optimization problem will be
dealt with by different algorithms such as solving equations or
iterative algorithms. For instance, Dian et al. [38] presented a
deep HSI sharpening method (DHSIS), which utilized a deep
CNN to learn the priors and the learned priors were returned
to the optimization framework. Xie et al. [39] created a novel
multispectral and hyperspectral fusion net (MHF-net), which ex-
ploits the approximate low-rankness prior to reduce the spectral
distortions. And the iterative algorithm unfolded in a deep CNN
was designed to solve the fusion model.

III. PROPOSED METHOD

A. Problem Formulation

In this article, the LRHS image is denoted by Y ∈ RS×n,
where S is the number of bands and n is the number of pixels
in each band. Correspondingly, Z ∈ Rs×N is the HRMS image
with s and N being its band number and pixel number (s <
S, n < N ), X ∈ RS×N is the target HRHS image.

Based on the generation ofY andZ, the well-known observed
models can be written as follows:

Y = XBD+Ny (1)

Z = RX+Nz (2)

where B ∈ RN×N is the cyclic convolution operator, D ∈
RN×n is the down-sampling matrix, R ∈ Rs×S is the spectral
response of sensor, and Ny and Nz denote the noises contained
in Y and Z, respectively.

B. Pre-optimization

There is no doubt that the fusion goal is to obtain the HRHS
image X via Y and Z. However, even though deep CNN is
effective in learning priors from the existed HRHS images, the
two inputs Y and Z with different sizes are hard to map with X
directly. Therefore, we prepare to obtain an initial HRHS image
Xes at first via fully utilizing Y and Z and then it will be used as
the input of the deep CNN. Based on the imaging models (1) and
(2), the fusion problem can be translated into an optimization
problem

min
Xes

‖Z−RXes‖2F + ‖Y −XesBD‖2F + λ‖Xes −Yup‖2F
(3)

where Yup ∈ RS×N is the up-sampled version of Y produced
by bicubic interpolation, ‖·‖F denotes the Frobenius norm and
λ is the regularization parameter. As in [38], this problem can
be handled by solving the Sylvester equation.

While the calculation process of the Sylvester equation is a
little complicated and it may take more time, the better way
is to divide the optimization problem (3) into two steps: the
spatial optimization and the spectral optimization. As the simple
division can not achieve global optimal effects, we introduce
the matrix factorization acted on Xes to handle the issue. The
two submatrices obtained by the factorization will be optimized,
respectively, and then multiplied to estimate the initial HRHS
image. Specifically, the decomposition of Xes can be written as

Xes = PA (4)

where P ∈ RS×c is the matrix composed of c orthogonal basis
andA ∈ Rc×N is the transition matrix. Considering the spectral
correlations of Xes and Yup, we can get the initial P from Yup

via the singular value decomposition (SVD)

U,Σ,PT = svds(Yup
T , c) (5)

where U ∈ RN×c is the orthogonal matrix, Σ ∈ Rc×c is the
diagonal matrix and svds is the SVD function, which saves
the top c largest single values for dimension reduction without
damaging the valid information. Based on models (1) and (2),
we first optimize A in the spectral field

min
A

‖RPA− Z‖2F + λ1‖PA−Yup‖2F (6)

and then optimize P in the spatial field using the obtained A

min
P

‖PABD−Y‖2F + μ1‖PA−Yup‖2F (7)

where λ1 and μ1 are the positive parameters to balance the
weight occupied by each term. The interpolated image Yup is
utilized twice to ensure less distortion and better performance.

Since (6) and (7) are both quadratic convex optimization
problem, they have unique solution. By forcing the derivation
of (6) for A and (7) for P to be zero, respectively, we create two



4098 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 2. Architecture of the proposed TONWMD network.

linear equations as follows:

H1A = H2 (8)

PH3 = H4 (9)

where

H1 = (RP)T (RP) + λ1P
TP

H2 = (RP)TZ+ λ1P
TYup

H3 = (ABD)(ABD)T + μ1AAT

H4 = Y(ABD)T + μ1YupA
T . (10)

To ensure (8) and (9) are not ill-posed, c should statisy that c < S
and c < N . The solutions are listed as

A = H1
−1H2 (11)

P = H4H3
−1 (12)

After obtaining the optimized A and P, we take them into (4)
and get the initial HRHS image Xes.

