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Multiscale Guided Filter
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Abstract—Effective features derived from an original hyperspec-
tral image (HSI) are quite important to improve the classification
performance. An improved feature set, namely HGFM, is con-
structed by integrating harmonic analysis (HA) optimized by a
multiscale guided filter (GF) with morphological operation for HSI
classification. To establish HGFM, HA is first adopted to convert
the HSI from spectral space to the frequency domain represented
by amplitude, phase, and residual. With the first component of
minimum noise fraction obtained from the original HSI as the
guidance image, the harmonic components are then processed by
the multiscale GF. Finally, the obtained results are then operated
via morphological opening by reconstruction and closing by re-
construction to generate an improved feature set for classification.
The HGFM features are input to an ensemble learning (EL) based
on classification framework, in which EL plays an auxiliary role to
enhance the classification stability and reliability. Three commonly
used HSIs are used for experiments, and different feature sets are
evaluated by comparing EL and rotation forest, support vector
machine optimized by particle swarm optimization, random forest,
and others. Compared with benchmark feature sets, the proposed
HGFM feature set can better depict the details of objects easily,
and the experimental results confirm the effectiveness in terms of
classification accuracy and generalization ability.

Index Terms—Feature set, harmonic analysis (HA),
hyperspectral image (HSI) classification, morphological operation,
multiscale guided filter.

1. INTRODUCTION

HYPERSPECTRAL remote sensing technique is able to
capture an efficient description of the materials observed
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by the sensor with fine spectral resolution [1], [2]. With the
advancement of imaging spectrometer technologies, the hyper-
spectral image (HSI) collects the spectral information of ground
objects by using hundreds or thousands of narrow spectral
channels, which generally range from the visible through near-
and mid-infrared to the thermal infrared portions [3], [4]. Owing
to high spectral resolution and good discrimination capacity,
the HSI has been benefitting various practical applications, e.g.,
classification, target detection, data fusion, mineral mapping,
environmental management, and so forth [5]-[9]. Classification
is one of the most important tasks in hyperspectral remote
sensing analysis [10]. However, the HSI is usually provided
with high-dimensional and vast data volume, which brings the
challenges of high computational cost and Hughes phenomenon
in classification [11]. As a consequence, several critical efforts,
such as feature extraction and band selection algorithms, are
taken into consideration for dimensionality reduction to address
the aforementioned issues.

Suitable features are crucial to improve the classification per-
formance of the HSI, and feature extraction aims to transform the
original data into specific feature space by certain criteria [12].
Spectral—spatial features, which incorporate spatial context and
spectral information simultaneously, are commonly accepted to
deal with the ill-posed problems to improve the performance of
classification [13]-[15]. Compared with the global optimization
method, the spectral-spatial features based on local optimization
are more popular because of lower computational cost.

Numerous features have been developed in the past few
decades; some researchers focus on the development of spatial
features to facilitate the combination with spectral features,
including gray-level co-occurrence matrix (GLCM) [16], ex-
tended morphological profiles (EMPs) [17], extended attribute
profiles (EAPs) [18], and Gabor filtering features [19]. These
methods have achieved good classification accuracies; however,
massive features with a certain degree of redundancy could be
difficult to use by the classifiers due to the lack of selection
mechanism. In addition, some studies mainly exploit the spec-
tral and spatial information separately, and then, the features
are superimposed in series. For example, principal component
analysis (PCA) [20] and minimum noise fraction (MNF) [21]
are used to obtain spectral features. Spatial information can
be obtained through filtering [22], morphology [23], low-rank
representation [24], and so on. However, the features generated
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by this way are prone to carry noise, and the interest of spectral
signatures may not be emphasized, affecting the final output of
classification. Furthermore, another family of methods to obtain
spectral—spatial features is based on image segmentation [25]-
[27]. Various segmentation techniques are adopted to segment an
HSI into different homogeneous regions according to intensity
or texture, and the strategies of multiple method combination and
majority voting are usually applied. Nevertheless, the qualities of
features acquired by segmentation are dependent on advanced
segmentation techniques that are time-consuming. Moreover,
deep features have received widespread attention in recent years,
in which a deconvolutional layer generates enlarged and dense
graphs to extract high-level features [28]-[30]. Although deep
features have produced outstanding classification results, hard-
ware requirements and high computational complexity still need
to be effectively mitigated.

To sum up, it is necessary to enhance the classification per-
formance of HSIs with limited training samples by exploring
and mining multiple feature extraction methods. Meanwhile,
we should strengthen the research of frequency-domain infor-
mation for a remotely sensed image. Different from the conven-
tional spectral-domain-based and relatively complex theoretical
methods, recently, harmonic analysis (HA) [31], [32] exerts
good hyperspectral classification performance by converting the
spectral signatures into multiple frequency-domain components,
yielding more discriminative feature sets. In the remote sens-
ing community, HA is mainly applied in time-series analysis,
phenology, and change detection [33]-[35]. As a whole, the
energy information of objects in the HA feature set is signif-
icantly highlighted, which leads to better identification of object
structures and more accurate classification. Nevertheless, the
interferences of noise and rough object boundaries in the HA
features have a certain impact on the classification. Specifically,
the noise in spectral and spatial domains may result in the
salt-and-pepper effects in the classification maps. How to reduce
the noise and mine powerful information through HA to improve
the classification performance is worthy of further attention. A
very convenient way to alleviate noise is filtering; a wide range
of filtering methods have been proposed by using appropriate
algorithms and sufficient data, such as mean filtering [36],
median filtering [37], Gaussian filtering [38], and edge preserva-
tion filtering [22]. Among these methods, particularly, the edge
preservation filtering can not only decrease image noise, but
also keep the edge structure of objects clear rather than blurred.
Therefore, edge-preserving filtering (e.g., bilateral filtering [39]
and guided filtering (GF) [40]) is a possible valuable choice to
address aforementioned problems of HA. However, to the best
of our knowledge, very few efforts have made to cope with such
concerns in terms of hyperspectral classification. Hence, a joint
HA and GF feature extractor would be potential to preserve
edge and reduce the presence of noisy or redundant features that
degrade the classification performance.

