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Entropy-Based Convex Set Optimization for
Spatial-Spectral Endmember Extraction From
Hyperspectral Images

Dharambhai Shah

Abstract—Spectral unmixing is an important problem for re-
motely sensed hyperspectral data exploitation. Automatic spec-
tral unmixing can be viewed as a three-stage problem, where the
first stage is subspace identification, the next one is endmember
extraction, and the final one is abundance estimation. In this se-
quence, endmember extraction is the most challenging problem.
Many researchers have attempted to extract endmembers from
hyperspectral images using spectral information only. However, it
is well known that the inclusion of spatial information can improve
the endmember extraction task. In this article, we introduce a new
endmember extraction algorithm that exploits both spectral and
spatial information. A main innovation of the proposed algorithm
is that spatial information is exploited using entropy, while spectral
information is exploited using convex set optimization. In the lit-
erature, none of the spatial-spectral algorithms has used entropy
as spatial information. The inclusion of this entropy-based spatial
information improves the accuracy of the endmember extraction
process. The results obtained by the proposed algorithm are com-
pared (using a variety of metrics) with those obtained by other
state-of-the-art methods, using both synthetic and real datasets.
Our experimental results demonstrate that the proposed algorithm
outperforms many available algorithms.

Index Terms—Convex set optimization, endmember extraction,
entropy, hyperspectral imaging, spectral unmixing.

I. INTRODUCTION

EMOTE sensing is used in various applications of Earth
R science, geography, land surveying, and Mars explo-
ration [1]. Hyperspectral sensors have opened up new avenues
in the field of remote sensing by collecting information in
hundreds of (narrow) bands from the electromagnetic spectrum.
Hyperspectral sensors provide precise and robust information
in the analysis of geological features, soil, vegetation, and the
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environment. Spaceborne and airborne systems use hyperspec-
tral sensors for many different purposes, including target detec-
tion, material mapping, material identification, and surface prop-
erty identification. However, the accuracy of these tasks strongly
depends upon the spatial resolution of the captured image. Due
to the (generally low) spatial resolution of hyperspectral sensors,
many pixels are mixed in nature, i.e., they consist of more than
one pure spectral material. Other reasons for the formation of
mixed pixels include multiple scattering and intimate mixtures
of materials [2]. Such mixing can be linear or nonlinear, de-
pending on how pure spectral signatures (called endmembers
in hyperspectral imaging terminology) are combined in a mixed
pixel. Most works assume the linear mixing model, as it is a sim-
ple approximation to real-world applications [2]. In this model,
the concept of endmember is a key aspect, since endmembers are
spectrally distinct signatures of pure materials that can be used
to model (linearly or nonlinearly) the mixed pixels in the scene.

Spectral unmixing decomposes mixed pixels into a combina-
tion of endmembers, weighted by their corresponding (subpixel)
abundance fractions. From an operational point of view, unmix-
ing can be either supervised or unsupervised. In unsupervised
unmixing, the hyperspectral image cube is the only input [3].
In the supervised approach, there is manual consideration of the
number of materials and their respective spectra. As shown in
Fig. 1, an unsupervised hyperspectral unmixing problem can
be divided into three subproblems [3]. The first one is the hy-
perspectral data subspace estimation, which finds the number of
endmembers (Q)). The second block is the endmember extraction
itself, which finds a matrix (IM) of pure endmember spectra
from the image or from a library. Finally, the third block is an
abundance estimation step, which finds the abundance (o) of
all the individual endmembers in each mixed pixel. The most
important block (and the one we specifically address in this
article) is the endmember extraction one, which provides prior
information of pure materials for target detection [4], abundance
mapping [5], change detection [6], and object classification [7].
As a result, proper extraction of pure endmembers is very
important in hyperspectral data exploitation [8].

There are mainly three types of approaches in the litera-
ture for endmember extraction [2]. The first one is the sta-
tistical approach [9], which formulates the unmixing problem
as a statistical inference one [10]. This approach is generally
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Fig. 1. Unsupervised spectral unmixing chain.

expensive from a computational viewpoint. The second ap-
proach is sparse regression [11], which requires a detailed
spectral library containing instances of the endmembers present
in the scene. The third approach is the geometrical one, which
assumes that there are pure pixels present in the image. Geomet-
rical approaches are actually very popular in the hyperspectral
imaging literature, perhaps due to their clear conceptual mean-
ing and low computational complexity. Recently, endmember
extraction has also been approached by deep-learning-based
methods [12], [13].

Simplex volume maximization by multidimensional geome-
try and similarity of spectral signatures are the two fundamental
criteria [14] of geometrical endmember extraction approaches.
Simplex volume maximization-based algorithms are mostly
based on the concept that the volume of the simplex formed
by any combination of pixels is always less than the volume
contained by the simplex formed by the purest pixels in the hy-
perspectral image [15]. Many algorithms such as NFINDR [16],
simplex growing algorithm (SGA) [17], successive volume max-
imization (SVMAX) [18], and alternating volume maximiza-
tion (AVMAX) [18] have been developed based on this fact.
The second criterion considers the similarity between different
spectral signatures to find pure pixels. Two popular algorithms
in this category are vertex component analysis (VCA) [19] and
TRIple-P:P-norm based pure pixel identification (TRIP) [20],
which are based on similarity measures. The pixel purity in-
dex (PPI) algorithm [21] generates random skewers. All pix-
els are projected onto these skewers to find the associated
projection scores. The purity of pixels can be found using
maximum and minimum thresholds. Independent component
analysis (ICA) [22], a method for separating a multivariate signal
into additive subcomponents, has also been used for the purpose
of endmember extraction from hyperspectral images.

All the aforementioned algorithms focus only on exploit-
ing the spectral information of the data alone. However, hy-
perspectral sensors are designed to capture spatial as well as
high spectral ground information. This conflicts with the fact
that most techniques available in the literature were designed
from a spectroscopic viewpoint, neglecting the spatial features
present in the image. The earliest attempt that uses both spa-
tial and spectral information was the automatic morphological
endmember extraction (AMEE) [23]. AMEE used the concept of

mathematical morphology to combine the spatial information
contained in the data together with the spectral one. Three pop-
ular algorithms that improve the endmember extraction process
using spatial and spectral information are spatial preprocessing
for endmember extraction (SPEE) [24], region-based spatial
preprocessing (RBSPP) [25], and spatial—spectral preprocessing
(SSPP) [26]. The SPEE algorithm spatially weighs the spectral
information related to each pixel for endmember extraction.
The RBSPP exploits spectral information more effectively. The
algorithm guides the endmember finding process to image zones,
which are both spatially homogeneous and spectrally pure. The
SPEE algorithm primarily accounts for the spatially homoge-
neous areas in the scene (regardless of their spectral purity). The
SSPP fuses spatial and spectral information (at the preprocess-
ing level) for improving the extraction process. Several other
endmember extraction algorithms have been presented in the
literature that incorporate spatial information along with spectral
information [27]-[39].