C. Network Architecture

After the preoptimization, we have gotten a HRHS imageXes,
which has the same size with the desired image X. With Xes as
the input and X as the target, we can build an end to end deep
residual network. The overall architecture is shown in Fig. 2.

We adopt a CNN architecture based on DCSCN, which mainly
includes three parts: nonlocal module (NLM) [44], skip con-
nection, and inception [45]. The descriptions of the framework
are as follows and the detailed configuration of the convolution
operation in each layer is shown in Table I.

The first convolution without using activation is applied to
extract shallow features serving for the next operations.The
NLM is used to take advantage of the influence of other lo-
cations around the point to capture long-distance dependence
when extracting features at a certain point, and obtain better
feature representation. The pure convolution calculation is a
local operation and does not care the intrinsic correlation of
each pixel in the overall image. In order to capture the effect of
long-distance dependence, the convolution layer is often piled
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up to deepen the network, which will increase the amount of
calculation and make the learning become difficult. Therefore,
we add the NLM before the deep feature extraction network
to achieve nonlocal and local combination, which does a great
favor to the feature extraction and the final fusion.

We utilize skip connection in the feature extraction network,
which considers the hierarchical nature of features. Traditional
convolutional networks often end up using high-level features,
ignoring the role of low-level features. High-level features are
generally abstract features such as semantics, while low-level
features mainly include outlines, boundaries, and so on. Obvi-
ously, low-level features are indispensable in image fusion. So
we merge features from the NLM to the last layer in the feature
extraction network to reduce information loss and facilitate
convergence. In each layer, we use batch normalization [46]
to avoid overfitting and accelerate the training process after the
convolution. Besides, we adopt the parametric rectified linear
unit (PReLU) [47] as the activation function for avoiding the
“dying ReLU” problem caused by ReLU [48].

Inception is a parallel CNN structure, which is designed for
image reconstruction via connecting feature maps produced by
filters of different size. Considering the actual effect at the
same time reducing parameters, we only use two lines in the
parallel network. One line is the 1 × 1 CNN just for reducing
the dimension because the cascaded features obtained after the
skip connection have a large dimension, which will increase the
computational requirements too much. The other line also uses 1
× 1 CNN for dimensional reduction at first and then 3 × 3 CNN
to generate satisfying feature maps. The two lines are cascaded
to reconstruct the details. This not only spreads the width of
the network but also increases its nonlinearity, which is of great
significance for the improvement of the quality of the fusion
result.

The 1 × 1 CNN following the inception is for dimensional
tuning, which adjusts the number of channels to the ones of the
target image.

In order to solve the problem of gradient explosion or dis-
appearing, an end-to-end residual connection is also used so
that what the entire network learns is the residual, i.e., the
high-frequency details. It can speed up the training as well
as ensure the low-frequency information is not lost, which is
conducive to a stable fusion effect.

D. Network Loss

As we know, the standard L1-norm or L2-norm is often
adopted as the loss function in CNN-based image fusion and it
has achieved certain performance. However, either the standard
L1-norm or L2-norm can only measure the spatial difference
between the output and the target images, which is not exactly
suitable for the HRMS and LRHS image fusion. Compared with
natural images, the reconstruction effect of HSIs should not only
be reflected in spatial similarity, but also ensure the similarity in
spectrum and the consistency in structure. Therefore, we tailor
a specific loss for the fusion task considering three aspects of
space, spectrum, and structure. The loss function applied to train

the proposed network is defined as

Loss(Xcnn,X) = Lspat + η1 ∗ Lspec + η2 ∗ Lstru (13)

where Xcnn is the output image of reconstruction network, X is
the corresponding target image, Lspat is the spatial loss, Lspec

is the spectral loss, Lstru is the structual loss, and η1 and η2 are
used to balance the three terms.