In this article, the objective is to further exploit the feature set
of HSIs from the frequency perspective and solve the limitations
of traditional HA methods by embedding spatial filtering and
morphological operations. We proposed an ensemble classifica-
tion scheme based on the improved feature extraction method of
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Fig. 1. Overall procedure of HSI classification by using the HGFM feature set
based on EL.

HA optimized by multiscale GF (HGFM). The main innovations
and contributions are: an HGFM feature set is constructed by in-
tegrating HA and multiscale GF with morphological operations,
which is expected to optimize the feature representation and
enhance the classification performance. Through the ensemble
learning (EL) method, the desired applicability of the HGFM
is comprehensively verified in high-, medium-, and low-spatial-
resolution hyperspectral scenes.

The rest of this article is organized as follows. Section II re-
views related approaches of HA and GF, and details the proposed
method. The datasets, experimental setup, and discussion of
results are presented in Section I1I. Finally, Section IV concludes
this article.

II. METHODS

Fig. 1 shows a schematic illustration of the classification
method, consisting of four steps: HA for feature transform, GF
for multiscale feature extraction, construction of HGFM, and
classification based on EL.

A. HA for Feature Transform

Some studies have demonstrated HA’s potential for HSI clas-
sification [31], [32]. It stands out in two aspects: 1) HA is
designed to extract the features account for high-dimensional
properties and information between different bands of HSI,
through which more precise description can be acquired; and
2) the frequency-domain features produced by HA can reflect
the target characteristics in multiple levels from the perspective
of energy information, which is more distinguishable than the
spectral-domain features.

The HA permits a spectral signature to be expressed as the sum
of a series of overlapped sine and cosine waves (harmonics) [41],
that is, energy components, such as amplitude, phase, and resid-
ual. The physical meaning of harmonics is to represent the
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X

Fig. 2. Example of converting pixel’s spectral signature of HSIs from the
spectral domain to the frequency domain by using HA.

average energy spectrum of each pixel, express energy floating
on different bands, and indicate the position where the amplitude
occurs [30]. We define the notations that will be adopted through-
out this part. Let X = [z, Zo,...,2;,...,2y] € RM*N be
the HSI with an M -dimensional spectrum of each pixel x; =
[s1,82,...,50] ", where N is the total number of pixels. The
pixel-based spectral vector x; can be expressed by harmonics
through HA with formulations as

h,
A max
& = 52+ [Ancos (2nhi/M) + By sin (2nhi/M)] (1)
h=1
A hmax
-~ 0 i )
Ti= 5 }; [Chosin (2mhi /M + ¢n)] - @

In (1) and (2), the expressions of A, By, C},, and @y, are as
follows:

u XM

A= ;x cos (2whi/M) 3)

By = 5 sin 2mhi/an) @
= i:1xlbln whi

Ch =\ A + By? ®)

on = arctan (— Ay, /By) (6)

where 7 denotes the band index, A and h,,., refer to the index
and number of harmonics, respectively, Cy, sin(2mhi/M + ¢p)
is the Ath harmonic of z; with M dimensions, and C}, and
wp, represent the amplitude and phase of the hth harmonic,
respectively.

Through HA decomposition, feature sets X' =[x,
Ty, ..., T y] € R maxtxN can be obtained for each
pixel @' =[A40/2,C1,C2, ..., Chypors 91592, -+ s Phpar)s @ €
{1,2,...,N}. The final dimension of the HA feature set is
F =2 X hpax + 1 (see Fig. 2).

B. Guided Filter for Multiscale Feature Generation

To weaken interference of noise and rough boundary, the GF
should be introduced. Beyond smoothing and denoising func-
tion, the GF conduces to transfer the spatial edge information
of the guidance image' to the output image accurately and

IThe guided filter performs edge-preserving smoothing on an image by
employing the content of other image, called a guidance image, to affect the
filtering.

3905

makes the filtered image more valuable [42]. The applications
of GF mainly focus on image enhancement [43], target recogni-
tion [44], anomaly detection [45], etc. In essence, GF is based on
the local linear relationship model between the guidance image
and the input image, and its calculation time is not related to the
size of the filter [42].

Specifically, assuming that the guidance image is I and the
filtered output image O is obtained by the window wy, with filter
radius r centered at pixel &, O; can be formulated as

O; =apl; +b, View (7)

where wy, is a square window with the size of (2r+ 1) x
(2r + 1), and i represents pixel indexes, and ay and by, are the
coefficients, which remain constant in the window wy,.

To evaluate a;, and by, the minimization cost function in the
window wy, can be defined as follows:

B(ak,br) = Y ((akl; + b — pi)* + car®) ®)

1EWE

where ¢ denotes the regularization parameter to penalize large
ay. Furthermore, adopting the linear ridge regression [46], the
key of aj and b can be represented by

B ﬁ > Lipi — [Pk

a’“ op2+e ©

by, = pr — agpik (10)

_ 1

P = > pi (11)
1EWE

where 15, and oK represent the mean and variance of I in wy,
respectively. |w| denotes the number of pixels in bmwy, p is the
filtering input image, and py, refers to the mean of p in wy,.

Nonetheless, the pixel ¢ can be located in multiple different
windows wy,, which contribute to the values of {ay, b, } and the
change of O;. Therefore, it is necessary to determine the mean
of {ag, by } in wy, with pixel ¢ as the center, and then, O; can be
given by [47]

1 —
O; = @l Z (arl; +bk) = ail; + b;. (12)

w
kew;

Through (12), it can be deduced that O and I are linear in the
window wy,. Hence, when the guidance image O contains edge
information, the output image O can retain the edge information
at the corresponding position. Significantly, the two adjustable
parameters involved in the calculation of GF are 7 and €, which
control the filter window size and blur degree, respectively. In
this article, we use GZ(p, I) to describe GF operations.