In this article, we develop a new algorithm for endmember
extraction that combines both spectral and spatial informa-
tion. The main innovation of the proposed algorithm is that
spatial information is exploited using entropy, while spectral
information is exploited using convex set optimization. The
concept of entropy [40] has been used in many image process-
ing techniques, including registration, reconstruction, segmen-
tation, classification, and compression. Few researchers have
also applied entropy in hyperspectral compression [41], band
selection [42], and unmixing [22]. Bayliss et al. [22] developed
an ICA-based algorithm for unmixing based on the entropy
between spectral signatures. ICA was selected under the assump-
tion that components are statistically independent. However, in
the data acquisition process of a hyperspectral sensor, the sum
of abundance fractions associated with each pixel adds to one
under the abundance sum-to-one constraint (ASC). As a result,
the sources (endmembers) are not statistically independent [43].
ICA uses the entropy of various spectra as a spectral feature,
while the proposed algorithm uses the entropy of each band as
a spatial feature.

At this point, it is important to emphasize that many hyper-
spectral endmember extraction algorithms [16]-[18], [24]-[26]
have used the concept of convex geometry optimization. The
proposed algorithm also uses this concept but incorporating the
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idea of entropy to characterize the spatial information in the
scene. Specifically, our algorithm uses low- and high-entropy
bands in the convex set optimization, which represents a new
concept of entropy-based convex set optimization. Here, the en-
tropy characterizes the spatial heterogeneity of each band (which
is useful for extracting rare or anomalous endmembers in the
scene). Due to this feature, our algorithm can accurately extract
rare and anomalous endmembers, which ultimately increases the
accuracy of the endmember extraction stage.

Endmember extraction algorithms can be implemented in
a parallel or sequential manner [14]. Parallel implementation
determines all endmembers simultaneously, while sequential
implementation determines the endmembers one by one. The
SGA is the sequential version of the original NFINDR algorithm.
The computational complexity of sequential implementations
is low compared to that of parallel implementations. However,
parallel implementations may be beneficial when extracting dis-
tinctive pixels effectively. In this regard, the proposed approach
extracts pure and distinct endmembers using a parallel approach.

The remainder of this article is organized as follows. Section IT
presents a problem statement along with our newly proposed
endmember extraction algorithm. Section III describes the syn-
thetic and real image dataset used in the experimental evaluation,
and the performance metrics adopted to compare endmem-
ber extraction algorithms. In Section IV, various endmember
extraction algorithms are compared based on the considered
metrics, and the quality of the extracted endmembers in terms
of abundance estimation is also tested. Section V concludes this
article with some remarks and hints at plausible future research
lines.

II. PROBLEM STATEMENT AND PROPOSED ALGORITHM

Let us denote a mixed pixel in the hyperspectral image as an
(L x 1)-dimensional vector

y =Ma+n (D

where M is an L x @ matrix, with () and L, respectively,
denoting the number of endmembers and the number of bands
in the original hyperspectral image. In (1), n is a noise vector
of size L x 1, which is assumed to be Gaussian in nature.
a = [ag,as,.. .,aQ]T denotes the abundance vector of size
@ x 1, which satisfies the following two constraints:

1) Abundance Non-negativity Constraint (ANC):

0 >0,i=1,2,...,Q. 2)

2) Abundance Sum-to-one Constraint (ASC):

Q
d =1 3)

i=1
Let us denote the hyperspectral image as Y =
[y1,¥2,---»yr]t = [y', ¥?, ..., yZ], which contains Z mixed
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TABLE I
NOTATIONS USED IN THIS ARTICLE

Symbol  Description

Number of bands in the hyperspectral image
Hyperspectral subspace dimension

Mixed pixel vector of size L x 1

Endmember matrix of size L x @

Abundance vector [a1, Qg ..., ag]T

Noise vector of size L x 1

Probability of occurrence

Probability of i*" grey shade in single band
Probability of i*" grey shade in k*" band

Height of the hyperspectral image (in pixels)

Width of the hyperspectral image (in pixels)
Frequency of i*" grey value in a single band

Number of pixels (U x V') in the hyperspectral image
Grey image of size U x V pixels

Hyperspectral image of size L x Z pixels
Band-normalized hyperspectral image

Maximum shade value in the image

Set of grey scale values {0,1,...,G — 1}

i*" bands in the hyperspectral image

4" mixed pixel vectors in the hyperspectral image
Single pixel value

Normalized pixel value

Entropy of k" band

S Band entropy-based ordered image (in ascending order)
R Set of real numbers

R+ Set of positive real numbers

C Convex set
T;
T
N
St
Sh

ORI T EREZCON

Qi =N S

Rl

mﬁd

Number of convex set points for (s;, sy—;—1)
Set of numbers {11, 75, ..., 2}

Number of optimized convex set points

Low entropy band of normalized image
High entropy band of normalized image
Euclidean distance of point x

M Extracted endmember matrix of size L x )

pixels of length L. Y is defined as follows:

vi i . vt
1 2 3 Z
Y2 Y2 Yz - Y2
Y=|. . ) . 4)
vi, vi vl ... uE

where each band y; of size 1 X Z is represented as a row
vector y; = [yt,v2, v}, ..., y7], and each mixed pixel vector
y? of size L x 1 is represented as a column vector y*' =
[y, yb, v, ..., yt]T. Here, Z = U x V is the number of pixels
in the original image. The height and width of each band are,
respectively, U and V. Various notations used in this article are
shown in Table I.

The proposed algorithm takes as an input 'Y and the subspace
dimension (number of endmembers) (). The result of the pro-
posed algorithm is a matrix of endmembers M. In order to extract
such a matrix, the proposed algorithm follows three steps. First,
it uses entropy of each normalized band and finds a new matrix
using it. This first step explores the spatial information contained
in the scene. The second step solves a convex set optimization
problem using the spatial information obtained in the first step.
This second step explores the spectral information contained in
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the scene. Finally, our algorithm removes unnecessary spectral
signatures, if any. We discuss each step in detail in the following.
Many hyperspectral data analysis techniques use dimension-
ality reduction as a preprocessing step, which aims to remove
the redundant spectral information while preserving only critical
information for subsequent processing. Hyperspectral dimen-
sionality reduction can be achieved through feature extraction
or band selection [44], [45]. Feature extraction methods such
as principal component analysis and minimum noise fraction
transform the original data into reduced feature spaces by means
of different criteria, whereas band selection aims to select a small
subset of hyperspectral bands to reduce the burden of heavy
computations [46]. Regardless of whether dimensionality re-
duction is performed using band selection or feature extraction,
some spectral information in the original image will be lost. The
proposed algorithm uses a different approach and exploits all the
spectral bands in the original image. In other words, we avoid
dimensionality reduction and simply use band normalization as a
preprocessing step. The advantage of using band normalization
is that it can allow us to find the entropy of each band. Since
different bands have a different dynamic range (max value—min
value), our band normalization strategy is intended to make all
bands similar in terms of dynamic range. In our case, band
normalization for each i band (y;) is conducted as follows:

(y{ - min(.w))

max(y;) — min(y;

i _ J

V=1 ) Vy; € 5)
Each pixel value yf of band (y;) is normalized as per (5)
and converted to a new normalized value g{ , which is in
the range of [0, 1]. The aforementioned band normalization
process [shown in (5)] is repeated for all the bands of the
hyperspectral image. A band-normalized hyperspectral image

Y = [¥1,¥2,..,52]" =¥, 7%, ..., ¥7] is defined as
uiouowo yt
Y= g.% y% yg g.QZ ©6)
T 1/

A. Entropy as Spatial Information

For a k-state system, Shannon [40] defined the entropy as

k
H ==Y pilogp, (7)
i=1

where p; is the probability of occurrence for the i" event, and
> pi = 1,0 < p; < 1. Shannon’s entropy is very popular in the
field of communications. Many researchers have extended the
concept of entropy for image processing purposes [47].