Since the L2-norm loss easily produces blurry predictions in
images reconstruction tasks [9], [37], we adopt the L1-norm loss
as the main body to evaluate the similarity between output and
target images in the pixelwise spatial domain, which is more
conductive to the quality improvement. The function is defined
as follow:

Lspat(Xcnn,X) =
1

SHW
‖X−Xcnn‖1 (14)

where H and W are the height and width of the HRHS image,
and ‖·‖1 denotes the L1-norm.

Spectral angle mapper (SAM) is an indispensible quality
evaluation index in HRMS and LRHS image fusion, indicating
the spectral quality. Thus, we measure the spectral loss by
calculating the SAM. It is defined as follow:

Lspec(Xcnn,X)

=
1

HW

H∑
i=1

W∑
j=1

arcos

(
X(i, j) ·Xcnn(i, j)

‖X(i, j)‖2‖Xcnn(i, j)‖2 + g

)
(15)

where Xcnn(i, j) and X(i, j) denote the spectral vector at the
spatial position (i, j) of Xcnn and X, ‖·‖2 denotes the L2-norm
and g is a small positive constant to avoid the denominator being
0.

Structural similarity index (SSIM) is also an important image
quality evaluation index in the super-resolution task, which mea-
sures image similarity from three aspects: brightness, contrast,
and structure. The higher SSIM not only guarantees less loss
of image information, but also outperforms in visual effects. So
we calculate the SSIM related L2-norm to measure the structural
loss. It is defined as follow:

Lstru(Xcnn,X)

=

(
1− 1

S

S∑
k=1

SSIM(X(k),Xcnn(k))

)2 (16)

where Xcnn(k) and X(k) denote kth band of Xcnn and X.

E. Post-optimization

In the testing process, we can acquire a fusion image Xcnn by
feeding the initialized testing HRHS image Xes into the well-
trained CNN. Even though Xcnn is very close to the reference
imageX, it can continue to be optimized for better performance.

Similar to preoptmization, we first obtain the initial P from
Xcnn via SVD

U,Σ,PT = svds(Xcnn
T , c). (17)

Next, P is utilized to obtain A by solving the following opti-
mization problem:

min
A

‖RPA− Z‖2F + λ2‖PA−Xcnn‖2F (18)
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where λ2 > 0 is the regularization parameter. Then, A is used to
obtain the newPby solving the following optimization problem:

min
P

‖PABD−Y‖2F + μ2‖PA−Xcnn‖2F (19)

where μ2 > 0 is the regularization parameter. Finally, the final
estimated HRHS image F can be obtained by calculating F =
PA.

F. Blind Fusion

Based on whether prior knowledge other than HRMS and
LRHS images is used or not, we can divide the fusion methods
into nonblind and blind ones. Actually, our TONWMD method
has assumed that the blur matrix B and the spectral response
matrix R is known, which is unrealistic in real scenarios. In
other words, our method is nonblind and not suitable for the real
applications. So in order to fuse real data and do comparations
with those blind fusion algorithms, which only utilize HRMS
and LRHS images, we need to blind our method.

HySure [49] is an outstanding blind fusion method, which
can estimate B and R from Y and Z via convex optimization
based on two quadratic data-fitting terms and total variation
regularization. This estimation algorithm performs very well on
simulated datasets and a little worse on real datasets for the
effect of much noise. With the estimated B and R, our method
can become a blind one (named BTONWMD).

IV. EXPERIMENTS

A. Data and Experimental Setup

In this article, experiments are conducted on three simulated
datasets to evaluate the effectiveness of the proposed method:
CAVE [50], Harvard [51], and University of Pavia (PU) [52]. We
also use the University of Houston (UH) [53] as the real dataset
to test the performance.