Especially, it should be highlighted that the single-scale fea-
ture generated by GF may induce the phenomenon of attenuating
objects, causing difficultly to express the multiscale structure
information of the objects in the HSI. Consequently, the tactics
of multiscale factors should be considered for the generation of
the GF feature set.
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Fig. 3. Construction of the proposed HGFM feature set.

C. HGFM Feature Set

Integrating the different algorithms is one of the effective ways
to improve the classification performance [48]. To significantly
enhance the classification effect, the new feature set is expected
to inherit the merits of HA and GF. The main procedures of the
proposed HGFM feature set are depicted in Fig. 3. First, the HSI
is carried out by HA to achieve the destination of dimensionality
reduction and feature transform in the frequency domain. Then,
the first component of MNF is used as the guidance image that
determines the gradient information of the output image, and
the extracted HA feature sets are filtered through multiscale GF.
Simultaneously, the morphological opening by reconstruction
(OBR) and closing by reconstruction (CBR) with the average
operation are introduced to optimize acquired features. Finally,
by concatenating all information into a single stacked vector, the
new feature set HGFM can be derived.

The HA for HSIs is used to obtain the collection of harmonic
features, which can be represented as

Hyp(X) =[A0/2, C;,pi] € R MmN (13

where H j, refer to the HA operation, X is the HSI, and A4, /2,
C;, and ; denote the remainder of HA, amplitude, and phase
of the ~th harmonic through HA function f along with A index
of harmonics, respectively, ¢ = {1,2,. .., hmax }-

The objects are provided with scale attributes, and the window
sequences of different sizes are helpful to obtain the multiscale
detailed information of images [49], [50]. Inspired by this idea,
the multiscale GF operation for the obtained HA feature set is
carried out by using a series of window sequences, which can
be expressed by

G(p.I) = [F;},F;’},...,F;ﬂ (14)
where p and I represent HA feature set and guidance image,
respectively, € is a regularization parameter, and F, refers
to the feature set acquired by GF with filtering radius r =
{r1,7r2,...,r, }. Since € has little contribution to the filtering
output [51], it can be set to a fixed value of 10~%. Concerning the
choice of guidance image, MNF is utilized because it renders an
optimal representation of the image in the signal-to-noise ratio
sense.

Morphological operators are the collection of filters based on
set theory, in which the two fundamental operations are erosion
and dilation [52]. They are usually used to integrate contextual
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information of images based on a fixed-shape structural element
(SE), which determines the neighborhood boundary of the pix-
els [53]. The dilation of the eroded image and the erosion of the
dilated image are known as morphological opening and closing,
respectively. Furthermore, morphological OBR and CBR are
more effective than opening and closing operations, which easily
lead to the breakage of the outline shape and the mismatch of
the target in the image [54]. Thus, OBR and CBR are applied to
optimize the features acquired by multiscale GF. Morphological
reconstruction includes two images: the former is a marker,
which belongs to the starting point of transformation, and the
latter is a mask that is used to constrain the transformation
process. Let § and p denote erosion and dilation, respectively,
and let g be the grayscale image, b be the SE. Mathematically,
OBR and CBR can be given by

RO?(w) = min {zg, pf (6(9)} 1k (54(g))
RCS(p) = max {xy,6F (o5(g) } 165 (pe(9))

where RO/ (p) means OBR from marker bmu to g in (15),
©=0p(g), and RC’g(p,) means CBR from marker g to g in
(16), 1 = pp(g). The process of morphological reconstruction
is iterated until the reconstructed image at iteration k is the same
as image obtained at iteration k — 1.

To make the approach more effective, two crucial strategies
are enabled in this study: the first one is to adopt the SE
with flat circle, and the latter is to embrace the average results
of successive OBR and CBR operations. Both strategies can
maintain the rich texture information, as well as decrease the
dimensions of the feature.

Ultimately, on the basis of integrating HA and GF, the pro-
posed HGFM feature set can be represented by

HGEM(Fi) =RC) (py(F ) [ROL (5 (F 'y )) = [HGFJK;})
where r; is the filtering radius of the window, in which 7 =
{1,2,...,n}, and HGFM represents the acquired HGFM
feature set.

5)
(16)

D. EL for Classification

There is no single classifier suitable for all classification
tasks, and the generalization ability of the ensemble method
could be better than that of an individual classifier [55], [56].
EL is a suitable alternative approach to deal with challenges
of multisource data and multidisciplinary application [57]. By
combining the outputs of multiple single classifiers with some
approaches (e.g., majority voting, Bayesian average, etc.), EL
overcomes the dilemma of no free lunch [56] and is able to
produce more accurate classification results, and its effective-
ness has been demonstrated from statistical, expressional, and
computational perspectives [57]-[59]. Thus, EL is conducive
to enhancing the adaptability of the HGFM feature set, and
it is also a powerful way to construct the framework for HSI
classification.

The suitable algorithms, including random forest (RF), rota-
tion forest (RoF), support vector machine optimized by particle
swarm optimization (PSO-SVM), K -nearest neighbor (KNN),
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TABLE I
DIMENSIONS OF FEATURE SETS OBTAINED BY DIFFERENT EXTRACTION METHODS

HSI' RAW HA GF HGFM EAP, EAP, EAP, EAP, EMP GLCM IFRF
A 200 35 36 34 36 36 36 36 36 32 20
B 103 35 36 34 36 36 36 36 36 32 21
C 204 35 36 34 36 36 36 36 36 32 21
Note: A—Indian Pines, B—Pavia University, C—Salinas.
TABLE II

