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Networks Based on Conjugate Gradient Update

and Pixel-Centric Spectral Block Features
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Abstract—This article describes the use of deep belief networks
(DBNs) based on the conjugate gradient (CG) update algorithm
for hyperspectral classification. DBNs perform two processes: un-
supervised pretraining and supervised fine-tuning. The parameter
update method in the fine-tuning stage plays a key role in optimizing
the classification model. The proposed method employs CG-based
fine-tuning to avoid the “zig-zagging” problem with the gradient
descent algorithm and to accelerate the DBN convergence. First,
the spectral features and pixel-centric spectral block features are
extracted from hyperspectral images for use as the input vectors.
The update variables are then calculated based on a CG algo-
rithm and the 2-norm, and the parameters are updated during the
backpropagation step of the proposed CGDBN. Two models with
different CG methods are applied to a public hyperspectral image
benchmark for classification experiments and analysis, and the
results are compared with those from several classification methods
that are currently in use. The experimental results show that the
proposed classification models have advantages in terms of model
convergence and low sensitivity to certain parameters. In addition,
application to a hyperspectral image of coastal wetlands in the Yel-
low River Delta produces a satisfactory classification. The results of
this study demonstrate that the proposed CG-update-based DBN
provides a new approach for hyperspectral dataset classification.

Index Terms—Backpropagation (BP), conjugate gradient (CG),
deep belief network (DBN), hyperspectral image classification,
pixel-centric spectral block features, 2-norm.

I. INTRODUCTION

HYPERSPECTRAL images containing rich spectral and
spatial information have become the focus of remote

sensing image research. Regarding the methods of classifying
hyperspectral images, many scholars have explored techniques
that make full use of image information and effectively improve
the classification effect.
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Unlike shallow learning machines, deep learning can fully
mine the underlying features of an image and learn the internal
mechanism of these features. Therefore, in the context of the
rapid development of computers, deep learning has been suc-
cessfully applied in the field of image classification and signifi-
cant results have been achieved. Hyperspectral images satisfy the
requirements of deep learning in terms of sample information.
Deep learning models have received widespread attention in
the field of hyperspectral image classification [1]–[5]. Fang
et al. [6] proposed a novel collaborative learning framework
for semi-supervised hyperspectral image classification with joint
deep convolutional neural networks (CNNs) and deep clustering,
to solve the problem of limited labeled training samples in the
hyperspectral image datasets. Considering that transfer learning
strategies have the potential for the hyperspectral image classi-
fication, He et al. [7] proposed a new classification framework
that combined transfer learning and deep CNN for hyperspectral
image classification, and achieved good results especially when
the training samples are limited. To fully take advantage of
spatial and spectral information of the hyperspectral image, Han
et al. [8] proposed a new joint spatial–spectral hyperspectral
image classification method based on different-scale two-stream
convolutional network and spatial enhancement strategy. Roy
et al. [9] proposed a hybrid spectral CNN (HybridSN) for
hyperspectral image classification, which is a spectral–spatial
3-D CNN followed by spatial 2-D-CNN. HybridSN model
combines the complementary information of spatio-spectral and
spectral in the form of 3-D and 2-D convolutions, respectively.
Deep belief networks (DBNs) combine unsupervised learning
and supervised learning. First proposed by Hinton et al. in
2006 [10], DBNs first use an unsupervised process to train the
network parameters of each layer, and then apply a supervised
process to calculate and transfer errors, constantly updating the
network parameters through some optimization method. Finally,
the network model can effectively describe the characteristics of
the data and implement classification. Many studies show that
the DBN classification model can be successfully applied to
hyperspectral classification [11]–[19]. Tong et al. [11] improved
the standard training process of DBNs to solve the problem
of gradient disappearance when the number of hidden layers
increases. They fused principal component analysis (PCA) with
kernel PCA to reduce the dimensionality of the input data and
achieved an overall accuracy (OA) of 96.72% with their DBN
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model using 40% of the Salinas dataset as training samples.
Zhong and Gong [12] proposed a novel model that takes advan-
tage of the strength of DBNs in deep learning representations
and conditional random fields in contextual (spatial) modeling
to improve the classification of hyperspectral images. Liu et al.
[13] proposed the active learning of deep networks based on
the two stages of DBN training and the weighted incremental
dictionary learning, enabling the training samples to be actively
selected at each iteration. Li et al. [15] investigated a novel hy-
perspectral classification framework based on an optimal DBN
algorithm, and a new texture feature enhancement that employs
multi-texture features and band grouping for feature extraction
and classification. Zhong et al. [16] developed a diversified DBN
by regularizing the pretraining and fine-tuning procedures to
deal with the problem of a limited number of training samples
and the performance of “dead” (never responding) or “poten-
tially over-tolerant” (always responding) units in the learned
DBNs. Based on the characteristics of hyperspectral images, the
combination of spectral information with other features such as
the spectral neighborhood and spatial information improves the
classification effect of the DBN classification model. Zhou et al.
[17] developed a deep learning-based method that considers
the characteristics of grouped features of the spatial–spectral
data. Their approach has the ability to reduce the influence of
redundant bands and extracts better features for hyperspectral
image classification by incorporating a group-based weight-
decay process in the DBN. Mughees et al. [18] proposed a deep
learning-based spectral-adaptive segmented DBN architecture
that analyzes a DBN and solves the relevant problems through
spectral and spatial segmentation. This is a two-step classifi-
cation approach that reduces the complexity of the learning
process and extracts local features, making it simpler for the
DBN to effectively extract the spectral–spatial features. Chen
et al. [19] proposed a novel deep architecture that combines
the spectral–spatial feature extraction and classification. Their
DBN framework is a hybrid of PCA, hierarchical learning-based
feature extraction, and logistic regression.