Let I be a grayscale image of size U x V and Sg €
{0,1,...,G — 1} be the set of associated grayscale values. Let
G be maximum shade value in the image. Image I contains
Z = U x V pixels. Let W; be the frequency of the i grayscale
value, where i € Si. The entropy for I (grayscale image) is
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defined as
G-1
H=-Y pilogpi, pi=W;/Z. ®)
1=0

We can extend the entropy definition in (8) for hyperspectral
images and define the k™ band entropy (H}) as

G-1

Hi=—) pilogpls pi =Wl/Zk=12,..,L (9
=0

Here, p} is probability of having an i"" gray shade in the k™
band. The entropy of each band in Y is calculated using (9)
and denoted as {Hy, Ha, ..., Hy}. Entropy can be interpreted
as a measure of order (or randomness) or as a measure of ho-
mogeneity [48]. Instead of looking at various interpretations, we
can look at it as an expression of the number of states of a system.
Lin [49], Jost [50], and other researchers have used Shannon’s
entropy concept for information-theoretic divergence between
two probability distributions. In the proposed algorithm, this
entropy concept is used to measure the divergence between the
probability distribution of two bands. A system with many states
has high entropy and a system with few states has low entropy. A
band with low entropy exhibits fewer variations, and a band with
high entropy exhibits more variations. Bands can be rearranged
in ascending order based on their values of entropy. A new
matrix S can be, thus, obtained from Y in such a manner that
low-entropy bands come first, and high-entropy bands come last.
The matrix S is generated such that Hy, < Hj1 for each value
of k, we have

S =[s1,82,... (10)

B. Spectral Information for Convex Set Optimization

In convex analysis [51], the affine hull of a set of vectors
{x1,X2,...,%q} is defined as

Q
aff{xl,XQ, .. .,XQ} = {Z@xl

i=1

06]&159:1}. (11)

The immediate implication of (11) to the linear mixing model
in (1) is that every mixed pixel vector y can be in the affine hull
aff{x1,z2,...,20}. The affine hull follows the ASC constraint
in (3), but not the ANC constraint in (2). A special case of an
affine hull set is the convex hull set, which follows both (2) and
(3). The convex hull set C' is defined as

Q

COIIV{Xl,XQ, .- .,XQ} = {Z Hixi

i=1

6cRy,1560=1,.

(12)
The affine space subset that is closed under convex combinations
is called a convex set C' [S1]. The convex set has the property that
a convex combination is a linear combination of vectors, where
all coefficients are nonnegative and sum up to 1. This property
of a convex set describes well the linear mixture model in (1),
including both the ANC in (2) and the ASC in (3). Coifman
and Wickerhauser [52] developed algorithms based on entropy
for best basis selection. In the proposed approach, we use this
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entropy feature of bands for best basis (band) selection to find
the best convex set. We define an optimization problem for best
basis selection as follows:

Optimization Problem:

minimize N — Q
NeT

subjectto N > Q. (13)

Here, T = {7}, T»,..., T2} is a set of numbers, which
represent the number of points involved in making a convex
set C' [using (12)] for two bands (s; and s,) of the data. T; is
the number of convex set points for two-band (s; = s; and s;, =
sr—i—1) data. s; = s; is a low-entropy band and s, = sy ;1
is a high-entropy band. The high-entropy band contains many
heterogeneous objects, while the low-entropy band contains
many homogeneous objects. The proposed model computes the
convex set points from low- and high-entropy bands. Hence,
this combination of homogeneity and heterogeneity features
explores the variety of object information between two bands for
extracting rare endmembers. The two-band combination from S
results in L/2 values in T. When the value of L is even, the
set T exactly has L/2 values. When the value of L is odd, the
middle band from S is removed to make it even. N is an outcome
of optimization problem, as described in (13). This optimization
problem selects the minimum number N from the available L /2
values in the set T

As shown in Fig. 1, the expected number of extracted end-
members is (), which is also known as the hyperspectral sub-
space dimension. Generally, the value of @ is found by many
hyperspectral subspace estimation techniques [3], [53], before
extracting the endmembers from the image. The optimization
problem in (13) thus relates to finding the optimum value of
N such that the difference between N and (@ is the absolute
minimum, constrained by N > (). The algorithm is of no use if
N < @ (this may happen in multispectral data) because it will
extract fewer materials than subspace dimensions.

C. Removing Extra Points

As a result of the previous step, we obtain a number N,
which is greater than or equal to (). At this point, there are
two possibilities.

1) N = @Q: N is the number of materials extracted from the

previous step. The hyperspectral subspace dimension is
Q. N and @ should be the same. If this condition is true,
then all the extracted materials are endmembers.

2) N > @: The main goal of the proposed algorithm is to
extract exactly @ endmembers. If the above step gives
some extra points (N — @), then we have to remove (N —
Q) points. Preservation of pure signatures/materials needs
to be taken care of while removing these extra points.

Convex set points can be arranged in a clockwise or anticlock-
wise manner. The advantage of arranging them in order is that
every point/endmember will have two proper neighbors. If two
points are very near, it means that they are very similar. If we
remove one of them, it is likely that we are not losing any pure
signature/spectra. The proposed algorithm eliminates materials
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Algorithm 1: Proposed Algorithm.

I: Imputs:Y,Q > Inputs to the algorithm

2: %% Step-1: Entropy as spatial information %%
3 Fork=1toL
4: V& < yr > Band normalization for the £ band
5 Hy, = entropy (¥) > Entropy of the k™ band
6 EndFor
7 [Sl,Sg,...,SL]T<—[S’l,yg,...,}_’L]T >
Entropy-based band sorting
8: S < Y > Creation of new matrix from normalized
hyperspectral image
9: %% Step-2: Spectral information for convex set
optimization %%
10:  Fori=1toL/2
11: C; = conv(s;,sp—;—1) > Calculate convex set
for two-band data
12: T; = count (C;) ©> Calculate the number of
points in the convex set
13: EndFor

14: TZ{T17T2,..

convex set points

15: miginjl?ize N — @ subjectto N > Q ©> Find N
S

using optimization problem

16: %% Step-3: Removing extra points %%

»Tr 2} > Set of number of

17: N >Q

18: Fork=1toN

19: D(x(7,7),x(i1,51)) © Calculate Euclidean
distance for each point x € C

20: EndFor

21: Remove (V — @) points from C' > Removal of

points having lowest D(x(i, j), x (i1, j1))

22: EndIf

23: M = Convex spectral signatures from C
24:  Output : M > Output of the algorithm

that are very close to each other by taking into account the above
concept.

To do this, every point in the ordered convex set C' is assumed
to have two neighbors: clockwise neighbor and anticlockwise
neighbor. Let point x(7, j) have one neighbor x (i1, j1) in the
anticlockwise direction. In our approach, we use anticlockwise
direction (it does not make much difference whether we take
clockwise or anticlockwise direction because similar types of
points are close to each other). The second-order Minkowski’s
distance is the Euclidean distance (ED). The ED D(x) for each
point x(4, ) is defined as

D(x(i, ), x(ir, 1)) = V(i = i1)? + (j — j1)>.