CLASSIFICATION ACCURACIES OF UNIVERSITY OF PAVIA ROSIS USING DIFFERENT FEATURE SETS BASED ON EL

Class Tm?:"““’lf';m . RAW HA GF HGFM EAP, EAP, EAP; EAP, EMP GLCM IFRF

Asphalt 50 | 6581 || 72.5310.03 | 50.41£0.03 | 77.8520.03 | 95.64F0.01 | 96.5520.02 | 92.38£0.01 | 95.0220.01 | 73.090.02 | 92.3520.02 | 77.1820.03 | 80.6520.06
Meadows 50 | 18599 || 78.5140.04 | 74.06£0.05 | 86.35:0.02 | 96.18+0.02 | 92.02+0.03 | 83.84+0.03 | 94.47+0.02 | 95+0.01 | 90.33+£0.04 | 81.38+0.03 | 95.31+0.01
Gravel 50 | 2049 || 78.7740.04 | 72.15+0.03 | 85.49+0.03 | 93.35+0.02 | 95.740.02 | 86.56+0.04 | 97.62+0.01 | 95.9+0.02 | 93.6240.03 | 60.67+0.04 | 94.08+0.02
Trees 50 | 3014 || 94.2240.02 | 93.45£0.02 | 96.0740.01 | 96.074+0.02 | 96.67+0.01 | 94.25+0.02 | 96.4140.01 | 94.8940.02 | 99.03£0 | 92.74+0.02 | 90.82+0.02

Painted metal sheets | 50 | 1295 99.23+0 | 97.4140.01 | 99.95+0 99.88+0 99.3440 99.1940 99,5940 99.69+0 99.83+0 99.64+0 99.5140
Bare Soil 50 | 4979 || 72.2140.03 | 71.1840.06 | 86.9240.04 | 98.47+0.01 | 92.46+0.02 | 88.04+0.04 | 98.76+0.01 | 98.3240.01 | 92.73:£0.02 | 70.45+£0.06 | 98.77+0.01
Bitumen 50 | 1280 || 89.83+0.01 | 88.59+0.02 | 93.58+0.01 | 97.55+0.01 99.83+40 | 96.6140.01 | 99.8440 | 93.59+£0.02 | 96.3+0.01 | 85.86:£0.03 | 98.09+0.01
Self-Blocking Bricks | 50 | 3632 || 71.64:£0.05 | 65.1540.04 | 90.95+0.02 | 95.44£0.01 | 95.63+£0.01 | 92.2240.02 | 96.440.02 | 87.4240.03 | 97.5+0.01 | 62.2740.04 | 82.43+0.04
Shadows 50 897 98.8+0 97.540.01 |  99.86+0 98.53+0.01 99.8440 99.7840 99.9640 100£0 99.65+0 | 98.9140.01 | 80.84+0.06
OA (%) B 78.79£0.02 | 72.22%0.02 | 87.0620.01 | 96.36£0.01 | 94.22£0.01 | 88.45=0.01 | 95.9520.01 | 91.580.01 | 92.99£0.02 | 78.67£0.01 | 91.86=0.01
AA (%) 83.97+0.01 | 78.8840.01 | 90.7840.01 96.79-£0 96.45+0 925440 | 97.56£0 | 93.1040 | 95.7+0.01 | 81.01+0.01 | 91.17+0.01
K 0.73+0.02 | 0.65+0.02 | 0.83+0.01 | 0.95+£0.01 | 0.92+0.02 | 0.85+0.01 | 0.95+0.01 | 0.89+0.01 | 0.91+0.02 | 0.72+£0.01 | 0.89+0.02

and extreme learning machine (ELM), are selected as the base
classifiers for multiple EL in this article. The RF is a statistical
learning method by using the bootstrap resampling theory, which
has been proven to have a high predictability accuracy and fine
tolerance for outliers and noise [60], [61]. The RoF focuses on
generating the rotation feature space by using PCA to improve
feature diversity, and it performs a good performance on im-
proving the classification results [62], [63]. The PSO-SVM is a
powerful classifier in dealing with small-size training samples
and nonlinear and high-dimensional problems [64]. KNN is a
theoretically mature method, in which the category of unlabeled
data is determined by the samples in setting distance range.
The simplicity and small-size training samples of KNN are in
favor of classification [65]. ELM is a commonly used algorithm
to solve single-hidden-layer feedforward networks, which is
widely used in various fields due to the ability of fast learning,
good versatility, and simple parameter setting [66]. Moreover,
the majority voting is adopted as a combination strategy of EL.

Finally, the proposed classification framework is constructed
based on the improved HGFM feature set and the EL (see Fig. 1).

III. EXPERIMENTS AND ANALYSIS
A. Hyperspectral Datasets

To investigate the classification performance of proposed the
approach, three public hyperspectral datasets are adopted in
our experiments, which are available online. They are gathered
by airborne visible infrared imaging spectrometer (AVIRIS)
and reflective optics spectrographic imaging system (ROSIS)
Sensors.

1) University of Pavia ROSIS: This image was acquired by
the ROSIS over University of Pavia, Italy, on July 8, 2002. The
image size is 610 x 340 pixels, with 103 spectral bands after
12 noisy bands removal (wavelength range 0.43-0.86 m) and
1.3-m/pixel geometric resolution. The ground truth map consists
of nine classes and 42 776 labeled pixels, as shown in Table II.
The three-band color composite image and the ground truth map
are depicted in Fig. 4(a).

2) Indian Pines AVIRIS: It was captured by the AVIRIS
sensor over the region of northwestern Indiana, USA, on June
12, 1992. The image is composed of 145x 145 pixels and 200
spectral channels (wavelength range of 0.4-2.5 m) with the
spatial resolution of 20 m/pixel. The ground truth of the scene
contains 16 classes with 10 249 samples in total, which are
detailed in Table III. Meanwhile, the false color image of three
bands and ground truth map are described in Fig. 4(b).

3) Salinas AVIRIS: This scene was collected by AVIRIS,
which covers the area of Salinas Valley, California. It has a
size of 512x217 pixels and is characterized by high spatial
resolution of 3.7 m/pixel and 204 bands (wavelength range of
0.4-2.5 m) after discarding several water absorption bands. The
scene reference data comprise a total of 54 129 labeled pixels
distributed in 16 classes (see Table IV); false-color composite
image and the ground truth map are shown in Fig. 4(c).

