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Abstract—Spectral unmixing is an important problem for re-
motely sensed hyperspectral data exploitation. Automatic spec-
tral unmixing can be viewed as a three-stage problem, where the
first stage is subspace identification, the next one is endmember
extraction, and the final one is abundance estimation. In this se-
quence, endmember extraction is the most challenging problem.
Many researchers have attempted to extract endmembers from
hyperspectral images using spectral information only. However, it
is well known that the inclusion of spatial information can improve
the endmember extraction task. In this article, we introduce a new
endmember extraction algorithm that exploits both spectral and
spatial information. A main innovation of the proposed algorithm
is that spatial information is exploited using entropy, while spectral
information is exploited using convex set optimization. In the lit-
erature, none of the spatial–spectral algorithms has used entropy
as spatial information. The inclusion of this entropy-based spatial
information improves the accuracy of the endmember extraction
process. The results obtained by the proposed algorithm are com-
pared (using a variety of metrics) with those obtained by other
state-of-the-art methods, using both synthetic and real datasets.
Our experimental results demonstrate that the proposed algorithm
outperforms many available algorithms.

Index Terms—Convex set optimization, endmember extraction,
entropy, hyperspectral imaging, spectral unmixing.

I. INTRODUCTION

R EMOTE sensing is used in various applications of Earth
science, geography, land surveying, and Mars explo-

ration [1]. Hyperspectral sensors have opened up new avenues
in the field of remote sensing by collecting information in
hundreds of (narrow) bands from the electromagnetic spectrum.
Hyperspectral sensors provide precise and robust information
in the analysis of geological features, soil, vegetation, and the
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environment. Spaceborne and airborne systems use hyperspec-
tral sensors for many different purposes, including target detec-
tion, material mapping, material identification, and surface prop-
erty identification. However, the accuracy of these tasks strongly
depends upon the spatial resolution of the captured image. Due
to the (generally low) spatial resolution of hyperspectral sensors,
many pixels are mixed in nature, i.e., they consist of more than
one pure spectral material. Other reasons for the formation of
mixed pixels include multiple scattering and intimate mixtures
of materials [2]. Such mixing can be linear or nonlinear, de-
pending on how pure spectral signatures (called endmembers
in hyperspectral imaging terminology) are combined in a mixed
pixel. Most works assume the linear mixing model, as it is a sim-
ple approximation to real-world applications [2]. In this model,
the concept of endmember is a key aspect, since endmembers are
spectrally distinct signatures of pure materials that can be used
to model (linearly or nonlinearly) the mixed pixels in the scene.

Spectral unmixing decomposes mixed pixels into a combina-
tion of endmembers, weighted by their corresponding (subpixel)
abundance fractions. From an operational point of view, unmix-
ing can be either supervised or unsupervised. In unsupervised
unmixing, the hyperspectral image cube is the only input [3].
In the supervised approach, there is manual consideration of the
number of materials and their respective spectra. As shown in
Fig. 1, an unsupervised hyperspectral unmixing problem can
be divided into three subproblems [3]. The first one is the hy-
perspectral data subspace estimation, which finds the number of
endmembers (Q). The second block is the endmember extraction
itself, which finds a matrix (M) of pure endmember spectra
from the image or from a library. Finally, the third block is an
abundance estimation step, which finds the abundance (α) of
all the individual endmembers in each mixed pixel. The most
important block (and the one we specifically address in this
article) is the endmember extraction one, which provides prior
information of pure materials for target detection [4], abundance
mapping [5], change detection [6], and object classification [7].
As a result, proper extraction of pure endmembers is very
important in hyperspectral data exploitation [8].

There are mainly three types of approaches in the litera-
ture for endmember extraction [2]. The first one is the sta-
tistical approach [9], which formulates the unmixing problem
as a statistical inference one [10]. This approach is generally
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Fig. 1. Unsupervised spectral unmixing chain.

expensive from a computational viewpoint. The second ap-
proach is sparse regression [11], which requires a detailed
spectral library containing instances of the endmembers present
in the scene. The third approach is the geometrical one, which
assumes that there are pure pixels present in the image. Geomet-
rical approaches are actually very popular in the hyperspectral
imaging literature, perhaps due to their clear conceptual mean-
ing and low computational complexity. Recently, endmember
extraction has also been approached by deep-learning-based
methods [12], [13].