Many deep learning models use a backpropagation (BP)
network [20], [21]. This allows the classification results of the
network to successfully approach the true value by calculating
the errors and updating the gradients. BP is actually a continuous
optimization process with respect to the optimal value, with a
gradient descent algorithm typically used during the iterative
procedure. This method requires fewer calculations per iteration,
takes up less memory, and is not especially sensitive to the
initial conditions. Even for poorly chosen initial conditions,
the minimum of the objective function can often be attained.
In deep learning networks, BP algorithms often use stochastic
gradient descent (SGD) [22], [23], mini-batch gradient descent
[24], or some other efficient gradient descent-based optimiza-
tion algorithm to improve the efficiency of model training.
However, gradient descent-based approaches face the problem
of slow convergence, because the iterative point is approach-
ing a minimum along a tortuous path; effectively, the two
search directions are always perpendicular to each other, pro-
ducing the so-called “zig-zagging” problem [25]. Many studies
have reported improved gradient descent-based methods, such
as SGD with momentum [26], Nesterov accelerated gradient

[27], and automatic adjustment of the learning rate based on
SGD, e.g., Adagrad [28], Adadelta [29], RMSprop [30], and
Adam [31].

In this article, we describe the construction and application of
DBN classification models based on the conjugate gradient (CG)
algorithms. As a type of optimization method, the CG algorithms
[32], [33] use the conjugate direction as the search direction for
each iteration. This effectively avoids the zig-zagging caused by
using the gradient direction as the search direction. The CG algo-
rithm has relatively small storage requirements and a fast conver-
gence speed. In the BP process, we obtain the updated term of the
parameter matrix by calculating the 2-norm of the gradient in the
CG algorithm, thus achieving faster convergence and improved
classification accuracy. The pixel-centric spectral block features
after PCA dimensionality reduction and image enhancement are
combined with the spectral features of the image to form the
input of the proposed classification model. The University of
Pavia dataset is used to carry out classification experiments, with
two classic CG algorithms, namely the Fletcher–Reeves (FR)
[34] and Polak–Ribiere–Polyak (PRP) algorithms [35], [36],
used to construct CGDBN classification models. Comparison
tests are conducted to explore the convergence performance and
classification effect of the proposed models.

II. PROPOSED METHOD

We propose DBN classification models based on CG opti-
mization with pixel-centric spectral block features as the in-
put data. The framework is shown in Fig. 1. The proposed
model includes three main modules: feature extraction from
the pixel spectrum and pixel-centric block spectrum, generation
of combined samples for model input, and classification in the
CG-based DBN. In the proposed model, CG with 2-norm is
used instead of gradient descent to fine-tune the parameters in
each BP iteration. Two classic CG algorithms are used to obtain
CGDBN models. The proposed models are described below.