B. Experimental Settings

In order to fully investigate the effectiveness of HGFM, we
compare it with other benchmark features obtained from the
full bands (RAW), HA, GF, and EAPs, where EAPs specifically
include the area of the region (EAP,), diagonal of the box
bounding the regions (EAP;), the moment of inertia (EAP;),
and standard deviation (EAP,) [49]. Besides, three more fea-
ture extraction methods are added for comparison, which are
GLCM [67], EMPs [68], and image fusion and recursive filtering
(IFRF) [69]. In all experiments, it should be noted that the
notations RAW, HA, GF, EAP,, EAP,, EAP,, and EAP,
represent the feature set acquired by corresponding methods.
The dimensions of all feature sets are described in Table 1. In
addition, the accuracy measures of individual class accuracy
[%], overall accuracy (OA) [%)], average accuracy (AA) [%], and
kappa coefficient (x) along with standard deviation are adopted
to assess the classification performance. The classification re-
sults are obtained by the average of ten independent Monte Carlo
runs.

In the feature extraction procedure, the h of HA is set to 8, the
guidance image I used in GF is the first principal component of
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Fig.4. False-color image of HSI and the corresponding ground truth map of (a) The University of Pavia ROSIS, (b) Indian Pines AVIRIS, and (c) Salinas AVIRIS.

TABLE III
CLASSIFICATION ACCURACIES OF INDIAN PINES AVIRIS USING DIFFERENT FEATURE SETS BASED ON EL

Class |‘ Trfi?‘m"le;est RAW HA GF HGFM EAP, EAP, EAP; EAP, EMP GLCM IFRF
Alfalfa 5 41 44.63+£0.14 | 41.71£0.17 80.49+0.1 95.12+0.04 95.37+0.01 95.124+0 89.2740.06 | 90.2440.05 92.240.03 20+0.09 93.66+£0.05
Corn-no till 143 1285 70.574+0.02 | 65.974+0.03 | 87.9540.01 92.96+0.01 87.34+0.02 | 86.93+0.02 | 85.04+0.02 | 80.644+0.03 | 91.97+0.02 55.31+0.02 | 94.374+0.02
Corn-min till 83 747 57.68+0.04 | 56.17+0.05 | 76.96=+0.05 96.77+0.02 86.53+0.02 | 84.78+0.02 | 87.52+£0.02 | 57.1040.03 | 93.82+0.02 | 37.62+0.04 | 96.87+0.01
Corn 24 213 45.31£0.08 | 43.05£0.06 | 56.76+0.07 94.84+0.03 81.55+0.05 | 82.58+0.04 | 68.83+0.05 | 59.3040.07 | 90.33+0.06 | 36.01£0.05 | 87.89+0.06
Grass-pasture 48 435 87.45+0.02 | 88.14+0.02 | 79.72+0.05 95.75+0.02 91.3140.02 | 90.374+0.02 | 89.314+0.02 | 87.8940.03 | 91.8240.03 | 48.57+0.04 | 94.09+0.02
Grass-trees 73 657 97.64+0.01 96.2940.02 | 95.69+0.02 9940.01 98.26+0.01 97.50+0.02 | 98.68+0.01 96.85+0.01 99.3+0 89.27+0.03 | 99.214+0.01
Grass-pasture-mowed 3 25 72.8+0.08 70.4+0.13 86.8+0.08 92.8+0.04 86.80+0.06 | 81.60+0.13 | 67.20+0.13 | 62.8040.11 92.8+0.06 6.4+0.07 99.2+0.03
Hay-windrowed 48 430 98.98+0.01 99+40.01 99.07+0.01 99.88+0 99.91+0 99.91+0 10040 99.88+0 99.91+0 96.98+0.02 99.93+0
Oats 2 18 16.1140.08 14.4440.09 43.89+0.2 88.33+0.13 19.4440.11 20.56+0.12 30.56+0.14 34.4440.11 81.11+0.24 5.56+0.05 62.22+0.21
Soybean-no till 97 875 72.53£0.02 | 69.29+0.04 | 88.46+0.02 91.31+0.03 87.35+£0.02 | 88.53+0.02 | 87.05+£0.02 | 78.6740.02 | 90.71+0.01 | 49.62+0.03 | 97.67+0.01
Soybean-min till 246 2209 86.79+0.02 | 85.23+0.02 | 93.82+0.02 97.09+0.01 94.99+0.01 95.47+0.01 | 96.12+0.01 90.73+0.01 96.32+0.01 81.2+0.02 98.82+0
Soybean-clean 59 534 60.51+0.03 | 48.86+0.04 90.3+0.01 89.34+0.03 82.49+0.02 | 83.61+0.03 | 81.14+0.02 | 84.614+0.03 | 89.5540.02 | 31.97+0.04 | 94.57+0.02
Wheat 21 184 97.284+0.01 95.9240.02 | 98.324+0.01 99.51+0 99.08+0 99.08+0 97.1240.02 | 97.83+0.02 | 99.08+0.01 73.26+0.1 99.62+0

Woods 127 1138 97.22+0.01 | 97.22+0.01 99.33+0 99.67+0 98.16+0.01 99.59+0 99.76+0 99.26+£0 99.13+0 90.95+0.02 99.49+0
Buildings-Grass-Trees-Drives 39 347 46.48+0.05 | 46.54+0.03 | 84.93+0.06 98.76£0.01 92.97+0.03 | 94.67+0.02 | 86.60+0.04 | 96.714+0.02 | 98.39+0.01 | 49.51+0.04 97.240.01
Stone-Steel-Towers 9 84 90.24+0.06 | 89.05+0.03 | 98.81+0.01 100+0 95.95+0.03 | 97.024+0.02 94.88+0.03 | 98.214+0.01 98.33+0.02 | 43.21+0.08 | 94.64+0.05
OA (%) - - 79.36£0.01 77.07£0.01 90.09+£0.01 96.06+£0 92.01+0 92.26+0 91.43£0 86.40£0.01 95.06+£0 65.83+£0.01 97.20+0
AA (%) - - 71.3940.02 | 69.214+0.02 | 85.0840.02 | 95.740.01 87.34+0.01 87.33+0.01 | 84.94+0.02 | 82.20+0.01 94.05+0.02 50.96+0.01 94.34+0.02