Our algorithm removes (N — (Q) points based on the smallest
D(x). The algorithm returns @ points from the original set of
N points based on their ED. As a result, the algorithm returns
a matrix M of size L x Q. M contains @ pure endmembers
extracted from the original image Y. The algorithm output (M)
is an extracted endmember matrix (second block of Fig. 1). A
pseudocode of the proposed algorithm is given in Algorithm 1.

(14)
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(a) (b)

Fig. 2. Real datasets. (a) Urban. (b) Cuprite.
TABLE II
URBAN GT ENDMEMBERS
Notation Endmember
Uy Asphalt
Us Grass
Uj Tree
U, Roof
Us Metal
Us Dirt
III. DATASETS AND PARAMETER SETTINGS
A. Datasets

The real and synthetic datasets used in our experiments are de-
scribed in the following. Both types of datasets are in reflectance
units.

1) Real Datasets: Two hyperspectral images (Urban and
Cuprite) shown in Fig. 2 are used to validate the proposed
algorithm. The Urban dataset was captured by the Hyperspectral
Digital Imagery Collection Experiment sensor and is one of
the most popular datasets in the spectral unmixing research
community [54]. The Urban image has 307 lines, and each line
has 307 pixels. The dataset contains a total of 210 bands, which
cover the range from 400 to 2500 nm with a spectral resolution
of 10 nm. We processed 162 bands after removing 48 noisy and
water absorption bands (1-4, 76, 87, 101-111, 136-153, and
198-210). Each pixel is 2 x 2 m?. As mentioned by Zhu [54],
six ground-truth (GT) endmembers are selected from the United
States Geological Survey (USGS) spectral library [55], as shown
in Table II.

The Cuprite dataset is the benchmark dataset [54] for the
hyperspectral unmixing research community. It was collected
by the airborne visible infrared imaging spectrometer over the
Cuprite mining district in Nevada, USA. The dataset covers the
range from 370 to 2480 nm with 224 channels. There are six
noisy bands (1, 2, and 221-224) and 30 water absorption bands
(104-113 and 148-167). After removing these 36 bands, we
process a total of 188 bands. A subscene with 250 x 190 pixels is
taken to validate the proposed algorithm. We have assumed only
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TABLE III
CUPRITE GT ENDMEMBERS

Notation Endmember
Cy Alunite
Oy Andradite
Cs Buddingtonite
Cy Dumortierite
Cs Kaolinitel
Cs Kaolinite2
Cy Muscovite
Cy Montmorillonite
Cy Nontronite
Cho Pyrope
Ci1 Sphene
Ci2 Chalcedony

12 GT endmembers, as suggested in [54]. These endmember
types, along with their notations used in this article, are shown
in Table III.

2) Synthetic Datasets: We have used a set of synthetic hyper-
spectral images generated by the Hyperspectral Imagery Synthe-
sis Toolbox [56]. All these synthetic images have been gener-
ated using five endmembers (asphalt—gds367, brick—gds350,
fiberglass—gds374, sheetmetal—gds352, and vinylplastic—
gds372) extracted from the USGS spectral library [55]. Each
simulated image comprises 128 x 128 pixels and 431 spectral
bands, ranging from 350 to 2500 nm (see Fig. 3). We have
generated five images, Legendre (S1), Matern Gaussian (S2),
Exponential Gaussian (S3), Rational Gaussian (S4), and Spheric
Gaussian (S5), using the aforementioned tool. To evaluate the
robustness of the proposed algorithm, each synthetic dataset is
corrupted with additive Gaussian noise at different noise levels,
to achieve signal-to-noise ratios (SNRs) of 20, 40, 60, 80, and
100 dB.

B. Comparison Parameters

In this section, each L-dimensional vector endmember (1th =
[y, M, .../mz]T) is compared to the corresponding GT
endmember (m = [mq,ma,...mz]7) using different metrics:
spectral angle mapper (SAM), spectral information divergence
(SID), Euclidean distance (ED), and normalized cross correla-
tion (NXC). The root-mean-square error (RMSE) is also used to
compare various algorithms in terms of abundance estimation
accuracy. These metrics are summarized as follows.

1) Spectral Angle Mapper: The SAM between two spectral
vectors m and 1 of length L is defined as

SAM = cos™! (mm) .

- 15)
|||

The total SAM (TSAM) for @) endmembers is given by

Q -
TSAM = z:cosf1 (lmilan') .

i=1

(16)

2) Spectral Information Divergence: The SID [19] is an
information-theoretic criterion for spectral discriminability
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Fig. 3.

and similarity. The probability vectors p = [p1,p2,...pr]"
and q = [q1,q2, - ..qr]T (for two L-dimensional spectra m =
[m1,ma,...mz])T and 1h = [y, Mo, ... Mmz]T) are, respec-
tively, defined as
m; ﬁli
Di = T , 4 = T -
D im1 M > im1 M

The SID between two spectra m and m of length L is defined
as

a7

L L
SID=Y"p;log (p> +3 gilog <q> (18)
P o) = pi

The term 25:1 pilog () is the Kullback-Leibler information
function, which shows the relative entropy of m with respect to

~

m.
The total SID (TSID) for (Q endmembers is defined as

Q L L
TSID = ) (Zpﬁ log (p]> +) " gjilog (‘13))
j=1 \i=1 ji i=1 Pji
19)
3) Euclidean Distance: The ED between two spectral signa-
tures m and 1 of length L is defined as

ED = \/Zf_l (i — ;)2

The total Euclidean distance (TED) for () endmembers is defined
as

(20)

L
TED = Zle Z (mij - T?Lij)z.

i=1

@1

4) Normalized Cross Correlation: The NXC between two
spectra m and 1 of length L is defined as

\/ Sy (i) (i — )
NXC — Om X0
(L-1)

(22)

Here, y1,, and pi3, are the mean of spectra m and 1m, respectively.
o and o,;, denote the standard deviation of spectra m and m,
respectively.
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(c) (d (©

Synthetic datasets. (a) S1-Legendre. (b) S2-Matern. (c) S3-Exponential. (d) S4-Rational. (¢) S5-Spheric.

Total normalized cross correlation (TNXC) for () endmem-
bers is defined as

S0 ) \/ZiLl (mig—pm ) (i — o)
J= Tmj X O
TNXC = =

23
5) Root-Mean-Square Error: The RMSE is defined as
Q ZZ ( Al Gi»)Q
RMSE = =t ake B L 24
SR *

Here, A’ is the abundance map of the i endmember, and G* is
an abundance map of the i GT endmember. Z is the total num-
ber of pixels in the image. A’ is the j™ pixel in the abundance
map associated to the i endmember. G, is the j pixel in the
abundance map associated with the i"" GT endmember.

IV. EXPERIMENTAL RESULTS

In this section, the results obtained by the proposed algorithm
are compared to those obtained by ten well-known endmember
extraction algorithms (SVMAX, AVMAX, VCA, TRIP, PPI,
ICA, AMEE, SPEE, RBSPP, and SSPP) on both synthetic and
real datasets. All these well-known algorithms are carefully
optimized using empirical parameter settings of that respective
algorithms. We empirically found the optimized values for both
the real datasets in our experiments. We have used the opti-
mized parameter values given in Table I'V. In the hyperspectral
unmixing chain, the number of endmembers () is estimated
before endmember extraction. Many subspace identification
algorithms [53] exist in the literature. We have used the well-
known HYperspectral Signal Identification be Minimum Error
(HYSIME), [57] algorithm as a popular subspace identification
method in the hyperspectral unmixing community. The proposed
algorithm is implemented using MATLAB 2019b tool.