The CAVE dataset consists of 32 indoor HSIs, which was
captured by the generalized assorted pixel camera with high
quality. The HSIs have 31 bands where the wavelength range
covers from 400 nm to 700 nm and each band has a spatial size
of 512 × 512. We use the first 20 images for training and the
last 12 images for testing.

The Harvard dataset contains 50 images storing the indoor and
outdoor scenes, which is about a number of objects, materials,
and scale under daylight illumination. Each HSI has a spatial
resolution of 1392 × 1040 and 31 spectral bands, of which the
wavelength is ranging from 420–720 nm. We use the first 30
images for training and the last 20 images for testing.

The PU dataset is made up of 115 bands ranging from 430
to 860 nm. Each band of the HSI has a spatial size of 610 ×
340 with a resolution of 1.3 m per pixel. There are 103 valid
bands left in our experiment after removing the water vapor
absorption and noise bands. As there is only one HSI, we crop
a 128 × 128 subimage for testing and two nonoverlapping 128
× 128 subimages from the rest for training.

The UH dataset is released by the 2018 Data Fusion Contest
of the IEEE Geoscience and Remote Sensing Society, which
contains a HRMS image (RGB image) of size 83440 × 24040×

3 and a LRHS image of size 4172×1202×48. For simplicity and
consistency, we resize the HRMS image to size 33376×9616×3.
Thus, the ratio between the HRMS image and the LRHS image
becomes 8. Like the PU data, we crop three nonoverlapping 1024
× 1024 subimages from the HRMS image and correspondingly
three nonoverlapping 128 × 128 subimages from the LRHS
image. We use the first two for training and the last one for
testing. Since the ground truth is not available in the real dataset,
we use Wald’s protocol [54] to generate the training dataset.
Specifically, we downsample the HRMS and LRHS images by
8 times as the training input. The original LRHS image is as the
training label. While in testing, the original HRMS and LRHS
images are as the input to predict the desired HRHS image.

For each of the three simulated datasets, LRHS images are
acquired by applying a 8× 8 Gaussian filter with a mean of 0 and
a standard deviation of 2 and then downsampling it by 8 times.
Taking different wavelength ranges and diversity into account,
the way to produce the simulated HRMS images is different.
For the CAVE and Harvard datasets, the spectral downsampling
matrix R comes from the response of a Nikon D700 camera,
the HRMS images produced by which are RGB images. While
for the PU dataset, we refer to the spectral response function of
IKONOS, which describes the relationship between wavelength
and multispectral channels. Specifically, we first select the points
from the function, which has the same wavelength ranges with
PU. As the number of selected points is less than the channels
of PU, we then adopt the spline interploation to spread the
number of points to the number of spectral bands of PU. After
removing the wavelength axis, the other axes of the points can
form the spectral downsampling matrix R. And the R should be
standardized at last. The HRMS image of PU is a multispectral
image, which has five channels.

B. Implementation Details

When we estimate B and R via HySure, we set the number
of nontruncated singular vectors as 10 to preserve necessary
information while reducing dimensionality. And the effective
size of the estimated B are set as 10× 10. The other parameters
are kept as the default values in the original algorithm.

In the preoptimization and postoptimization, the c is used in
the SVD algorithm, which is related to the data compression
and denoising. As the three simulated datasets have less noise,
we just set c as the number of bands of HSIs to preserve the
information. While the real dataset contains much noise, appro-
priate dimensionality reduction can denoise to achieve better
performance. Thus, like in [49], we let c = 10 to preserve at
least 99.95% of the energy of the original images in UH dataset.

In the training process, the input Xes and the output X of the
CNN are cut into 32 × 32 patches. The stride size of cutting the
CAVE and Harvard datasets is 16 while 1 for the PU and UH
datasets. In addition, about 20% of the training slices are made
up of the verification set to filter the model. The learning rate
is initialized as 0.002 and every 10 epochs to decay a time by
multiplying 0.5 until small than 10−7. The weight decay is set to
0.0001 to suppress overfitting. For weight initialization, we use
the method proposed in He et al. [48], which is a theoretically
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suitable method for the network with PReLU. The coefficients
η1 and η2 applied in the loss function are both set to 0.001 and
the auxiliary parameter g is set to 0.001. The other parameters
are set as the default values in Adam algorithm [55].