A. Pixel-Centric Spectral Block Feature Extraction

First, the spectral data in the input image are normalized to [0,
1] in the spectral dimension using (1). Second, PCA dimension-
ality reduction is performed on the hyperspectral image. After
PCA, the image is subjected to neighborhood-average image
enhancement processing. Pixel-centric spectral block features
are taken from the first 10 principal components. We use a
3-pixel × 3-pixel window to read the pixel values sequentially
according to the principal components and obtain the vector-
ization feature of the pixel-centric spectral blocks, as shown in
Fig. 2. The number of principal components and window size is
determined as described in the following analysis. Finally, the
vectorization spectral block features are normalized according
to

yi =
xi −min (x)

max (x)−min (x)
(1)

where xi is the ith value of the feature vector x and yi is the
ith value of the normalized feature vector y (i = 1, 2, . . . ,m,
where m denotes the spectral dimension).
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Fig. 1. Framework of proposed CG-based DBN classification model with spectral and pixel-centric spectral block features as input.

Fig. 2. Pixel-centric spectral block feature extraction.

Fig. 3. Proposed CGDBN classification models.

B. DBN Model Based on CG

The proposed model uses multiple restricted Boltzmann ma-
chines (RBMs) [37], [38] and BP for the pretraining and fine-
tuning stages of model training, respectively. The structure of
the CGDBN models is shown in Fig. 3.

The first step is to input sample feature vectors and train each
layer of the RBM network separately in an unsupervised manner.
RBMs are generative stochastic neural networks that consist
of two layers of neurons, namely visible units (corresponding
to visible variables) and hidden units (corresponding to hidden
variables). The two layers of neurons are fully connected, but
there is no connection between the neurons of each layer. The

Fig. 4. RBM network structure. nv represents the number of neurons in the
visible layer, nh represents the number of neurons in the hidden layer, v =
(v1, v2, v3, . . . , vnv )

T represents the state vector of the visible layer, h =

(h1, h2, h3, . . . , hnh
)T represents the state vector of the hidden layer, d is the

bias of the visible layer, c is the bias of the hidden layer, and w represents the
weight matrix between the hidden layer and the visible layer.

structure of an RBM is shown in Fig. 4. Unsupervised learning of
the DBN is realized by stacking multiple layers of RBMs, with
the hidden layer of this RBM forming the visible layer of the next
RBM. The feature vectors retain as much feature information
as possible when mapping to different feature spaces, and ulti-
mately obtain the output feature vectors. The above-mentioned
training process uses the contrastive divergence (CD) algorithm
[39], which is a fast learning algorithm for RBMs. CD effectively
improves the efficiency of fitting the RBM to the training sam-
ples. The parameters w, d, and c in the RBM are then updated,
and the training process continues for multiple iterations. For
the second RBM, the visible-layer neurons are generated based
on w and c during the training process.

In the second step, the neural network receives the parameter
matrices of the RBMs. The errors between the outputs and labels
are calculated and propagated from back to front through each
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layer. The weight matrices of each layer are updated through
the CG, and the neural network is fine-tuned to produce the
classification model. Training the RBMs ensures that the weight
parameters are optimal for the feature vector mapping of each
RBM, rather than for the feature vector mapping of the DBN.
Therefore, the process of training the stacked RBMs can be
viewed as the initialization of the deep BP network weight
parameters. The BP network then starts to train the network
parameters on the basis of the “initialization weight parame-
ters.” Compared with forward propagation, RBMs have shorter
training time and improved classification efficiency.

Iterative methods are often used to approximate and find op-
timal solutions to large-scale optimization problems. BP passes
the error Jbatch between the prediction result and the real result
to each layer of the network and updates the parameters W l of
each layer through an optimization algorithm. Finally, a trained
model is obtained through successive iterations. The error term
is given by

Jbatch =
1

2 batch

batch∑
i = 1

(
Y predict
i

(
wl, bl

)− Yi

)2

(2)

where Jbatch represents the cost function. The output classifier
is the sigmoid function, batch denotes the number of batch
training samples, Y predict

i is the result of the output layer, Yi

is the ground truth label, and (wl, bl) represents the weights and
bias parameters of layer l.