Simplex volume maximization by multidimensional geome-
try and similarity of spectral signatures are the two fundamental
criteria [14] of geometrical endmember extraction approaches.
Simplex volume maximization-based algorithms are mostly
based on the concept that the volume of the simplex formed
by any combination of pixels is always less than the volume
contained by the simplex formed by the purest pixels in the hy-
perspectral image [15]. Many algorithms such as NFINDR [16],
simplex growing algorithm (SGA) [17], successive volume max-
imization (SVMAX) [18], and alternating volume maximiza-
tion (AVMAX) [18] have been developed based on this fact.
The second criterion considers the similarity between different
spectral signatures to find pure pixels. Two popular algorithms
in this category are vertex component analysis (VCA) [19] and
TRIple-P:P-norm based pure pixel identification (TRIP) [20],
which are based on similarity measures. The pixel purity in-
dex (PPI) algorithm [21] generates random skewers. All pix-
els are projected onto these skewers to find the associated
projection scores. The purity of pixels can be found using
maximum and minimum thresholds. Independent component
analysis (ICA) [22], a method for separating a multivariate signal
into additive subcomponents, has also been used for the purpose
of endmember extraction from hyperspectral images.

All the aforementioned algorithms focus only on exploit-
ing the spectral information of the data alone. However, hy-
perspectral sensors are designed to capture spatial as well as
high spectral ground information. This conflicts with the fact
that most techniques available in the literature were designed
from a spectroscopic viewpoint, neglecting the spatial features
present in the image. The earliest attempt that uses both spa-
tial and spectral information was the automatic morphological
endmember extraction (AMEE) [23]. AMEE used the concept of

mathematical morphology to combine the spatial information
contained in the data together with the spectral one. Three pop-
ular algorithms that improve the endmember extraction process
using spatial and spectral information are spatial preprocessing
for endmember extraction (SPEE) [24], region-based spatial
preprocessing (RBSPP) [25], and spatial–spectral preprocessing
(SSPP) [26]. The SPEE algorithm spatially weighs the spectral
information related to each pixel for endmember extraction.
The RBSPP exploits spectral information more effectively. The
algorithm guides the endmember finding process to image zones,
which are both spatially homogeneous and spectrally pure. The
SPEE algorithm primarily accounts for the spatially homoge-
neous areas in the scene (regardless of their spectral purity). The
SSPP fuses spatial and spectral information (at the preprocess-
ing level) for improving the extraction process. Several other
endmember extraction algorithms have been presented in the
literature that incorporate spatial information along with spectral
information [27]–[39].

In this article, we develop a new algorithm for endmember
extraction that combines both spectral and spatial informa-
tion. The main innovation of the proposed algorithm is that
spatial information is exploited using entropy, while spectral
information is exploited using convex set optimization. The
concept of entropy [40] has been used in many image process-
ing techniques, including registration, reconstruction, segmen-
tation, classification, and compression. Few researchers have
also applied entropy in hyperspectral compression [41], band
selection [42], and unmixing [22]. Bayliss et al. [22] developed
an ICA-based algorithm for unmixing based on the entropy
between spectral signatures. ICA was selected under the assump-
tion that components are statistically independent. However, in
the data acquisition process of a hyperspectral sensor, the sum
of abundance fractions associated with each pixel adds to one
under the abundance sum-to-one constraint (ASC). As a result,
the sources (endmembers) are not statistically independent [43].
ICA uses the entropy of various spectra as a spectral feature,
while the proposed algorithm uses the entropy of each band as
a spatial feature.

At this point, it is important to emphasize that many hyper-
spectral endmember extraction algorithms [16]–[18], [24]–[26]
have used the concept of convex geometry optimization. The
proposed algorithm also uses this concept but incorporating the
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idea of entropy to characterize the spatial information in the
scene. Specifically, our algorithm uses low- and high-entropy
bands in the convex set optimization, which represents a new
concept of entropy-based convex set optimization. Here, the en-
tropy characterizes the spatial heterogeneity of each band (which
is useful for extracting rare or anomalous endmembers in the
scene). Due to this feature, our algorithm can accurately extract
rare and anomalous endmembers, which ultimately increases the
accuracy of the endmember extraction stage.

Endmember extraction algorithms can be implemented in
a parallel or sequential manner [14]. Parallel implementation
determines all endmembers simultaneously, while sequential
implementation determines the endmembers one by one. The
SGA is the sequential version of the original NFINDR algorithm.
The computational complexity of sequential implementations
is low compared to that of parallel implementations. However,
parallel implementations may be beneficial when extracting dis-
tinctive pixels effectively. In this regard, the proposed approach
extracts pure and distinct endmembers using a parallel approach.

The remainder of this article is organized as follows. Section II
presents a problem statement along with our newly proposed
endmember extraction algorithm. Section III describes the syn-
thetic and real image dataset used in the experimental evaluation,
and the performance metrics adopted to compare endmem-
ber extraction algorithms. In Section IV, various endmember
extraction algorithms are compared based on the considered
metrics, and the quality of the extracted endmembers in terms
of abundance estimation is also tested. Section V concludes this
article with some remarks and hints at plausible future research
lines.