A. Experiments With Real Datasets

Tables V-VIII and Tables IX—XII report our experimental
results on the Urban and Cuprite datasets, respectively. The
compared algorithms are depicted in the first column of Ta-
bles V-VIII and Tables IX—XII. SAM, SID, ED, and NXC values
are computed using (15), (18), (20), and (22), respectively. The
second column in Tables V-VIII shows a comparison (using
different metrics) between the first GT signature (U;) and the
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TABLE IV TABLE VIII
PARAMETER SETTINGS FOR EACH SCENE NXC FOR URBAN REAL DATASET
Algorithm | Parameter Cuprite Urban Algorithm Uy U  Us Us Us U TNXC Mean Sud
TRIP 210 5 5 SVMAX 0876 098 0995 -0277 0845 0937 4355 0726 0495
norm AVMAX 0876 0988 0995 -0.025 0845 0937 4615 0769 0393
PPI Number of skewers 1500 600 VCA 0876 0988 0995 0976 0462 0937 5233 0872 0.206
Maxi ernel s s 5 TRIP 0876 098 0995 0632 085 0937 5269 0878 0.133
AMEE aximum Xernet size PP 0876 098 0995 -0422 085 0937 4215 0703 0554
Maximum iterations 100 100 ICA 0.122 0991 0989 -0.048 0523 0929 3505 0584 0.461
: : AMEE  -0405 0977 0886 0980 0859 0864 4162 0.694 0.541
Sppg | _Window size 5 7 SPEE 0618 0980 0772 0041 0834 0882 4.127 0688 0339
Spectral algorithm VCA VCA RBSPP 0673 0991 0973 -0.410 0835 0940 4.002 0.667 0.540
: : SSPP 0122 0992 0982 0777 0.657 0893 4423 0737 0327
RBSPP Clustering algprlthm ISODATA | ISODATA Proposed  0.876 0991 0995 0984 0785 0878 5509 0918 0.086
Spectral algorithm VCA VCA
ol 70 30 algorithms) from the Urban dataset. Similarly, in Tables IX—XII,
sspp LB 60 50 C1-C45 columns report a comparison (using different metrics)
g 1.6 2.2 between 12 GT spectra in the Cuprite scene and the corre-
Spectral algorithm VCA VCA sponding endmembers extracted by different algorithms. The
TABLE V TSAM, TSID, TED, and TNXC values, calculated using (16),
SAM FOR URBAN REAL DATASET (19), 21), aqd (23), are reporteq in Table?s V-XII. The mean and
standard deviation of all evaluation metrics (SAM, SID, ED, and
Algorithm U, U, Uy Uy U5 Us TSAM Mean Sd NXC) are reported in the last two columns of Tables V-XII. The
SVMAX 0.1 0.123 0095 0512 0.116 0084 1.029 0.171 0.167 . .
AVMAX 0.1 0097 0095 0660 0.16 0084 116 0193 0233  boldentries in the Tables V-XIV represent the best performing
VCA 0.1  0.097 0.095 0.08 0.554 0.084 1.009 0.168 0.189 a]gorlthm. All values of SAM, SID, TSAM, and TSID are in
TRIP 0.1 0123 0095 0.194 0121 0084 0717 0.119 0.04 di Th lts obtained usine th ‘dered metri
PPI 0.1 0123 0095 0403 0121 0084 0926 0154 o123  Tadians. Ihe results obtained using the considered metrics are
ICA 0.63 0.077 0.109 0744 0.446 0.088 2.095 0349 0.298 discussed in the following.
AMEE 0482 0.131 0.187 0060 0201 0195 1255 0209 0.144 .
SPEE 0232 0.38 0.51 0273 023 0112 1029 0171 0.065 1) Spectral Angle Mapper: IF can be observed from Tabl.es \
RBSPP  0.168 0071 0437 0387 0130 0093 1287 0214 0158  andIX that the SAM values obtained for the proposed algorithm
SSPP 0200 0.069 0.174 0205 0324 0128 1101 0.183 0.086 S e
Proposed  0.100 0.084 0.095 0065 0.49 0.16 0.609 0.101 0029 € close tf’ zero, which indicates that the extracted endmembers
are very similar to the corresponding GT spectra for the Urban
TABLE VI and Cuprite datasets. The SAM values of a few algorithms are
SID FOR URBAN REAL DATASET close to /2, which indicates that the extracted endmembers
Mg U U Ui Ui Ur U, TS0 Mem  Sd are different than the GT ones. It can be seen that the TSAM
SVMAX 0011 0018 002 0314 0014 0007 0384 0064 0122  values of the proposed algorithm are consistently lower than
AVMAX 0011 0.013 - 0.02 0603 0.014 00070669 01110241 thoge obtained by other algorithms. In addition, the mean and the
VCA 0011 0013 002 0008 0385 0007 0445 0074 0.152 @by g L ’ )
TRIP 0011 0018 002 0042 0014 0007 0113 0019 0012 standard deviation values obtained for the proposed algorithm
PPL0.011 0018 002 0.182 70014 0.007 0253 0.042 0069 are Jower than those obtained for the other algorithms in the two
ICA 05 0008 003 0845 0225 0008 1616 0269 0341 .
AMEE 0257 0030 0240 0004 0083 0042 0655 0109 o111  considered real datasets.
SPEE 0056 0027 0268 0084 0018 0013 0467 0078 0.097 2) Spectral Information Divergence: As shown in Tables VI
RBSPP 0443 0007 0056 0041 0138 0021 0705 0.118 0.166 . .
SSPP 0.028 0.006 0304 0.164 0022 0011 0536 0089 0.121 and X, the SID values obtained for the proposed algorithm on
Proposed  0.011 0.011 0.020 0.005 0.022 0.013 0.081 0.014 0.006 the Urban and Cuprite datasets are close to Zero, which again
TABLE VII indicates that the extracted endmembers are very similar to the
ED FOR URBAN REAL DATASET corresponding GT ones. The T.SID values in Tables VI ar'ld X
also reveal that the values obtained for the proposed algorithm
Algorithm Uy Uy Us Uy Us Us TED Mean St are low when compared to those of other algorithms. As shown in
SVMAX 0771 0397 0981 2.192 1.08 1.024 6445 1.074 0.602
AVMAX 0771 1448 0981 1811 108 1024 7115 Lige o037y  (helasttwocolumns of Tables VIand X, the mean and standard
VCA 0771 1448 0981 0336 145 1024 601 1002 0424  deviation values obtained for the proposed algorithm are lower
TRIP 0771 0397 0981 1937 3572 1.024 8.683 1447 1.159 . :
PPI 0771 0397 0981 2358 1572 1.024 7.104 1.184 0.691 than those 9bta1neq for the other algorithms.
ICA 2273 0252 0288 2458 1.186 2.157 8615 1436 1.004 3) Euclidean Distance: The ED values of Tables VII and XI
AMEE 1698 1.157 0992 0891 1100 1612 7449 1242 0.334 s : :
SPEE 1662 0414 1816 2999 0375 0783 7310 1218 0788 indicate that the values obtained for the propqsed algorithm are
RBSPP 0810 0.169 1376 1782 0737 3.610 8483 1414 1211 low when compared to those of other algorithms. The mean
SSPP 1579 0213 0524 1.302 0983 2962 7562 1260 0971 yalues obtained for the proposed algorithm are lower than those
Proposed  0.771 0.353 0981 0.764 2092 0959 5.921 0987 0.587

corresponding extracted endmember (i.e., the one that is most
similar to U; among the set of extracted endmembers, accord-
ing to each metric). The remaining columns in Tables V-VIII
report a comparison between the remaining GT spectra (Us—Us)
and their corresponding endmembers (extracted by different

obtained for the other algorithms, and the standard deviation
values are comparable.