The CG algorithm is a classic unconstrained optimization
algorithm. Unlike the gradient descent method, the search di-
rection of the CG algorithm is the combination of the negative
gradient direction of this iteration and the search direction of
the previous iteration. CG requires first-derivative information,
which not only overcomes the slow convergence of the gradient
descent method but also avoids the computational cost of New-
ton’s method for the Hessian matrix and its inverse. The CG
algorithm is one of the most effective algorithms for large-scale
nonlinear optimization, requiring relatively little storage space
and no external parameters, and offering good convergence
and stability. To overcome the slow convergence caused by
the gradient descent search directions being perpendicular to
each other during the iterative fine-tuning of the parameters,
we construct an update factor ΔW l

k based on the CG to adjust
the weight and bias parameters. We construct models using two
classic CG algorithms, FR and PRP. The updated weight and
bias parameters are calculated as

W l
k+1 = W l

k −ΔW l
k (3)

whereW l
k+1 is the (k + 1)th iteration updated parameter matrix

(including weights and bias) of the lth layer, W l
k is the kth

iteration parameter matrix of the lth layer, andΔW l
k is the update

factor of the parameter matrix, given by

ΔW l
k = α ∗ dW l

k − dW l
CG (4)

where the CG dW l
CG of lth layer is calculated by (5), dW l

k is
the kth iteration gradient of the lth layer, and α is the learning

TABLE I
ALGORITHM DESCRIPTION OF NETWORK UPDATING BASED ON

CONJUGATE GRADIENT

rate. The parameter βk−1 in the FR and PRP algorithms is given
by (6) and (7), respectively

d W l
CG = βk−1 dW

l
k−1 (5)

β FR
k−1 =

∥∥dW l
k

∥∥2
∥∥dW l

k−1

∥∥2 (6)

βPRP
k−1 =

∥∥dW l
k

∥∥T (∥∥dW l
k

∥∥− ∥∥dW l
k−1

∥∥)
∥∥dW l

k−1

∥∥2 (7)

where k is the number of iterations. Unlike classic CG optimiza-
tion, we use the 2-norm in calculating βk−1, which produces
better DBN classification results. This use of the 2-norm can be
expressed as (6) and (7), respectively

βFR_L2
k−1 =

norm(
∥∥dW l

k

∥∥2)
norm

(∥∥dW l
k−1

∥∥2) βFR
k−1 (8)

βPRP_L2
k−1 =

norm
(∥∥dW l

k

∥∥T (∥∥dW l
k

∥∥− ∥∥dW l
k−1

∥∥))

norm
(∥∥dW l

k−1

∥∥2) βPRP
k−1

(9)

where norm(·) returns the 2-norm, which is approximately the
maximum singular value of matrix inside. The BP parameter
update process is summarized in Table I. We separately apply
the two CG methods (FR and PRP) processed using the 2-norm
to update the network parameters of the respective CGDBNs.

III. EXPERIMENTS AND ANALYSIS

A. Data

We used the University of Pavia benchmark dataset to con-
duct experiments examining the performance of the proposed
method. The benchmark scene was acquired by the ROSIS
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TABLE II
CLASSES AND SAMPLES IN THE UNIVERSITY OF PAVIA DATASET

TABLE III
CLASSIFICATION RESULTS OF DIFFERENT INPUT FEATURES ON THE

UNIVERSITY OF PAVIA DATASET

sensor during a flight campaign over Pavia, northern Italy, and
consists of 103 spectral bands with a geometric resolution of
1.3 m. The University of Pavia dataset covers 610 × 340 pixels
and the land cover ground truth extends over nine classes. Of the
total of 42 776 labeled samples, 20% were selected as training
samples and the rest were used for testing. The OA is employed
to evaluate the classification performance of the models. The
classification experiments were performed using spectral fea-
tures, combined features of the spectral and pixel-centric spectral
block as input vectors.

B. Experimental Results

We used the classic DBN model and the proposed CGDBN
models in the classification experiments. The models had a
structure consisting of two hidden layers with 110 neurons
each and an output layer with nine neurons (i.e., 110-110-9).
According to the different input features, the input layer neurons
of the tested models are slightly different, so that the network
that takes spectral features as input has an overall structure
of 103-110-110-9 whereas the network that takes spectral and
pixel-centric spectral block features as input has a structure
of 193-110-110-9. The other network parameters were set as
follows: 200 unsupervised iterations, 50 RBM batch training
samples, 500 supervised iterations, and 30 BP batch training
samples. We took 10%, 20%, and 30% of the labeled samples
in turn to form three separate datasets for the experiments. The
number of samples is listed in Table II.