II. PROBLEM STATEMENT AND PROPOSED ALGORITHM

Let us denote a mixed pixel in the hyperspectral image as an
(L× 1)-dimensional vector

y = Mα+ n (1)

where M is an L×Q matrix, with Q and L, respectively,
denoting the number of endmembers and the number of bands
in the original hyperspectral image. In (1), n is a noise vector
of size L× 1, which is assumed to be Gaussian in nature.
α = [α1, α2, . . ., αQ

]T denotes the abundance vector of size
Q× 1, which satisfies the following two constraints:

1) Abundance Non-negativity Constraint (ANC):

αi ≥ 0, i = 1, 2, . . ., Q. (2)

2) Abundance Sum-to-one Constraint (ASC):

Q∑
i=1

αi = 1. (3)

Let us denote the hyperspectral image as Y ≡
[y1,y2, . . .,yL]

T ≡ [y1,y2, . . .,yZ ], which contains Z mixed

TABLE I
NOTATIONS USED IN THIS ARTICLE

pixels of length L. Y is defined as follows:

Y ≡

⎡
⎢⎢⎢⎢⎣
y11 y21 y31 . . . yZ1
y12 y22 y32 . . . yZ2
...

...
...

. . .
...

y1L y2L y3L . . . yZL

⎤
⎥⎥⎥⎥⎦ (4)

where each band yi of size 1× Z is represented as a row
vector yi ≡ [y1i , y

2
i , y

3
i , . . ., y

Z
i ], and each mixed pixel vector

yi of size L× 1 is represented as a column vector yi ≡
[yi1, y

i
2, y

i
3, . . ., y

i
L]

T . Here, Z = U × V is the number of pixels
in the original image. The height and width of each band are,
respectively, U and V . Various notations used in this article are
shown in Table I.

The proposed algorithm takes as an input Y and the subspace
dimension (number of endmembers) Q. The result of the pro-
posed algorithm is a matrix of endmembersM̂. In order to extract
such a matrix, the proposed algorithm follows three steps. First,
it uses entropy of each normalized band and finds a new matrix
using it. This first step explores the spatial information contained
in the scene. The second step solves a convex set optimization
problem using the spatial information obtained in the first step.
This second step explores the spectral information contained in
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the scene. Finally, our algorithm removes unnecessary spectral
signatures, if any. We discuss each step in detail in the following.

Many hyperspectral data analysis techniques use dimension-
ality reduction as a preprocessing step, which aims to remove
the redundant spectral information while preserving only critical
information for subsequent processing. Hyperspectral dimen-
sionality reduction can be achieved through feature extraction
or band selection [44], [45]. Feature extraction methods such
as principal component analysis and minimum noise fraction
transform the original data into reduced feature spaces by means
of different criteria, whereas band selection aims to select a small
subset of hyperspectral bands to reduce the burden of heavy
computations [46]. Regardless of whether dimensionality re-
duction is performed using band selection or feature extraction,
some spectral information in the original image will be lost. The
proposed algorithm uses a different approach and exploits all the
spectral bands in the original image. In other words, we avoid
dimensionality reduction and simply use band normalization as a
preprocessing step. The advantage of using band normalization
is that it can allow us to find the entropy of each band. Since
different bands have a different dynamic range (max value–min
value), our band normalization strategy is intended to make all
bands similar in terms of dynamic range. In our case, band
normalization for each ith band (yi) is conducted as follows:

ȳji =

(
yji −min(yi)

)
(max(yi)−min(yi))

∀yji ∈ yi. (5)

Each pixel value yji of band (yi) is normalized as per (5)
and converted to a new normalized value ȳji , which is in
the range of [0, 1]. The aforementioned band normalization
process [shown in (5)] is repeated for all the bands of the
hyperspectral image. A band-normalized hyperspectral image
Ȳ ≡ [ȳ1, ȳ2, . . ., ȳL]

T ≡ [ȳ1, ȳ2, . . ., ȳZ ] is defined as

Ȳ ≡

⎡
⎢⎢⎢⎢⎣
ȳ11 ȳ21 ȳ31 . . . ȳZ1
ȳ12 ȳ22 ȳ32 . . . ȳZ2
...

...
...

. . .
...

ȳ1L ȳ2L ȳ3L . . . ȳZL

⎤
⎥⎥⎥⎥⎦ . (6)

A. Entropy as Spatial Information

For a k-state system, Shannon [40] defined the entropy as

H = −
k∑

i=1

pi log pi (7)

where pi is the probability of occurrence for the ith event, and∑
pi = 1, 0 ≤ pi ≤ 1. Shannon’s entropy is very popular in the

field of communications. Many researchers have extended the
concept of entropy for image processing purposes [47].