C. Compared Methods

We have compared the proposed method with five state-of-
the-art approaches of HSI fusion: multiscale and multidepth
convolutional neural network (MSDCNN) [33], remote sensing
image fusion (RSIFNN) [35], 3-D CNN, DHSIS, and MHF-net.
Among these methods, DHSIS is nonblind and the others are all
blind.

D. Quality Measures

To evaluate the quality of fusion results, five popular indexes
are used in this article.

1) Peak signal-to-noise ratio (PSNR): The PSNR is used
to measure the average spatial similarities between the
generated image and the reference image in all bands. The
higher the value is, the less the spatial distortion is. The
best value is ∞

PSNR(F,X) =
1

S

S∑
k=1

PSNR(F(k),X(k)). (20)

2) SAM: The SAM indicates the spectral quality of the fusion
image via calculating the angle averaged over the whole
spatial domain. The smaller the degree is, the better the
spectral quality is. The best value is 0

SAM(F,X)

=
1

HW

H∑
i=1

W∑
j=1

arcos

(
F(i, j) ·X(i, j)

‖F(i, j)‖2‖X(i, j)‖2

)
. (21)

3) SSIM: The SSIM computes the average structural similar-
ity in spatial domain between the generated image and the
reference image. The higher the SSIM is, the more similar
the spatial structure is. The ideal value is 1

SSIM(F,X) =
1

S

S∑
k=1

SSIM(F(k),X(k)). (22)

4) Root-mean-squared error (RMSE): The RMSE is applied
to represent the difference between the generated image
and the reference image. Naturally, the smaller the differ-
ence is, the better the result is. The ideal value is 0

RMSE(F,X)

=

√
1

SHW

∑S
k=1

∑H
i=1

∑W
j=1(F(i, j, k)−X(i, j, k))2.

(23)
5) Erreur relative globale adimensionnelle de synthse (ER-

GAS): The ERGAS is a global indicator that reflects
overall fusion quality of the generated image, where d
is the downsampling factor in the spatial domain, MSE is
the mean square error function and MEAN is the mean
value function. The best value of ERGAS is 0. And the

lower the value is, the better the overall quality is

ERGAS(F,X) =
100

d

√
1

S

∑S

k=1

MSE(F(k),X(k))

MEAN2(F(k))
.

(24)

E. Parameters Selection

In our approach, the two parameters λ1 and μ1 are used in
the preoptimization influencing the quality of Xcnn while the
other two parameters λ2 and μ2 are used in the postoptimization
related to the quality of the final fusion result F. Thus, the four
parameters need to be set properly to obtain satisfying fusion
effect. Considering the tuning convenience and consistency, we
set λ1 = μ1 > 0 and λ2 = μ2 > 0.

It can be seen from Fig. 3(a) that as λ1 increases, the PSNR
value decreases on the three simulated datasets. The higher
PSNR value of Xes does not mean the better final result, which
depends more on the latter prior learning. That is to say within
reasonable limits, the value of λ1 can be flexible. Therefore, we
set λ1 = μ1 = 10−6 to ensure the overall quality on the three
datasets. While in Fig. 3(b), the PSNR value first increases
and later decreases on all three datasets with λ2 increasing.
As Xcnn is very close to the ground truth X, the fluctuations
of PSNR values become very small. Taking the overall trend
into consideration, we need an intermediate value. Thus, we set
λ2 = μ2 = 0.002 to obtain robust and satisfying fusion results.