K - - 0.764+0.01 0.74+0.01 0.89+0.01 0.96+0 0.91+0 0.91+0 0.90+0 0.84+0.01 0.9440 0.60+0.01 0.96+0

TABLE IV
CLASSIFICATION ACCURACIES OF SALINAS AVIRIS USING DIFFERENT FEATURE SETS BASED ON EL
Class mples RAW HA aF HGFM EAP, EAP, EAP; EAP. EMP aLeM IFRF

Brocoli__green__weeds_ 1 50 1959 99.421+0 98.940.01 99.87+0 99.931+0 99.39+0 99.11+0 1000 98.431+0.01 | 98.75+0.01 17.88+0.03 100+0
Brocoli__green_weeds_ 2 50 3676 98.36+0.01 98.53+0 99.46+0 99.534+0 99.57+0 98.05+0.02 99.82+0 98.7040.01 99.6610 55.184+0.04 | 99.39+0.01

Fallow 50 1926 95.05+0.02 | 97.95+0.01 95.6440.03 99.8340 99.484+0.01 | 98.95+0.01 99.91+0 98.9640.01 | 99.06+0.01 | 90.94+0.02 100+0

Fallow_ rough_ plow 50 1344 99.45+0 99.52+0 98.8440.01 99.824+0 99.461+0 99.35+0 99.3240.01 99.454+0 99.884+0 97.9540.01 99.23+0
Fallow__smooth 50 2628 97.04+0.02 | 97.56+0.01 97.0240.01 97.6440.01 98.53+0.01 | 97.88+0.01 98.50+0 98.57+0 96.414+0.01 | 90.32+0.03 99.14+0
Stubble 50 3909 99.514+0 99.42+0 99.64+0 99.924+0 99.724+0 98.68+0.01 99.72+0 99.654+0 99.834+0 99.444+0.01 99.86+0

Celery 50 3529 99.30+0 99.25+0 99.31+£0 99.3140.01 99.53+0 99.20+0 99.60+0 99.76+0 98.014+0.01 91.5540.01 99.71+0
Grapes__untrained 50 11221 76.804+0.04 | 73.7840.02 | 73.75+0.04 91.86+0.02 83.52+0.03 | 70.22+0.02 | 82.5240.04 | 70.324+0.06 | 83.08+0.03 | 57.31£0.09 | 88.43+0.03
Soil__vinyard__develop 50 6153 97.30+0.01 97.27+0.01 99.064+0 99.814+0 98.09+0.01 93.10+0.02 99.27+0 98.9040.01 99.19+0.01 93.17+0.02 99.98+0
Corn__senesced__green_weeds 50 3228 8 +0.02 | 89.85+0.02 | 89.7540.02 97.3840.02 96.63+0.01 | 92.944+0.02 | 95.6040.01 91.9540.01 | 96.61+0.01 | 84.61+0.02 99.47+0
Lettuce_romaine_ 4wk 50 1018 O +0.01 97.79+0.02 97.0640.01 99.974+0 96.724+0.01 94.61+0.02 97.074+0.01 95.2140.01 97.5640.01 96.554+0.02 99.4240.01
Lettuce_romaine_ 5wk 50 1877 99.93+0 99.91+0 99.574+0 100+0 99.91+0 94.42+0.02 99.99+0 99.864+0 99.934+0 95.940.02 99.49+0.01
Lettuce_romaine 6wk 50 866 98.04+0.01 | 97.81+0.01 97.4140.02 98.0440.01 98.26+0.01 | 97.344+0.01 98.2340.01 | 98.574+0.01 | 97.79+0.01 78.640.04 98.414+0.01
Lettuce_romaine_ 7wk 50 1020 94.34+0.01 | 95.96+0.01 95.8540.01 97.6640.01 97.33+0.02 | 93.984+0.03 | 95.5240.02 | 94.2640.02 98.6+0.01 72+0.04 99.01+0.01
Vinyard__untrained 50 7218 66.97+0.04 | 67.65+0.02 | 82.5240.03 95.0840.01 86.85+0.03 | 76.90+0.04 | 86.2240.03 | 68.66+0.05 | 87.19+0.03 | 57.76+0.08 | 93.94+0.03
Vinyard_ vertical _trellis 50 1757 97.7240.01 | 97.00+0.02 | 97.3540.02 98.9740.01 100+0 99.77+0 99.13+0 99.9940 98.9540.01 | 94.57+0.02 99.28+0
OA (%) - - 88.79+0 88.48+0 90.654+0.01 | 97.1240.01 | 93.97+0.01 | 88.4440.01 93.754+0.01 | 88.36+0.01 | 93.83+0.01 74.75+0.01 | 96.70£0.01

AA (%) - - 93.99+0 94.26+0 95.13+0 98.42+0 97.06+0 94.03+0 96.90+0 94.454+0 96.914+0 79.61+0.01 98.42+0
K - - 0.88+0 0.87+0 0.90+0.01 0.97+0.01 0.9340.01 0.8740.01 0.93%0.01 0.87+0.01 0.9340.01 0.7240.01 0.9640.01

PCA, and input images are first four components of PCA; the
filter radius r ranges from 1 to 9. To be specific, the guidance
image of HGFM is the first component of MNF, and the radius
r is 1-2. In the combination operation of OBR and CBR, the
SE scales are [3 x 3,7 x 7,11 x 11], [7 x 7,9 x 9,11 x 11],
and [13 x 13,17 x 17,21 x 21], respectively. The correspond-
ing parameters of EAPs are assigned values by default according
to [18]. The GLCM feature set originates from the first four prin-
cipal components of image, including mean, variance, contrast,

homogeneity, entropy, dissimilarity, second moment, and corre-
lation. Based on the first four principal components of the image,
the EMP feature set is constructed by using circular structure
elements with a step size increment of 2, and four opening and
closing are operated for each principal component, respectively.
We adopt the method and default parameters provided by Kang
et al. [69] to produce an IFRF feature set.