Let I be a grayscale image of size U × V and SG ∈
{0, 1, . . ., G− 1} be the set of associated grayscale values. Let
G be maximum shade value in the image. Image I contains
Z = U × V pixels. Let Wi be the frequency of the ith grayscale
value, where i ∈ SG. The entropy for I (grayscale image) is

defined as

H = −
G−1∑
i=0

pi log pi, pi = Wi/Z. (8)

We can extend the entropy definition in (8) for hyperspectral
images and define the kth band entropy (Hk) as

Hk = −
G−1∑
i=0

pki log p
k
i ; pki = W k

i /Z, k = 1, 2, . . ., L (9)

Here, pki is probability of having an ith gray shade in the kth

band. The entropy of each band in Ȳ is calculated using (9)
and denoted as {H1, H2, . . ., HL}. Entropy can be interpreted
as a measure of order (or randomness) or as a measure of ho-
mogeneity [48]. Instead of looking at various interpretations, we
can look at it as an expression of the number of states of a system.
Lin [49], Jost [50], and other researchers have used Shannon’s
entropy concept for information-theoretic divergence between
two probability distributions. In the proposed algorithm, this
entropy concept is used to measure the divergence between the
probability distribution of two bands. A system with many states
has high entropy and a system with few states has low entropy. A
band with low entropy exhibits fewer variations, and a band with
high entropy exhibits more variations. Bands can be rearranged
in ascending order based on their values of entropy. A new
matrix S can be, thus, obtained from Ȳ in such a manner that
low-entropy bands come first, and high-entropy bands come last.
The matrix S is generated such that Hk < Hk+1 for each value
of k, we have

S ≡ [s1, s2, . . ., sL]
T ≡ [s1, s2, . . ., sZ ]. (10)

B. Spectral Information for Convex Set Optimization

In convex analysis [51], the affine hull of a set of vectors
{x1,x2, . . .,xQ} is defined as

aff{x1,x2, . . .,xQ} =
{

Q∑
i=1

θixi

∣∣∣θ ∈ IR,1T
Qθ = 1

}
. (11)

The immediate implication of (11) to the linear mixing model
in (1) is that every mixed pixel vector y can be in the affine hull
aff{x1, x2, . . ., xQ}. The affine hull follows the ASC constraint
in (3), but not the ANC constraint in (2). A special case of an
affine hull set is the convex hull set, which follows both (2) and
(3). The convex hull set C is defined as

conv{x1,x2, . . .,xQ} =
{

Q∑
i=1

θixi

∣∣∣θ ∈ IR+,1
T
Qθ = 1

}
.

(12)
The affine space subset that is closed under convex combinations
is called a convex setC [51]. The convex set has the property that
a convex combination is a linear combination of vectors, where
all coefficients are nonnegative and sum up to 1. This property
of a convex set describes well the linear mixture model in (1),
including both the ANC in (2) and the ASC in (3). Coifman
and Wickerhauser [52] developed algorithms based on entropy
for best basis selection. In the proposed approach, we use this
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entropy feature of bands for best basis (band) selection to find
the best convex set. We define an optimization problem for best
basis selection as follows:

Optimization Problem:

minimize
N∈T

N −Q

subject to N ≥ Q. (13)

Here, T = {T1, T2, . . ., TL/2} is a set of numbers, which
represent the number of points involved in making a convex
set C [using (12)] for two bands (sl and sh) of the data. Ti is
the number of convex set points for two-band (sl = si and sh =
sL−i−1) data. sl = si is a low-entropy band and sh = sL−i−1
is a high-entropy band. The high-entropy band contains many
heterogeneous objects, while the low-entropy band contains
many homogeneous objects. The proposed model computes the
convex set points from low- and high-entropy bands. Hence,
this combination of homogeneity and heterogeneity features
explores the variety of object information between two bands for
extracting rare endmembers. The two-band combination from S
results in L/2 values in T. When the value of L is even, the
set T exactly has L/2 values. When the value of L is odd, the
middle band fromS is removed to make it even.N is an outcome
of optimization problem, as described in (13). This optimization
problem selects the minimum number N from the available L/2
values in the set T.

As shown in Fig. 1, the expected number of extracted end-
members is Q, which is also known as the hyperspectral sub-
space dimension. Generally, the value of Q is found by many
hyperspectral subspace estimation techniques [3], [53], before
extracting the endmembers from the image. The optimization
problem in (13) thus relates to finding the optimum value of
N such that the difference between N and Q is the absolute
minimum, constrained by N ≥ Q. The algorithm is of no use if
N < Q (this may happen in multispectral data) because it will
extract fewer materials than subspace dimensions.

C. Removing Extra Points

As a result of the previous step, we obtain a number N ,
which is greater than or equal to Q. At this point, there are
two possibilities.

1) N = Q: N is the number of materials extracted from the
previous step. The hyperspectral subspace dimension is
Q. N and Q should be the same. If this condition is true,
then all the extracted materials are endmembers.

2) N > Q: The main goal of the proposed algorithm is to
extract exactly Q endmembers. If the above step gives
some extra points (N −Q), then we have to remove (N −
Q) points. Preservation of pure signatures/materials needs
to be taken care of while removing these extra points.