Table III presents the classic DBN classification accuracy
based on different input features. The results show that, com-
pared with the input of spectral features, the classification
produced by adding the pixel-centric spectral block features is
better than the single-feature input. The pixel-centric spectral

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT MODELS WITH SPECTRAL-SPECTRAL

BLOCK FEATURE INPUT ON THE UNIVERSITY OF PAVIA DATA

Fig. 5. Influence of the number of principal components, spectral block size,
and image enhancement. “IE” denotes image enhancement processing. Spatial
average filtering algorithm used for image enhancement.

block features contain pixel spectral features and their neighbor-
hoods, which enhance the classification effect of the model. This
agrees with the results of previous research [19]. After image
enhancement, the classification accuracy of the DBN based on
inputting the combined features is further enhanced. The results
of experiments using different classification models with this
combined input are presented in Table IV (where PRP DBN
refers to the DBN based on the PRP algorithm and 2-norm,
and FR DBN refers to the DBN based on the FR algorithm and
2-norm). The two models proposed in this article are collectively
called CGDBNs. The classification accuracy of the CGDBNs
is higher than that of the classical DBN. A comparison of
the two CGDBNs indicates that FR DBN has slightly higher
classification accuracy.

For the extraction of sample spectral feature blocks, we
performed image enhancement processing after PCA, and then
spatial average filtering of each band. We varied the number of
principal components to be retained from 1 to 15 to examine
the effect on the final classification accuracy. In Fig. 5, the
classification accuracy increases with the number of principal
components and gradually stabilizes. Ten principal components
enable 99.8% of the original image information to be retained.
Thus, considering the amount of information and the computa-
tional complexity, we decided that 10 principal components were
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TABLE V
COMPARISON OF DBN CLASSIFICATION BASED ON DIFFERENT OPTIMIZATION ALGORITHMS ON THE UNIVERSITY OF PAVIA DATA

NAG: gamma = 0.5, α = 2; Adagrad: eps = 1e-8, α = 0.001; Adam: beta1 = 0.9, beta2 = 0.999, eps = 1e-8, α = 0.001;
Adadetla: gamma = 0.9, eps = 1e-8, α = 0.001; RMSprop: gamma = 0.9, α = 0.001.

Fig. 6. Training loss of different classification models.

sufficient. We selected the pixel-centric spectral block features in
1 pixel× 1 pixel, 3 pixel× 3 pixel, and 5 pixel× 5 pixel windows
to examine the effect of the block size on the classification re-
sults. Considering the classification accuracy and computational
complexity, a block size of 3 pixel × 3 pixel is reasonable. We
can also conclude from Fig. 5 that the spectral block features
after image enhancement produce a better expression of the
internal relationship between the center pixel and the neigh-
boring pixel features, ultimately achieving better classification
results.

C. Convergence Analysis

Fig. 6 shows the training loss curves of dataset 2 (20% training
samples) using DBN models based on different optimization
algorithms and the proposed CGDBNs. Note that we used the
default parameter values of the Adam, Adagrad, Adadetla, and
RMSprop algorithms. For detailed parameter information, see
Table V. The input sample data include the spectrum and the
spectral block with image enhancement. All the loss curves in
Fig. 6 decrease and gradually stabilize. From the perspective of
training loss and curve fluctuation, the DBN based on Nesterov
and the models proposed in this article (denoted as PRP 2-norm
and FR 2-normin the figure) offer better performance. The
proposed models have a small training loss and little curve
fluctuation, which is comparable to that of Nesterov. Although
Adam and Adagard have small curve fluctuations, their training
loss is relatively high. RMSprop converges faster in early iter-
ations, but the training loss becomes higher in later stages and
the curve fluctuates significantly. The DBN models based on

Fig. 7. Color maps of trained network parameters on the University of Pavia
dataset. (a)–(c) Color maps of RBM 1, RBM 2, and the output layer of DBN,
respectively. The sizes of the parameter matrices are 110 × 104, 110 × 111,
and 9 × 111. (d)–(f) Color maps of RBM 1, RBM 2, and the output layer of FR
DBN, respectively. The sizes of the parameter matrices are 110 × 194, 110 ×
111, and 9 × 111. The final column of the matrices is the bias.

SGD, Adadetla, PRP, and FR are similar, exhibiting low training
loss and large fluctuations. The proposed CGDBN models have
good convergence. The training loss curves quickly converge
with small fluctuations.