At the classification stage, the training sample sets are ran-
domly selected from the ground truth. In this research, the
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Fig. 5.
(k) EAP from (m) local original image.

number of decision trees in RF and RoF is set to 10. The
number of features in the subset of the RF adopts the default
value (the maximum integer not greater than the square root of
the number of features used). PSO-SVM is carried out with
the support of the LIBSVM [70]. The KNN uses Euclidean
distance, and the £ value is determined by the minimum error rate
through the training data. In ELM with the activation function
of Sigmoid, the number of hidden neurons is assigned to 256.
All the experiments are implemented in MATLAB R2017a on
Intel Core i17-6700 Desktop PC with 3.4-GHz CPU and 32 GB
of RAM.

C. Visual Comparison on Feature Sets

Fig. 5 illustrates the attributes of different feature sets (only a
part of the feature set is shown to emphasize respective salient
characteristics). To compare the effect of feature extraction,
three regions are marked in the original image (see Fig. 5).
The proposed HGFM feature set differs from RAW, HA, GF,
EMP, and GLCM: the target is raised and the noise is effectively
smoothed simultaneously, and the edge information of object
is well preserved. Some small objects are ignored in the IFRF
feature set. EAP fails to extract image features effectively, and
other feature sets of EAPs have distinct sensitivity to different
ground object types. Therefore, EAPs require multifeature stack-
ing for optimal performance. It can be seen that HGFM manifests
its excellent discriminative performance in fewer dimensions.

D. Experimental Results

1) Experiment on University of Pavia ROSIS Image: Table I1
illustrates the classification results of different feature sets based
on EL. The optimal OA, AA, and & of feature sets are marked in
bold, and the classification maps of University of Pavia ROSIS
are shown in Fig. 6(a). To test the performance of the feature
sets, we randomly select 50 samples per class of ground truth
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Visual comparison of feature set attributes on (a) RAW, (b) HA, (c) GF, (d) HGFM, (e) EMP, (f) GLCM, (g) IFRF, (h) EAP,, (i) EAP,4, (j) EAP;, and

to train classifiers. From the results of classification mapping,
the feature sets of HGFM and IFRF have less noise estimations
and smooth boundary. However, due to excessive smoothing,
the mapping effect of the IFRF feature set is relatively poor, and
the boundary of some ground objects is not accurate. In general,
OA, AA, and ~ obtained by the proposed HGFM feature set
are evidently competitive with other feature sets based on EL
from Table II. Furthermore, based on the analysis of optimal
accuracy based on individual classifiers, it can be found that the
best OA of the RAW is 79.98%, the classification accuracy of
the HA feature set is not ideal through PSO-SVM classifier, and
optimum OA is merely 72.58%. The classification accuracies of
the GF feature set are substantially improved; the optimum OA
obtained by EL is 87.06%. Among the four diverse EAPs feature
sets, the maximal OA obtained by EAP,; with the PSO-SVM
classifier is up to 97.12%. In particular, the proposed HGFM
feature set is significant in enhancing classification performance,
and OA and AA are up to 96.36% and 96.79% respectively;
 reached 0.95. Despite that the optimal accuracies of HGFM
are slightly lower than EAP,, the acquired classification results
basically reached the ideal situation in the condition of small-
size training samples and fewer feature dimension. Moreover,
in classification maps, the HGFM feature set can improve the
classification effect of Asphalt, Meadows, and Bare Soil relied
on the proposed classification framework. Hence, the HGFM
feature set has better classification performance under limited
training samples because of adequately exploiting the spectral
and spatial information.

To intuitively express and compare the classification accura-
cies of different feature sets assisted by the individual classifiers
and EL, the radar graphs of optimum classification accuracy
(OA, AA, and k) are illustrated in Fig. 7. It can be concluded
that the EL plays a key role, which makes HGFM, GF, EAP,,
and EAP ; always exert outstanding classification capability. In
addition, PSO-SVM and RoF perform great performance.
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2) Experiment on Indian Pines AVIRIS Image: The existence
of low spatial resolution and the mixed pixels make the classi-
fication task of this scene challengeable. For this reason, 10%
training samples per class are selected from the ground truth
to train the classifiers. All classification accuracies based on
the proposed classification framework are shown in Table III.
Classification maps are presented in Fig. 6(b). Based on the
analysis of Table III, HGFM achieves the wonderful classifica-
tion performance with respect to OA, AA, and «. Considering
the individual classifiers, the classification accuracies of the
HGFM feature set are remarkable, in which the optimal values
of OA and AA obtained by PSO-SVM are all greater than
96%. Compared with RAW and HA feature sets, the optimum
classification accuracy of HGFM is increased by about 15% and
5%, respectively. By comparing HGFM with EAPy, it can be

AT

OA=88.44 %
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N\
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Classification maps and OA (%) of (a) The University of Pavia ROSIS, (b) Indian Pines AVIRIS, and (c) Salinas AVIRIS based on EL using different
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EAPd
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Radar graphs of optimal OA, AA, and « obtained by different feature sets based on the proposed classification framework of University of Pavia ROSIS

seen that the best OA (92.58%) obtained by EAP; is lower than
that (96.08%) of HGFM. In terms of classification results, the
classification performance of the ELM classifier is unstable. For
instance, when ELM is used for the classification of the RAW
feature set, the individual class accuracy of Alfalfa and Oats
is 0. However, it is gratifying that HGFM has fine classification
accuracy based on individual classifiers (e.g., ELM), which fully
illustrates the adaptability of the HGFM feature set. When there
are only two training samples of Oats, the HGFM feature set
achieves the best classification accuracy of 88.33%, which is
7% higher than EMP. Although the OA of the IFRF feature
set is slightly higher than that of HGFM in the classification
of Indian Pines AVIRIS, the AA and x of the IFRF feature
set are relatively poor, and the estimations of the edge area
is imprecise. In general, the HGFM feature set performs the
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AVIRIS image.

better classification performance in terms of visual quality and
objective metrics (AA and x) compared with the other feature
sets.