Convex set points can be arranged in a clockwise or anticlock-
wise manner. The advantage of arranging them in order is that
every point/endmember will have two proper neighbors. If two
points are very near, it means that they are very similar. If we
remove one of them, it is likely that we are not losing any pure
signature/spectra. The proposed algorithm eliminates materials

Algorithm 1: Proposed Algorithm.
1: Inputs : Y, Q � Inputs to the algorithm
2: %% Step-1: Entropy as spatial information %%
3: For k=1 to L
4: ȳk ←− yk � Band normalization for the kth band
5: Hk = entropy (ȳk) � Entropy of the kth band
6: EndFor
7: [s1, s2, . . ., sL]

T ←− [ȳ1, ȳ2, . . ., ȳL]
T �

Entropy-based band sorting
8: S←− Ȳ � Creation of new matrix from normalized
hyperspectral image
9: %% Step-2: Spectral information for convex set
optimization %%

10: For i = 1 to L/2
11: Ci = conv(si, sL−i−1) � Calculate convex set
for two-band data
12: Ti = count (Ci) � Calculate the number of
points in the convex set
13: EndFor
14: T = {T1, T2, . . ., TL/2} � Set of number of
convex set points
15: minimize

N∈T
N −Q subject to N ≥ Q � Find N

using optimization problem
16: %% Step-3: Removing extra points %%
17: If N > Q
18: For k=1 to N
19: D(x(i, j),x(i1, j1)) � Calculate Euclidean
distance for each point x ∈ C
20: EndFor
21: Remove (N −Q) points from C � Removal of
points having lowest D(x(i, j),x(i1, j1))
22: EndIf
23: M̂ = Convex spectral signatures from C
24: Output : M̂ � Output of the algorithm

that are very close to each other by taking into account the above
concept.

To do this, every point in the ordered convex set C is assumed
to have two neighbors: clockwise neighbor and anticlockwise
neighbor. Let point x(i, j) have one neighbor x(i1, j1) in the
anticlockwise direction. In our approach, we use anticlockwise
direction (it does not make much difference whether we take
clockwise or anticlockwise direction because similar types of
points are close to each other). The second-order Minkowski’s
distance is the Euclidean distance (ED). The ED D(x) for each
point x(i, j) is defined as

D(x(i, j),x(i1, j1)) =
√

(i− i1)2 + (j − j1)2. (14)

Our algorithm removes (N −Q) points based on the smallest
D(x). The algorithm returns Q points from the original set of
N points based on their ED. As a result, the algorithm returns
a matrix M̂ of size L×Q. M̂ contains Q pure endmembers
extracted from the original image Y. The algorithm output (M̂)
is an extracted endmember matrix (second block of Fig. 1). A
pseudocode of the proposed algorithm is given in Algorithm 1.
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Fig. 2. Real datasets. (a) Urban. (b) Cuprite.

TABLE II
URBAN GT ENDMEMBERS

III. DATASETS AND PARAMETER SETTINGS

A. Datasets

The real and synthetic datasets used in our experiments are de-
scribed in the following. Both types of datasets are in reflectance
units.

1) Real Datasets: Two hyperspectral images (Urban and
Cuprite) shown in Fig. 2 are used to validate the proposed
algorithm. The Urban dataset was captured by the Hyperspectral
Digital Imagery Collection Experiment sensor and is one of
the most popular datasets in the spectral unmixing research
community [54]. The Urban image has 307 lines, and each line
has 307 pixels. The dataset contains a total of 210 bands, which
cover the range from 400 to 2500 nm with a spectral resolution
of 10 nm. We processed 162 bands after removing 48 noisy and
water absorption bands (1–4, 76, 87, 101–111, 136–153, and
198–210). Each pixel is 2 × 2 m2. As mentioned by Zhu [54],
six ground-truth (GT) endmembers are selected from the United
States Geological Survey (USGS) spectral library [55], as shown
in Table II.

The Cuprite dataset is the benchmark dataset [54] for the
hyperspectral unmixing research community. It was collected
by the airborne visible infrared imaging spectrometer over the
Cuprite mining district in Nevada, USA. The dataset covers the
range from 370 to 2480 nm with 224 channels. There are six
noisy bands (1, 2, and 221–224) and 30 water absorption bands
(104–113 and 148–167). After removing these 36 bands, we
process a total of 188 bands. A subscene with 250× 190 pixels is
taken to validate the proposed algorithm. We have assumed only

TABLE III
CUPRITE GT ENDMEMBERS

12 GT endmembers, as suggested in [54]. These endmember
types, along with their notations used in this article, are shown
in Table III.

2) Synthetic Datasets: We have used a set of synthetic hyper-
spectral images generated by the Hyperspectral Imagery Synthe-
sis Toolbox [56]. All these synthetic images have been gener-
ated using five endmembers (asphalt—gds367, brick—gds350,
fiberglass—gds374, sheetmetal—gds352, and vinylplastic—
gds372) extracted from the USGS spectral library [55]. Each
simulated image comprises 128 × 128 pixels and 431 spectral
bands, ranging from 350 to 2500 nm (see Fig. 3). We have
generated five images, Legendre (S1), Matern Gaussian (S2),
Exponential Gaussian (S3), Rational Gaussian (S4), and Spheric
Gaussian (S5), using the aforementioned tool. To evaluate the
robustness of the proposed algorithm, each synthetic dataset is
corrupted with additive Gaussian noise at different noise levels,
to achieve signal-to-noise ratios (SNRs) of 20, 40, 60, 80, and
100 dB.