F. Performance Comparison

Performance comparison with CAVE dataset. Table II shows
the average objective results over 12 testing images in terms of
PSNR, SAM, SSIM, RMSE, and ERGAS, where the optimal
results are marked in blue among nonblind approaches and
red among blind approaches for clarity. As is shown in this
table, our proposed TONWMD method and its blind version can
significantly outperform other competing methods with respect
to all evaluation measures. It is suggested that our methods
can better preserve both spatial and spectral information. In
addition, in order to do comparison visually, the reconstructed
images and the corresponding error images of the competing
methods for the test image superballs (an HSI in the CAVE data)
are displayed in Fig. 4. The reconstructed images come from
the 31th band of the estimated images while the error images
represent the differences between the reconstructed images and
the ground truth. A meaningful region of each reconstructed
image is marked and zoomed in 5 times for easy observation. It
can be observed from the marked regions and the error images
that our TONWMD and BTONWMD methods perform better
in reconstructing the detailed structures and have less distortion
than other methods. To further compare the fusion quality across
different spectral bands, the PSNR curves of these methods are
presented in Fig. 5(a). As can be seen from the picture, the
TONWMD and BTONWMD methods still perform better in the
most of spectral bands among the nonblind and blind methods,
respectively.

Performance comparison with Harvard dataset. The average
performance over 20 testing images of all competing methods
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Fig. 3. (a) Average PSNR curves of Xes as a function of λ1. (b) Average PSNR curves of F as a function of λ2.

TABLE I
CONFIGURATION OF THE CONVOLUTION IN EACH LAYER

on the Harvard dataset is reported inTable III. As the Harvard
dataset is less challenging than the CAVE dataset, all the com-
peting methods achieve good results, but our method and its
blind version still perform better. Fig. 6 shows the reconstructed
images and their corresponding error images of the competing
methods for the cropped part of test image imge6 (an HSI in the
Harvard data). A representative region of each reconstructed
result is marked. It is obvious that the reconstructed images
obtained by DHSIS, TONWMD, and BTONWMD methods
are similar and they are very close to the ground truth. They
achieve minimal reconstruction error at both the edges and
smooth areas of the image. The PSNR curves as a function of
the wavelengths of the spectral bands over the Harvard dataset
for the test methods is shown in Fig. 5(b). It can be seen that the

TABLE II
QUALITY MEASURES FOR CAVE DATASET

TABLE III
QUALITY MEASURES FOR HARVARD DATASET

DHSIS, TONWMD, and BTONWMD methods also perform
better in most spectral bands than other competing methods.

Performance comparison with PU dataset. Table IV presents
the competing performance of 1 testing image on the PU dataset.
It can be found that our proposed TONWMD and its blind ver-
sion outperform other competing methods in overall evaluation.
Fig. 7 shows the reconstructed images and their corresponding
error images of the competing methods for the test image. It can
be observed that all competing methods have achieved satisfying
results while the reconstruct details obtained by our TONWMD
and BTONWMD methods are better. Fig. 5(c) displays the
PSNR curves as a function of the wavelengths of the spectral
bands over the PU dataset for the competing methods. As can
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Fig. 4. Qualitative results of CAVE dataset at band 31. Top row: reconstructed images. Bottom row: reconstruction errors–light color indicates less error, dark
color indicates larger error. (a) MSDCNN. (b) RSIFNN. (c) 3D-CNN. (d) DHSIS. (e) MHF-net. (f) BTONWMD. (g) TONWMD. (h) Ground truth.

Fig. 5. Average PSNR curves as functions of the spectral bands for the test method. (a) CAVE dataset. (b) Harvard dataset. (c) PU dataset.
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Fig. 6. Qualitative results of Harvard dataset at band 31. Top row: reconstructed images. Bottom row: Reconstruction errors–light color indicates less error, dark
color indicates larger error. (a) MSDCNN. (b) RSIFNN. (c) 3D-CNN. (d) DHSIS. (e) MHF-net. (f) BTONWMD. (g) TONWMD. (h) Ground truth.

be seen from the picture, along with MHF-net method, our
TONWMD and its blind version show higher PSNR value in
most of the spectral bands than other competing methods from
the overall perspective.