Table V presents the classification results and runtimes cor-
responding to Fig. 6. The two proposed CGDBN models have
longer runtimes than the other DBN models. The extra time
consumption comes from the BP process. For the proposed
CGBDNs, calculating the 2-norm of the conjugate direction
matrix is the main reason for the increase in calculation time.
The optimization algorithm does not necessarily guarantee that a
local minimum value will be reached within a reasonable time,
but it can usually find the optimal value of the cost function.
Although the algorithm proposed in this article has a longer
training stage than the other algorithms, it has advantages in
terms of convergence and classification effect for the same
number of iterations. The proposed CGDBNs are similar in time
consumption. FR DBN is better in classification accuracy and
model convergence, while PRP DBN performs better in terms
of convergence stability.

D. Network Weight Matrices

Fig. 7 shows the network parameter matrices in the University
of Pavia dataset. Taking the training result with dataset 2 as an
example, the color maps on the second row illustrate the network
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Fig. 8. Experiments with different hidden layer parameters. (a) Varying the
number of hidden layers. (b) Varying the number of neurons.

coefficient matrices of the proposed FR DBN. From left to right,
they correspond to RBM 1, RBM 2, and the output layer. Each
coefficient matrix contains a weight matrix and a bias, and the
matrix sizes are 110 × 194, 110 × 111, and 9 × 111, where the
last column of the matrix is the bias. The network coefficient
matrices of the DBN are shown in the first row. The matrix
sizes are 110 × 104, 110 × 111, and 9 × 111. There are some
obvious structures in the parameter matrices of both the DBN
and FR DBN. Some research has mentioned that the learned
weights in the first layer are localized continuous structure filters,
whereas the weights in the second layer are local singular filters
[16]. It can be seen that, in the same layer, the weight matrix
of the proposed FR DBN exhibits more diversity than that of
the DBN model. There are more continuously changing rows in
the first weight matrix of the proposed model, indicating that the
diverse features of the input samples are being learnt. The second
weight matrix of the proposed model not only has more diverse
rows than traditional models but also has more diverse columns.
These are represented as scattered points in the matrix color map.
In addition, the hidden layer parameter matrices of the models
have different value ranges. Compared with the DBN model, the
proposed FR DBN parameter matrices have significantly smaller
value ranges.

E. Analysis of Other Parameters

The classification experiments were performed with different
hidden layers. With a fixed 110 neurons in each hidden layer,
the number of network layers was varied to 2, 3, and 4. The
results are shown in Fig. 8(a). The number of hidden layers
was then fixed to 2, and the numbers of hidden neurons in each
layer were set to 100-100, 110-110, and 120-120. The results are
shown in Fig. 8(b). When the number of hidden layer neurons
is fixed at 110, the model with two hidden layers achieves the
best classification results. When there are two hidden layers,
the model with 110 neurons in each layer produces the highest
classification accuracy. Thus, we conclude that the optimal
structure of the hidden layer network is 110-110.

After determining the number of layers and neurons in the
network, we analyzed the learning rate and batch training size
involved in the BP process. The learning rate plays an important
role in updating the BP gradient. If the update gradient ΔW
denotes the adjusted direction to reach convergence, then the

Fig. 9. Experiments with parameter adjustment during BP. (a) Learning rate.
The proposed models are more accurate than the DBN for different learning
rates. (b) Batch training size. The accuracy of the proposed models is within a
range of 1.3%, whereas that of the DBN varies by about 2.5%.

learning rate is equivalent to the step size in the direction
of convergence. Choosing an appropriate learning rate is of
great importance in the optimization of the parameter matrices.
Fig. 9(a) shows the classification accuracy of the models with
different learning rates. Compared with the DBN model, the
proposed models have higher accuracy and lower sensitivity to
the learning rate, especially FR DBN. Even for an inappropriate
learning rate (such as 0.1), the classification accuracy of the
proposed models can reach 94.6%. Fig. 9(b) shows the classifi-
cation accuracy for different batch training sample sizes. As the
batch training size increases, the accuracy decreases in all three
models. However, compared with DBN (accuracy reduced by
2.5%), the degradation in the proposed models is much smaller
(accuracy reduced by 1.3%). When the batch training size is
large, the classification effect of the DBN model is not good.

F. Comparison of Different Methods

The classification results of DBN and the proposed CGDBNs
are shown in Fig. 10. The CGDBN results are better than
those of DBN. For example, asphalt and bitumen can be more
effectively distinguished. Gravel and self-blocking brocks can
be effectively distinguished in the CGDBN result. The proposed
models performed well in terms of classification accuracy and
model convergence, producing a clear advantage over the classic
DBN model.