B. Comparison Parameters

In this section, each L-dimensional vector endmember (m̂ ≡
[m̂1, m̂2, . . .m̂L]

T ) is compared to the corresponding GT
endmember (m ≡ [m1,m2, . . .mL]

T ) using different metrics:
spectral angle mapper (SAM), spectral information divergence
(SID), Euclidean distance (ED), and normalized cross correla-
tion (NXC). The root-mean-square error (RMSE) is also used to
compare various algorithms in terms of abundance estimation
accuracy. These metrics are summarized as follows.

1) Spectral Angle Mapper: The SAM between two spectral
vectors m and m̂ of length L is defined as

SAM = cos−1
(

m · m̂
|m||m̂|

)
. (15)

The total SAM (TSAM) for Q endmembers is given by

TSAM =

Q∑
i=1

cos−1
(

mi.m̂i

|mi|.|m̂i|
)
. (16)

2) Spectral Information Divergence: The SID [19] is an
information-theoretic criterion for spectral discriminability
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Fig. 3. Synthetic datasets. (a) S1-Legendre. (b) S2-Matern. (c) S3-Exponential. (d) S4-Rational. (e) S5-Spheric.

and similarity. The probability vectors p = [p1, p2, . . .pL]
T

and q = [q1, q2, . . .qL]
T (for two L-dimensional spectra m =

[m1,m2, . . .mL]
T and m̂ = [m̂1, m̂2, . . .m̂L]

T ) are, respec-
tively, defined as

pi =
mi∑L
i=1 mi

, qi =
m̂i∑L
i=1 m̂i

. (17)

The SID between two spectra m and m̂ of length L is defined
as

SID =

L∑
i=1

pi log

(
pi
qi

)
+

L∑
i=1

qi log

(
qi
pi

)
. (18)

The term
∑L

i=1 pi log (
pi

qi
) is the Kullback–Leibler information

function, which shows the relative entropy of m with respect to
m̂.

The total SID (TSID) for Q endmembers is defined as

TSID =

Q∑
j=1

(
L∑

i=1

pji log

(
pji
qji

)
+

L∑
i=1

qji log

(
qji
pji

))
.

(19)
3) Euclidean Distance: The ED between two spectral signa-

tures m and m̂ of length L is defined as

ED =

√∑L

i=1
(mi − m̂i)2. (20)

The total Euclidean distance (TED) forQ endmembers is defined
as

TED =
∑Q

j=1

√√√√ L∑
i=1

(mij − m̂ij)2. (21)

4) Normalized Cross Correlation: The NXC between two
spectra m and m̂ of length L is defined as

NXC =

√∑L
i=1 (mi−μm)(m̂i−μm̂)

σm×σm̂

(L− 1)
. (22)

Here,μm andμm̂ are the mean of spectram and m̂, respectively.
σm and σm̂ denote the standard deviation of spectra m and m̂,
respectively.

Total normalized cross correlation (TNXC) for Q endmem-
bers is defined as

TNXC =

∑Q
j=1

√
∑L

i=1 (mij−μmj)(m̂ij−μm̂j)
σmj×σm̂j

(L− 1)
. (23)

5) Root-Mean-Square Error: The RMSE is defined as

RMSE =

Q∑
i=1

√∑Z
j=1 (A

i
j −Gi

j)
2

Z
. (24)

Here, Ai is the abundance map of the ith endmember, and Gi is
an abundance map of the ith GT endmember. Z is the total num-
ber of pixels in the image. Ai

j is the jth pixel in the abundance
map associated to the ith endmember. Gi

j is the jth pixel in the
abundance map associated with the ith GT endmember.

IV. EXPERIMENTAL RESULTS

In this section, the results obtained by the proposed algorithm
are compared to those obtained by ten well-known endmember
extraction algorithms (SVMAX, AVMAX, VCA, TRIP, PPI,
ICA, AMEE, SPEE, RBSPP, and SSPP) on both synthetic and
real datasets. All these well-known algorithms are carefully
optimized using empirical parameter settings of that respective
algorithms. We empirically found the optimized values for both
the real datasets in our experiments. We have used the opti-
mized parameter values given in Table IV. In the hyperspectral
unmixing chain, the number of endmembers Q is estimated
before endmember extraction. Many subspace identification
algorithms [53] exist in the literature. We have used the well-
known HYperspectral Signal Identification be Minimum Error
(HYSIME), [57] algorithm as a popular subspace identification
method in the hyperspectral unmixing community. The proposed
algorithm is implemented using MATLAB 2019b tool.