To further comparing the fusion quality, we can evaluate the
classification performance over all the fusion results obtained by
the competing methods on the PU dataset. As our test image does
not contains enough classes, we select a new part of the original
HSI to do classification. This selected part neither overlaps our
training set nor our test set. The false color image and the ground
reference map of the selected part are shown in Fig. 8. And there
are 5 ground reference classes of interests shown in Table V.
In our classification experiments, we build training sets by

randomly choosing 100 training pixels per class from the original
HSI but not containing our selected part and use all the fusion
results as the test sets. For simplicity, we adopt the classic support
vector machines algorithm [56]. The classification performance
can be seen from Table VI that our TONWMD method and its
blind version as well as the 3D-CNN achieve higher accuracy
than other competing methods. The reason why the classification
accuracy is even higher than the original HRHS image is that
the reconstruction work has denoised some noises.

Performance comparison with UH dataset. As nonblind meth-
ods require additional degradation information, which is un-
known in this case, thus, we only compare our BTONWMD
method with other blind methods. Fig. 9 shows a portion of the
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Fig. 7. Qualitative results of PU dataset at band 103. Top row: reconstructed images. Bottom row: Reconstruction errors–light color indicates less error, dark
color indicates larger error. (a) MSDCNN. (b) RSIFNN. (c) 3D-CNN. (d) DHSIS. (e) MHF-net. (f) BTONWMD. (g) TONWMD. (h) Ground truth.

fusion results of the test data, which are RGB images generated
by the evaluated spectral response function. Visual inspection
evidently shows that the result obtained by our BTONWMD
method is much closer to the ground truth with clearer details.

G. Effectiveness of Three Steps

In this article, our approach is made up of three steps, i.e.,
the preoptimization to obtain an initial HRHS image, using an
innovative deep CNN to learn the mapping, and the postop-
timization to further improve the performance. In order to
illustrate the effectiveness of the three steps from objective
perspective, average quantitative results ofYup,Xes,Xcnn, and

F on the three data are displayed in Tables VII, VIII, and IX,
respectively. It can be seen from the three tables that Xes makes
much better performance than Yup in all three datasets, which
can prove the preoptimization is effective in preserving both
spectral and spatial information while integrating two images
into a whole initially. The result Xcnn predicted by CNN also
has better quantitative results on all three data compared with
Xes. It illustrates the prior learning is effective and helpful for
the fusion work. In addition, the final fusion result F achieves
further raise based on Xcnn over all three datasets, which means
the postoptimization has further impact on the quality improving
of the reconstruction task. In general, all the three steps are
indispensable in getting better performance in this article.
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TABLE IV
QUALITY MEASURES FOR PU DATASET

Fig. 8. Selected part of the PU dataset for classification. (a) RGB composite
image of three bands (35,98,60). (b) Ground reference map.

TABLE V
FIVE GROUND REFERENCE CLASSES IN THE TEST IMAGE OF PU DATASET

H. Sensitivity to Noise

In order to demonstrate the robustness of our method to
noise and further verify its effectiveness when facing noise
environment, we add Guassian white noise with different levels
to the LRHS images and the HRMS images. To distinguish the
spatial resolution of the LRHS images and the HRMS images,
we intentionally set the decibel difference of the noise added
to these two images as 10. Fig. 10 presents the comparison
results on the CAVE dataset. We can find that the least senstive
to noise is the MSDCNN method although it has a relatively
weak performance. Along with MHF-net, our TONWMD and
BTONWMD methods are mildly influenced by decreasing the
SNR of noise and they are steadily leading under different noise
levels. That is to say, our TONWMD methods and its blind
version have some robustness to noise and can be applied in
practice.