4) Normalized Cross Correlation: The NXC values com-
puted for the proposed algorithm on both real datasets are
positive for all endmembers, as shown in Tables VIII and XII. It
can be seen that some values are negative in both tables. It can
also be noted that negative values are coming mostly for those
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TABLE IX
SAM FOR CUPRITE REAL DATASET

Algorithm Cl CQ Cg C4 C5 CG C7 Cg Cr; Cl() Cl 1 Clg TSAM Mean Std
SVMAX 0597 0.06 0.201 0.108 0.085 0.065 0.151 0.056 0.12 0.09 0.137 0258 1927 0.161 0.15
AVMAX 0.674 0.054 0.446 0.104 0.098 0.064 0.142 0.054 0.105 0.083 0.149 0.149 2.121 0.177 0.188

VCA 0.546 0.06 0335 0.108 0.106 0.053 0.133 0.054 0.116 0.169 0.137 0465 2.281 0.19  0.166
TRIP 0.338 0.057 0.158 0.108 0.098 0.065 0.085 0.052 0.115 0.125 0.137 0.151 1489 0.124 0.076
PPI 0.374 0.064 0.163 0.108 0.109 0.053 0.115 0.05 0.106 0.145 0.084 0.089 146  0.122 0.086
ICA 0.474 0.048 0.185 0.108 0.124 0.063 0.125 0.056 0.112 0.092 0.102 0.076  1.564 0.13  0.114
AMEE 0.517 0.062 0.126 0.135 0.114 0.069 0.113 0.047 0.105 0.123 0.184 0.145 1.739 0.145 0.123
SPEE 0.122  0.060 0.446 0.103 0.098 0.074 0.130 0.053 0.112 0.122 0.160 0.465 1946 0.162 0.140
RBSPP 0.133 0.011 0.192 0.142 0.120 0.051 0.170 0.041 0.419 0.183 0.101 0428 1993 0.166 0.133
SSPP 0.090 0.065 0.313 0.568 0.147 0.081 0479 0.060 0.118 0.099 0.081 0.474 2575 0215 0.190
Proposed 0.251 0.064 0.136 0.114 0.108 0.053 0.108 0.050 0.106 0.108 0.152 0.151 1401 0.117 0.054

TABLE X
SID FOR CUPRITE REAL DATASET

Al gorithm Cl 02 Cg 04 05 C() C7 Cg Cq Cl 0 Cl 1 012 TSID Mean Std

SVMAX 0.336 0.007 0.054 0.021 0.019 0.008 0.031 0.007 0.021 0.012 0.026 0.09 0.632 0.053 0.092
AVMAX 0396 0.007 0.182 0.019 0.018 0.009 0.028 0.007 0.018 0.011 0.031 0.035 0.761 0.063 0.115
VCA 0.306 0.007 0.129 0.021 0.016 0.007 0.026 0.007 0.02 0.042 0.026 0.122 0.73 0.061 0.088
TRIP 0.147 0.007 0.033 0.021 0.018 0.008 0.013 0.006 0.018 0.024 0.026 0.034 0356 0.03 0.038
PPI 0.171 0.008 0.037 0.02 0.018 0.007 0.022 0.007 0.017 0.032 0.016 0.017 037 0.031 0.045
ICA 0.274 0.006 0.047 0.02 0.023 0.009 0.023 0.007 0.018 0.014 0.017 0.014 0472 0.039 0.075
AMEE 0.242 0.007 0.023 0.031 0.020 0.010 0.020 0.006 0.017 0.022 0.045 0.033 0476 0.040 0.065
SPEE 0.027 0.007 0.182 0.020 0.018 0.010 0.025 0.007 0.017 0.022 0.035 0.122 0494 0.041 0.054
RBSPP 0.017 0.011 0.114 0.022 0.032 0.020 0.021 0.009 0.020 0.018 0.016 0.190 0.489 0.041 0.055
SSPP 0.192 0.020 0.271 0.060 0.012 0.024 0.047 0.013 0.070 0.042 0.020 0.094 0.864 0.072 0.080

Proposed  0.088 0.008 0.025 0.022 0.017 0.007 0.018 0.007 0.017 0.017 0.029 0.034 0.290 0.024 0.022

TABLE XI
ED FOR CUPRITE REAL DATASET

Algorithm 4 Cy Cy Cy Cs Cs Cr Cy Cy Cio Cy Co TED Mean Std

SVMAX 8481 7.065 4.06 499 1.792 4236 5512 4286 1.772 4758 1412 523 53594 4466 2.108
AVMAX 8952 6.178 5.108 4.278 2.447 3803 5.706 4.024 2529 4.654 1476 4.144 53.3 4.442  1.967
VCA 7.847 6.848 5921 499 2406 3.122 5.676 4.024 2.057 4475 1412 6468 55246 4.604 2.048
TRIP 7.364 6.587 3.743 499 2447 4236 4769 4321 1.777 5.186 1412 4502 51334 4278 1.773
PPI 7775  7.057 3968 4.874 251 3122 4959 4734 2177 6.704 1.221 297 52.068 4339 2.064
ICA 7.676 6.016 4.616 5.084 1977 4.123 5531 4286 1.083 4.845 0.942 3399 50.579 4215 2.009
AMEE 8.195 6.834 4.103 4.689 3.247 3.704 1.775 4360 2.218 5233 3466 4.296 52.120 4.343 1.797
SPEE 4919 7.065 5.108 4.494 2447 2794 5447 4.010 1.694 5379 1.733 6.468 51.558 4.297 1.785
RBSPP 4979 7.085 5874 4543 2965 2578 5976 4956 1.075 4976 1.708 6.371 53.088 4.424 1917
SSPP 5298 8.365 5560 5.609 3316 3.168 5.005 5896 1.518 6.842 0936 6.250 57.762 4.814 2.180

Proposed 6.208 7.057 3.426 5.118 2.182 3.122 5273 4.734 2177 5597 0.722 4.502 50117 4.177 1.872