A. Experiments With Real Datasets

Tables V–VIII and Tables IX–XII report our experimental
results on the Urban and Cuprite datasets, respectively. The
compared algorithms are depicted in the first column of Ta-
bles V–VIII and Tables IX–XII. SAM, SID, ED, and NXC values
are computed using (15), (18), (20), and (22), respectively. The
second column in Tables V–VIII shows a comparison (using
different metrics) between the first GT signature (U1) and the
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TABLE IV
PARAMETER SETTINGS FOR EACH SCENE

TABLE V
SAM FOR URBAN REAL DATASET

TABLE VI
SID FOR URBAN REAL DATASET

TABLE VII
ED FOR URBAN REAL DATASET

corresponding extracted endmember (i.e., the one that is most
similar to U1 among the set of extracted endmembers, accord-
ing to each metric). The remaining columns in Tables V–VIII
report a comparison between the remaining GT spectra (U2–U5)
and their corresponding endmembers (extracted by different

TABLE VIII
NXC FOR URBAN REAL DATASET

algorithms) from the Urban dataset. Similarly, in Tables IX–XII,
C1–C12 columns report a comparison (using different metrics)
between 12 GT spectra in the Cuprite scene and the corre-
sponding endmembers extracted by different algorithms. The
TSAM, TSID, TED, and TNXC values, calculated using (16),
(19), (21), and (23), are reported in Tables V–XII. The mean and
standard deviation of all evaluation metrics (SAM, SID, ED, and
NXC) are reported in the last two columns of Tables V–XII. The
bold entries in the Tables V-XIV represent the best performing
algorithm. All values of SAM, SID, TSAM, and TSID are in
radians. The results obtained using the considered metrics are
discussed in the following.

1) Spectral Angle Mapper: It can be observed from Tables V
and IX that the SAM values obtained for the proposed algorithm
are close to zero, which indicates that the extracted endmembers
are very similar to the corresponding GT spectra for the Urban
and Cuprite datasets. The SAM values of a few algorithms are
close to π/2, which indicates that the extracted endmembers
are different than the GT ones. It can be seen that the TSAM
values of the proposed algorithm are consistently lower than
those obtained by other algorithms. In addition, the mean and the
standard deviation values obtained for the proposed algorithm
are lower than those obtained for the other algorithms in the two
considered real datasets.

2) Spectral Information Divergence: As shown in Tables VI
and X, the SID values obtained for the proposed algorithm on
the Urban and Cuprite datasets are close to zero, which again
indicates that the extracted endmembers are very similar to the
corresponding GT ones. The TSID values in Tables VI and X
also reveal that the values obtained for the proposed algorithm
are low when compared to those of other algorithms. As shown in
the last two columns of Tables VI and X, the mean and standard
deviation values obtained for the proposed algorithm are lower
than those obtained for the other algorithms.

3) Euclidean Distance: The ED values of Tables VII and XI
indicate that the values obtained for the proposed algorithm are
low when compared to those of other algorithms. The mean
values obtained for the proposed algorithm are lower than those
obtained for the other algorithms, and the standard deviation
values are comparable.

4) Normalized Cross Correlation: The NXC values com-
puted for the proposed algorithm on both real datasets are
positive for all endmembers, as shown in Tables VIII and XII. It
can be seen that some values are negative in both tables. It can
also be noted that negative values are coming mostly for those
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TABLE IX
SAM FOR CUPRITE REAL DATASET

TABLE X
SID FOR CUPRITE REAL DATASET

TABLE XI
ED FOR CUPRITE REAL DATASET

TABLE XII
NXC FOR CUPRITE REAL DATASET
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TABLE XIII
OVERALL COMPARISON ON URBAN DATASET

TABLE XIV
OVERALL COMPARISON ON CUPRITE DATASET

materials, which are very rare in a scene. For the Urban scene,
materials (U2, U3, U5, and U6) cover more area in comparison
with materials (U1 and U4). Similarly, materials C1, C3, C7,
and C12 correspond to rare minerals in the Cuprite scene. Many
algorithms cannot extract these rare materials. Using the hetero-
geneous features from high-entropy bands (and homogeneous
features from low-entropy bands) in the second step of the
proposed algorithm leads to high NXC values for these rare
endmembers, as opposed to other methods. The TNXC values
reveal that the TNXC values obtained for the proposed algorithm
are high compared to those obtained for other algorithms. As
the last two columns of Tables VIII and XII show, the mean
values obtained for the proposed algorithm are higher than those
obtained for the other algorithms, and the standard deviation
values are lower.