TABLE VI
CLASSIFICATION PERFORMANCE ON PU DATASET IN OVERALL ACCURACY

(OA), COHEN’S KAPPA (KA), AND AVERAGE PRODUCER’S ACCURACY (AA)

TABLE VII
AVERAGE QUANTITATIVE RESULTS OF Yup, Xes, Xcnn, AND

F ON CAVE DATASET

TABLE VIII
AVERAGE QUANTITATIVE RESULTS OF Yup, Xes, Xcnn, AND F ON

HARVARD DATASET

TABLE IX
AVERAGE QUANTITATIVE RESULTS OF Yup, Xes, Xcnn, AND

F ON PU DATASET

I. Computational Efficiency Comparison

To clarify the computational efficiency of our proposed
method, we discuss the running time of each competing method
on the four datasets. For the training phase, all the competing
methods are implemented with TensorFlow [57] and run on a
single GeForce GTX 1660 Ti 6 GB graphic card. Under the
same circumstance, the MSDCNN takes about 4 h for training,
the RSIFNN takes about 10 h, the 3-D CNN takes about 5 h, the
DHSIS takes about 8 h, the MHF-net takes about 7 h while our
TONWMD and BTONWMD methods take about 2 h. Based
on the trained parameters, the fusion procedure is performed
by using an Intel(R) Core(TM) i5-9300H CPU 2.40 GHz and
a 8 GB RAM through Python 3.6. The average testing time of
the competing methods are shown in Table X. By analyzing
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Fig. 9. Qualitative results of UH dataset. (a) Bicubic. (b) MSDCNN. (c) RSIFNN. (d) 3D-CNN. (e) MHF-net. (f) BTONWMD. (g) Ground truth.

Fig. 10. Comparison of competing methods under different noise levels on
CAVE dataset–smaller slope indicates better robustness.

TABLE X
RUNNING TIME (SECOND) OF THE FUSION METHODS

the data in Table X, we can find that our TONWMD method
is a little quicker than the DHSIS method. And the running
speed of our BTONWMD method is slower than the RSIFNN,
3D-CNN, and MSDCNN methods while only quicker than the
MHF-net method, which indicates the twice optimization and

TABLE XI
FURTHER PERFORMANCE IMPROVING BY USING THE TOOL ON CAVE DATASET

the estimation of R and B have added some calculation. In fact,
this little gap in running speed is within an acceptable range
because the quality of the fusion has been improved.

J. Extension: General Tool for Performance Improving

Actually, the postoptimization part can be separated from
our method into a general tool to help other methods improve
performance. In this experiment, we let the fusion results of the
competing methods directly pass our postoptimization without
caring whether they are blind or unblind. To meet the actual
situation, we use the estimated B and R. Table XI shows the ex-
perimental results of CAVE dataset. Compared with Table II, we
can find that after using our postoptimization, the performance of
the five competing methods has improved a lot. Besides, we also
verify it on UH dataset. Combining Figs. 9 and 11, we can see
that the image details become clearer and closer to the original
RGB image after passing our postprocessing. It demonstrates
that our postoptimization is a general tool and may serve for
other HRMS and LRMS images fusion methods.
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Fig. 11. Further performance improving by using the tool on UH dataset.
(a) MSDCNN. (b) RSIFNN. (c) 3D-CNN. (d) MHF-net.

V. CONCLUSION

In this article, we propose a twice optimizing net based on
imaging priors to tackle the HRMS and LRHS image fusion
work. Different from other CNN-based methods, we first formu-
late the fusion problem into a spectral optimization problem and
a spatial optimization problem by using matrix decomposition.
After solving the two optimization problems sequentially, we
obtain the initial HRHS image preserving both the spectral
and spatial information well. Then, we design a deep residual
network considering the features in different regions, levels and
scales to learn the image priors, which can fully utilize the
high nonlinearity to model the complex nonlinear relationship
between the initial image and the target image. Besides, a special
loss function is designed to help improve the performance.
Finally, the predicted result obtained via CNN are sent to the
post-optimization to further improve the performance. To fuse
real datasets, we have gotten our blind version method with the
help of HySure by estimating R and B from Y and Z before
doing optimization. Experimental results on three simulated
dataset and one real dataset demonstrate that our approach
outperforms the state-of-the-art methods in both qualitative and
quantitative ways.

In the future work, we will consider putting the twice opti-
mization into the deep CNN to reduce the extra estimation work.
Besides, the current network can be enhanced more effectively
to further improve the performance.
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