We used several methods to classify the University of Pavia
dataset. Experiments were performed with the same input for
2-D-CNN, DBN, DBN with softmax classifier, and the pro-
posed CG-based DBN, and the accuracy of each class and the
overall classification are presented in Table VI. The OA of the
other methods is greater than 96%, and the single-category
classifications given by 2-D-CNN exhibit misclassification in
class 9. Classes with few training samples (such as classes 3,
7, and 9) or those with greater similarities in ground features
increase the difficulty of classification. After adding the CG
and 2-norm to the DBN model based on the softmax classi-
fier, a better classification result is obtained. In contrast, the
proposed models perform well in the overall classification and
some single-category classification of the CG-based DBN and
the CG-based DBN with softmax classifier. There are some
advanced hyperspectral classification methods at the bottom
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TABLE VI
COMPARISON OF DIFFERENT CLASSIFICATION METHODS ON UNIVERSITY OF PAVIA DATASET

Fig. 10. Classification results on the University of Pavia dataset. (a) DBN
classification result with spectral–spatial feature input. (b) DBN classification
result with combined feature input. (d) FR DBN classification result with
combined feature input. (e) PRP DBN classification result with combined feature
input. (c) False color image composite (bands 50, 27, and 17). Combined feature
refers to the combination of spectral feature and pixel-centric spectral block with
image enhancement feature.

of the table. In [1], the R-3-DCNN outperforms our proposed
methods only when sufficient training samples (at least 40%
sampling rate) are provided. The proposed methods with the
20% sampling rate show higher OA than the methods (such as
WI-DL and JSSC-DBN) with more training samples.

G. Application to a Real Scene

We applied the proposed classification model to real scenarios
of the Yellow River Delta Coastal Wetland. The scene was
acquired by the visible shortwave infrared hyperspectral camera

TABLE VII
SAMPLE DESCRIPTION AND CLASSIFICATION RESULTS

Fig. 11. Classification results on Yellow River Delta Coastal Wetland dataset.
(a) NN. (b) 2-D CNN. (c) DBN. (d) DBN based on softmax classifier. (e) FR
DBN. (f) False color image composite (bands 111, 69, and 13). (g) Sample
distribution.

onboard the Gaofen-5 (GF-5) satellite. The image covers part
of the Bohai Sea in northeastern Dongying, China. We took
150 spectral bands in the spectral range of 390–1030 nm as
the spectral data for experiments. The spatial resolution was
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30 m. The Yellow River Delta Coastal Wetland dataset covers
677 × 339 pixels and the land cover ground truth has eight
classes. We labeled 7174 samples for model training and testing
and used the proposed FR DBN model (with a structure of
240-110-110-8) as an example CGDBN in the experiments. The
other network parameters were set as follows: 200 unsupervised
iterations, 52 RBM batch training samples, 200 supervised iter-
ations, and 26 BP batch training samples. Experiments were
performed using the same training samples as input for all
methods. The samples and accuracy results of several methods
are presented in Table VII. The classification results are shown
in Fig. 11.

IV. CONCLUSION

In this article, we have proposed CGDBN classification mod-
els that are updated using the CG method and the 2-norm,
based on the combined spectral and pixel-centric spectral block
features. Models based on the FR algorithm or PRP algorithm
improves the parameter update procedure in the BP network. We
used the 2-norm to calculate the update factors and realize the
updating of the hidden layer network parameters (weight and
bias). The combination of spectral and pixel-centric spectral
block features can mine the hyperspectral image features to
improve the classification accuracy. The image enhancement
processing of the principal components before spectral block
extraction strengthens the spatial connection between the central
pixel and the surrounding pixels. Classification experiments
were performed on a hyperspectral image benchmark dataset,
and the classification accuracy of the proposed models was found
to be higher than that of classic DBN. We observed that the pro-
posed models have advantages in terms of model convergence
and model stability during the parameter adjustment process.
Although the proposed models spend more time on training,
the model convergence is comparable to that of advanced op-
timization algorithms. Comparing the two CGDBNs, FR DBN
is superior to PRP DBN in terms of parameter sensitivity and
computational complexity. Moreover, FR DBN obtained satis-
factory results in an application to coastal wetlands imagery. The
DBN classification model based on CG and the 2-norm provides
a novel approach for hyperspectral classification.
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