5) Root Mean Square Error: The third stage in the unsu-
pervised spectral unmixing chain is abundance estimation, as
described in Fig. 1. There are mainly three types of abundance es-
timation methods: fully constrained, nonnegatively constrained,
and unconstrained. If a method uses the constraints in (2) and
(3) for finding an abundance vector α, a method is called fully
constrained. If a method uses only the constraint mentioned
in (2) for finding an abundance vector α, it is called nonneg-
atively constrained. If a method does not use any constraint
for finding an abundance vector α, it is called unconstrained.

In our experiment, we have used the fully constrained least
square (FCLS) [58] method to estimate fractional abundances
and compare various algorithms, as it follows the ANC and ASC
constraints of the linear mixing model described in (1). The
RMSE, as described in (24), is used to establish a comparison
between the abundance maps obtained by various algorithms
with those obtained by the proposed algorithm. The RMSE val-
ues obtained for all tested algorithms with the Urban and Cuprite
real datasets are shown in Tables XIII and XIV, respectively. As
shown in the figure, the proposed algorithm outperforms all other
algorithms in terms of abundance estimation.

6) Running Time: The experiments are performed on a com-
puter with Intel i7-7500 CPU at 2.7 GHz, 8-GB RAM, and
windows 10 (64-bit) operating system. The running times of
the Urban and Cuprite real datasets for all algorithms are shown
in Tables XIII and XIV, respectively. It can be observed that the
running time of the proposed algorithm is competent with other
algorithms.

7) Others: The abundance maps for the Urban and Cuprite
dataset are shown in Figs. 4 and 5, respectively. The comparison
of GT and extracted endmembers by the proposed algorithm for
the Urban and Cuprite datasets are shown in Figs. 6 and 7, respec-
tively. In these figures, brown and blue color curves represent
GT and extracted endmembers, respectively. In these graphs, the
Y -axis represents the reflectance value and theX-axis represents
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Fig. 4. Abundance maps estimated by FCLS from the Urban dataset. (a) Ashphalt road. (b) Grass. (c) Tree. (d) Roof. (e) Metal. (f) Dirt.

Fig. 5. Abundance maps estimated by FCLS from the Cuprite dataset. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite1. (f) Kaolinite2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.

Fig. 6. Extracted endmembers from the Urban dataset. (a) Ashphalt road. (b) Grass. (c) Tree. (d) Roof. (e) Metal. (f) Dirt.

Fig. 7. Extracted endmembers from the Cuprite dataset. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite1. (f) Kaolinite2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.
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TABLE XV
EFFECT OF NOISE ON SYNTHETIC DATASETS FOR ALL ALGORITHMS

the band number. The overall comparison of experiments with
Urban and Cuprite dataset is shown in Tables XIII and XIV,
respectively.

B. Experiments With Synthetic Datasets

The TSAM value obtained for the synthetic images by all the
considered algorithms is shown in Table XV. Each synthetic
image has Gaussian noise of SNR 20, 40, 60, 80, and 100 dB. As
a result, each of the five types of synthetic images contains five
types of noise (i.e., we have a total of 25 synthetic images). For
each variant of a synthetic image, TSAM is calculated. It can be
seen in the last column of Table XV that the proposed algorithm
gives the lowest TSAM values for 13 out of the 25 generated
images. The bold entries in the Table XV represents the best
performing algorithm in that particular row. It can also be seen
in the table that the proposed algorithm gives better performance
than other algorithms for Exponential, Rational, and Spheric
types of synthetic images. Moreover, the proposed algorithm
gives almost similar TSAM values for Legendre and Matern
synthetic images. The mean values of TSAM are also calculated

in this experiment to showcase the average effect of all noise
types on each particular image. The mean value of TSAM for
the proposed algorithm is lower for images S3, S4, and S5, while
the lowest mean values for S1 and S2 are obtained by AMEE
and SPEE, respectively. It can also be noted that the proposed
algorithm is close to the best performer for S1 and S2 synthetic
images.

V. CONCLUSION

This article introduces a new algorithm for endmember ex-
traction from hyperspectral images. An innovative characteristic
of the proposed method is that it combines the concept of band
entropy (to model spatial information) and convex geometry
(to characterize spectral information). The proposed framework
for the integration of spatial and spectral information is inno-
vative and offers the advantage that rare endmembers are not
discarded by our method (as opposed to other traditional algo-
rithms for endmember extraction, particularly those that focus
on extracting endmembers from spatially homogeneous areas in
the scene). The proposed algorithm is evaluated by a detailed
comparison with other methods, using both synthetic and real
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datasets, and comparative metrics such as SAM, SID, ED, and
NXC. Our results indicate that the performance of the proposed
algorithm is generally better than that of state-of-the-art algo-
rithms, not only in terms of endmember extraction accuracy
but also in terms of abundance estimation accuracy (evaluated
using the RMSE). The efficacy of the proposed algorithm is also
demonstrated with noise-corrupted synthetic scenes, in which
ground endmembers and abundances are known. The proposed
approach has the specific advantage of being able to find rare
endmember signatures from the scene, which is particularly
helpful in target detection and accurate material mapping.
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