TABLE XII
NXC FOR CUPRITE REAL DATASET

Algorithm (& Cy Cs Cy Cs Cs CYy Cy Cy Cho Chp Cio TNXC Mean Std

SVMAX -0475 0944 0595 0902 0962 0947 0.86 0.95 0.9 0.922 0.864 0.391 8.761 0.73 0417
AVMAX -0401 0.968 -0.061 0.897 0944 0.949 0.578 0955 0.908 0.934 0.835 0.866 8.374 0.698 0.452
VCA -0.578 0945 0.336 0902 0929 0967 0.738 0955 0.892 0916 0.864 -0.151 7.716 0.643 0.509
TRIP 0.054 0949 0.731 0902 0944 0947 0.852 0958 0.89 0.847 0.864 0.836 9.774 0.815 0.248
PPI -0.27 0937 0.746 0887 0.936 0967 0774 096 0914 0.792 095 0932 9526 0.794 0.344
ICA -0.625 0965 0.739 0.89 0918 0.951 0.681 0.95 0918 0918 0924 0.887 9.115 0.76  0.445
AMEE -0.324 0942 0.741 0.827 0923 0939 0.653 0965 0918 0.850 0.760 0.678 8.872 0.739 0.352
SPEE 0.900 0944 -0.061 0917 0944 0935 0.771 0.958 0.898 0.847 0.812 -0.151 8.714 0.726 0.393
RBSPP -0.239 0984 0.245 0934 0991 0.901 0.698 0905 0.864 0950 0.927 -0.017 8.143 0.679 0.431
SSPP 0910 0946 0.232 0.077 0.868 0941 -0.298 0.943 0.895 0903 0961 0.604 7.983 0.665 0.426

Proposed  0.304 0937 0.713 0.889 0940 0.967 0.758 0960 0914 0.891 0.825 0.836 9.933 0.828 0.183
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TABLE XIII
OVERALL COMPARISON ON URBAN DATASET
. SAM SID ED NXC . .
Algorithm Total Mean std Total Mean std Total Mean std Total Mean std RMSE | Running Time
SVMAX | 1.029 0.171 0.167 | 0.384 0.064 0.122 | 6.445 1.074 0.602 | 4.355 0.726 0.495 | 2.571 11.393
AVMAX | 1.160 0.193 0.233 | 0.669 0.111 0.241 | 7.115 1.186 0.377 | 4.615 0.769 0.393 | 2.453 10.325
VCA 1.009 0.168 0.189 | 0445 0.074 0.152 | 6.01 1.002 042 | 5233 0.872 0.206 | 2.646 11.141
TRIP 0.717 0.119 0.040 | 0.113 0.019 0.012 | 8.683 1.447 1.16 | 5269 0.878 0.133 | 2.472 14.102
PPI 0926 0.154 0.123 | 1.203 0.401 0.455 | 7.104 1.184 0.691 | 4.215 0.703 0.554 | 2.601 16.672
ICA 2.095 0349 0298 | 1.616 0.269 0.341 | 8.615 1.436 1 3.505 0.584 0461 | 2.271 22.888
AMEE 1.255 0.209 0.144 | 1.608 0.536 0.624 | 7.449 1242 0.334 | 4.162 0.694 0.541 | 2.254 66.740
SPEE 1.029 0.171 0.065 | 1.265 0.422 0.528 | 7.310 1.218 0.784 | 4.127 0.688 0.339 | 2.171 188.033
RBSPP 1.287 0.214 0.158 | 1.659 0.553 0.636 | 8.483 1414 1.211 | 4.002 0.667 0.540 | 2.634 82.328
SSPP 1.101 0.183 0.086 | 1.370 0.457 0.560 | 7.562 1.260 00971 | 4423 0.737 0.327 | 2.388 77.211
Proposed | 0.609 0.101 0.029 | 0.081 0.014 0.006 | 5.921 0.987 0.587 | 5.509 0.918 0.086 | 2.106 70.183
TABLE XIV
OVERALL COMPARISON ON CUPRITE DATASET
. SAM SID ED NXC . .
Algorithm Total Mean std Total Mean std Total Mean std Total Mean std RMSE | Running Time
SVMAX | 1.927 0.161 0.150 | 0.632 0.053 0.092 | 53.594 4466 2.108 | 8.761 0.73 0.417 | 3.357 13.233
AVMAX | 2.121 0.177 0.188 | 0.761 0.063 0.115 | 53.300 4.442 1967 | 8374 0.698 0.452 | 3.631 11.483
VCA 2281 0.190 0.166 | 0.730 0.061 0.088 | 55.246 4.604 2.048 | 7.716 0.643 0.509 | 3.549 11.560
TRIP 1.489 0.124 0.076 | 0.356 0.030 0.038 | 51.334 4278 1.773 | 9.774 0.815 0.248 | 3.527 13.546
PPI 1.460 0.122 0.086 | 0.370 0.031 0.045 | 52.068 4.339 2.064 | 9.526 0.794 0.344 | 3.801 30.686
ICA 1.564 0.130 0.114 | 0472 0.039 0.075 | 50.579 4.215 2.009 | 9.115 0.76 0.445 | 3.503 28.907
AMEE 1.739 0.145 0.123 | 0476 0.040 0.065 | 52.120 4.343 1.797 | 8.872 0.739 0.352 | 3.402 91.546
SPEE 1.946 0.162 0.140 | 0.494 0.041 0.054 | 51.558 4297 1.785 | 8.714 0.726 0.393 | 3.411 191.297
RBSPP 1.993 0.166 0.133 | 0.489 0.041 0.055 | 53.088 4.424 1917 | 8.143 0.679 0.431 | 3.646 123.048
SSPP 2.575 0.215 0.190 | 0.864 0.072 0.080 | 57.762 4.814 2.180 | 7.983 0.665 0.426 | 3.383 107.650
Proposed | 1.401 0.117 0.054 | 0.290 0.024 0.022 | 50.117 4.177 1.872 | 9.933 0.828 0.183 | 3.185 105.520

materials, which are very rare in a scene. For the Urban scene,
materials (Usa, Us, Us, and Ug) cover more area in comparison
with materials (U; and Uy). Similarly, materials C4, C3, C7,
and C15 correspond to rare minerals in the Cuprite scene. Many
algorithms cannot extract these rare materials. Using the hetero-
geneous features from high-entropy bands (and homogeneous
features from low-entropy bands) in the second step of the
proposed algorithm leads to high NXC values for these rare
endmembers, as opposed to other methods. The TNXC values
reveal that the TNXC values obtained for the proposed algorithm
are high compared to those obtained for other algorithms. As
the last two columns of Tables VIII and XII show, the mean
values obtained for the proposed algorithm are higher than those
obtained for the other algorithms, and the standard deviation
values are lower.

5) Root Mean Square Error: The third stage in the unsu-
pervised spectral unmixing chain is abundance estimation, as
described in Fig. 1. There are mainly three types of abundance es-
timation methods: fully constrained, nonnegatively constrained,
and unconstrained. If a method uses the constraints in (2) and
(3) for finding an abundance vector ¢, a method is called fully
constrained. If a method uses only the constraint mentioned
in (2) for finding an abundance vector ¢, it is called nonneg-
atively constrained. If a method does not use any constraint
for finding an abundance vector «, it is called unconstrained.

In our experiment, we have used the fully constrained least
square (FCLS) [58] method to estimate fractional abundances
and compare various algorithms, as it follows the ANC and ASC
constraints of the linear mixing model described in (1). The
RMSE, as described in (24), is used to establish a comparison
between the abundance maps obtained by various algorithms
with those obtained by the proposed algorithm. The RMSE val-
ues obtained for all tested algorithms with the Urban and Cuprite
real datasets are shown in Tables XIII and XIV, respectively. As
shown in the figure, the proposed algorithm outperforms all other
algorithms in terms of abundance estimation.

6) Running Time: The experiments are performed on a com-
puter with Intel i7-7500 CPU at 2.7 GHz, 8-GB RAM, and
windows 10 (64-bit) operating system. The running times of
the Urban and Cuprite real datasets for all algorithms are shown
in Tables XIII and XIV, respectively. It can be observed that the
running time of the proposed algorithm is competent with other
algorithms.

7) Others: The abundance maps for the Urban and Cuprite
dataset are shown in Figs. 4 and 5, respectively. The comparison
of GT and extracted endmembers by the proposed algorithm for
the Urban and Cuprite datasets are shown in Figs. 6 and 7, respec-
tively. In these figures, brown and blue color curves represent
GT and extracted endmembers, respectively. In these graphs, the
Y -axis represents the reflectance value and the X -axis represents
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(d) (e)

Fig. 4. Abundance maps estimated by FCLS from the Urban dataset. (a) Ashphalt road. (b) Grass. (c) Tree. (d) Roof. (e) Metal. (f) Dirt.

(& (h)

Fig.5. Abundance maps estimated by FCLS from the Cuprite dataset. (a) Alunite. (b) Andradite. (¢c) Buddingtonite. (d) Dumortierite. (¢) Kaolinite1. (f) Kaolinite2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (1) Chalcedony.
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Fig. 6. Extracted endmembers from the Urban dataset. (a) Ashphalt road. (b) Grass. (c) Tree. (d) Roof. (e) Metal. (f) Dirt.
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Fig. 7. Extracted endmembers from the Cuprite dataset. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinitel. (f) Kaolinite2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (1) Chalcedony.
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TABLE XV
EFFECT OF NOISE ON SYNTHETIC DATASETS FOR ALL ALGORITHMS

Image SNR SVMAX AVMAX VCA TRIP PPI ICA AMEE SPEE RBSPP SSPP Proposed
20 2.116 1.882 1.936 2.129 2.144 2.127 1.346 1482 1917 1.906 1.927
40 2.164 2.164 2.162 2.164 2409 2533 1414 2214 2.012 2.025 1.523
St 60 2.450 2.450 2452 2450 2420 2452 1973 2217 1.962 2.035 1.950
80 2451 2451 2451 2451 2.532 2434 1974 2218 1.964 1.918 1.954
100 2451 2451 2451 2451 2390 2463 1999 2218 2.006 1.944 2.051
Mean 2.326 2.280 2290 2.329 2379 2402 1741 2.070 1.972 1.965 1.881
20 1.712 1.772 1.708 1.540 1.520 1.768 1367 0.823 1.431 1.542 0.976
40 1.848 1.827 1.827 1.848 1.898 1.848 1.827 1.413 1.529 1.536 1.413
S 60 1.859 1.859 1.859 1.859 1.844 1.877 1.859 1.451 1.600 1.772 1.451
80 1.859 1.859 1.859 1.859 1.859 1943 1.859 1.859 1.600 1.622 1.859
100 1.859 1.859 1.859 1.859 1.798 1943 1.859 1.859 1.600 1.801 1.859
Mean 1.828 1.835 1.822 1.793 1.784 1.876 1.754 1.481 1.552 1.654 1.512
20 0.968 1.043 0.968 0.886 0.999 1.087 1372 0.932 1.130 1.338 0.925
40 1.079 1.079 1.149 1.079 1438 0.993 1.145 1522 1.273 1.549 0.823
$3 60 1.075 1.075 1.075 1.075 0.954 0931 1394 1336 1.258 1.260 0.824
80 1.075 1.075 1.075 1.075 1.375 1375 1.394 1335 1.258 1.380 1.075
100  1.075 1.075 1.075 1.075 1375 1.395 1394 1.335 1.258 1.301 1.075
Mean 1.055 1.070 1.069 1.038 1.228 1.156 1340 1.292 1.236 1.365 0.945
20 1.396 1.467 1.507 1.458 1470 1.863 1.310 1.626 1.406 1.437 1.410
40 1.552 1.552 1.601 1.552 1.602 1.842 1.606 1.601 1.695 1.698 1.552
S4 60 1.271 1.271 1.271 1.271 1.302 1957 1549 1.550 1.692 1.261 1.258
80 1.271 1.271 1.271 1.271 1.271 1371 1549 1.269 1.691 1.251 1.271
100 1.271 1.271 1.271 1.271 1.293 1371 1461 1269 1.691 1.232 1.271
Mean 1.352 1.366 1.384 1.365 1.388 1.681 1.495 1.463 1.635 1.376  1.352
20 1.301 1.332 1.358 1.301 1.317 1.136 1.231 1.317 1.484 1.609 1.136
40 1.411 1.411 1411 1411 1.199 1253 1240 1.515 1.283 1.166 1.253
S5 60 1.087 1.087 1.087 1.087 1.097 1.187 1.237 2.144 1.258 1.152 1.087
80 1.087 1.087 1.087 1.087 1.088 1.088 1.237 2.144 1.258 1.187 1.087
100 1.087 1.087 1.087 1.087 1.097 1.097 1.237 2.144 1.258 1.171 1.087
Mean 1.195 1.201 1.206 1.195 1.159 1.152 1236 1.853 1.308 1.257 1.130

the band number. The overall comparison of experiments with
Urban and Cuprite dataset is shown in Tables XIII and XIV,
respectively.

B. Experiments With Synthetic Datasets

The TSAM value obtained for the synthetic images by all the
considered algorithms is shown in Table XV. Each synthetic
image has Gaussian noise of SNR 20, 40, 60, 80, and 100 dB. As
aresult, each of the five types of synthetic images contains five
types of noise (i.e., we have a total of 25 synthetic images). For
each variant of a synthetic image, TSAM is calculated. It can be
seen in the last column of Table XV that the proposed algorithm
gives the lowest TSAM values for 13 out of the 25 generated
images. The bold entries in the Table XV represents the best
performing algorithm in that particular row. It can also be seen
in the table that the proposed algorithm gives better performance
than other algorithms for Exponential, Rational, and Spheric
types of synthetic images. Moreover, the proposed algorithm
gives almost similar TSAM values for Legendre and Matern
synthetic images. The mean values of TSAM are also calculated

in this experiment to showcase the average effect of all noise
types on each particular image. The mean value of TSAM for
the proposed algorithm is lower for images S3, S4, and S5, while
the lowest mean values for S1 and S2 are obtained by AMEE
and SPEE, respectively. It can also be noted that the proposed
algorithm is close to the best performer for S1 and S2 synthetic
images.

V. CONCLUSION

This article introduces a new algorithm for endmember ex-
traction from hyperspectral images. An innovative characteristic
of the proposed method is that it combines the concept of band
entropy (to model spatial information) and convex geometry
(to characterize spectral information). The proposed framework
for the integration of spatial and spectral information is inno-
vative and offers the advantage that rare endmembers are not
discarded by our method (as opposed to other traditional algo-
rithms for endmember extraction, particularly those that focus
on extracting endmembers from spatially homogeneous areas in
the scene). The proposed algorithm is evaluated by a detailed
comparison with other methods, using both synthetic and real
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datasets, and comparative metrics such as SAM, SID, ED, and
NXC. Our results indicate that the performance of the proposed
algorithm is generally better than that of state-of-the-art algo-
rithms, not only in terms of endmember extraction accuracy
but also in terms of abundance estimation accuracy (evaluated
using the RMSE). The efficacy of the proposed algorithm is also
demonstrated with noise-corrupted synthetic scenes, in which
ground endmembers and abundances are known. The proposed
approach has the specific advantage of being able to find rare
endmember signatures from the scene, which is particularly
helpful in target detection and accurate material mapping.
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