Fig. 8 shows radar graphs of the supreme accuracy obtained by
different feature sets with the proposed classification framework.
According toradar graphs, the combination of the HGFM feature
set and PSO-SVM achieves the optimal OA, AA, and . What is
more, the classification effect of GF and EAP feature sets relied
on EL is noteworthy.

3) Experiment on Salinas AVIRIS Image: Table 1V illus-
trates the average classification results over ten independent
Monte Carlo runs using different feature sets based on EL.
Classification maps are shown in Fig. 6(c). Concretely, solely
50 training samples per class are randomly selected for the
training of classifiers. In light of the classification results of
Table IV, the OA (97.12%), AA (98.42%), and « (0.97) of the
HGFM feature set based on EL are optimal. Compared with
the best classification accuracy of RAW, HA, and GF feature
sets, OA of HGFM is improved by more than six percentage
points. The first-best OA obtained by EAP, relied on PSO-
SVM in EAPs is approximately two percentage points lower
than that of HGFM. Simultaneously, it has been found that the
joint of HGFM and EL significantly improved classification

Radar graphs of optimal OA, AA, and ~ obtained by different feature sets based on the proposed classification framework of the University of Salinas

accuracies of grapes_untrained, corn_senesced_green_weeds,
and vinyard_untrained.

Obviously, the classification framework of HGFM combined
with EL performs outstanding classification performance, and
the individual classifier PSO-SVM integrated with feature sets
demonstrates fine capability in the classification task, as shown
in Fig. 9.

E. Effects on Parameter Selection

1) Effect of HA Dimensionality: In the construction of the
HGFM feature set, HA is a critical part of data dimensionality
reduction and frequency-domain information extraction. There-
fore, it is necessary to evaluate the impact of the h-index of HA
on classification accuracy. In the process of investigation, the
sample selection and parameter settings are consistent with the
experimental settings in Section III-B. The relevant results are
depicted in Fig. 10, and the following three main characteristics
are found.

1) The OA is gradually improved along with the increase of
HA dimensionality. The classification results of the ELM
classifier are undesirable, and the supreme OA of Indian
Pines and Pavia University is merely about 55%.
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Fig. 11.
Pines AVIRIS, and (c) Salinas AVIRIS.

2) The dimensionality of HA is different when the optimal
OA is achieved in different datasets, and the base classi-
fiers of PSO-SVM and RoF are very helpful to improve the
classification performance of the HA feature set. For in-
stance, the optimum OA of Indian Pines AVIRIS is 80.18%
when the dimensionality of HA is 27, while the optimal
OA is only 74.74% based on RoF when the dimensions
of HA are 19 in the University of Pavia ROSIS. At the
state of 31 dimensions of HA, the first-best OA of Salinas
AVIRIS is 90.23% based on PSO-SVM.

When the dimensionality of the HA feature set is greater
than or equal to 17, the increasing trend of OA of three
datasets based on individual classifiers or EL is not obvi-
ous. Therefore, it is reasonable to assign h-index of HA to
8 (dimensions of HA are 17) as performing HGFM feature
set extraction.

2) Effect of Windows Radius Combination on HGFM: To
evaluate the effect of window radius of GF (GFR) and SE (SER)
attached to OBR and CBR in the HGFM feature set, the window
radius is taken separately as [1,2,...,11] during the process, and
related parameters are all in accordance with the experimental
settings in Section III-B. As shown in Fig. 11, HSI classification
results are produced on the basis of the proposed classification
framework.

3)

357 9 11131517192123252729313335
HA dimensionality

357 9 11131517192123252729313335
HA dimensionality

(b) ©

OA (%) obtained by HA feature set with different dimensionality based on classifiers (RF, RoF, PSO-SVM, KNN, ELM, and Ensemble) in (a) Indian

Overall accuracy(%)

R
OA =95.94

OA of the HGFM feature set based on a combination of different SE and GF window radii using EL in (a) The University of Pavia ROSIS, (b) Indian

When {GFg = 2,SEr = 10}, the optimal OA of the Uni-
versity of Pavia ROSIS is 98.40%, and the obtained best OA
of Salinas AVIRIS is 98.25% when {GFr = 10,SEgr = 11}.
Above all, the optimum OA of these two datasets is over 98%,
and the classification effect is remarkable. Although for Indian
Pines AVIRIS, when {GFgr = 1,SEr = 5}, the OA reaches
a maximum (95.94%) and the classification performance is
slightly poor. Therefore, different window radius combinations
have certain effect on classification accuracy, and appropriate
adjustments need to be considered in classification tasks. Be-
sides, a single window scale may lead to the missing of the
acquired feature details, and the multiscale combination can
better weaken the influence of such cases. Thus, the multiscale
combination and the average strategy adopted in this article are
acceptable to a certain extent.

FE. Contribution of Different Ingredients on HGFM

To analyze the contribution of different ingredients of the
HGFM feature set, including HGFM without HA (GFM),
HGFM without GF (HM), and HGFM without OBR/CBR
(HGF). Meanwhile, corresponding results of the HGFM feature
set are listed for comparison. We analyzed OA of HGFM feature
sets and defined the loss accuracy to quantitatively describe the
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TABLE V
RUNNING TIME (SECONDS) FOR FEATURE EXTRACTION AND CLASSIFICATION OF DIFFERENT FEATURE SETS ON THE UNIVERSITY OF PAVIA ROSIS,
INDIAN PINES, AND SALINAS

Feature set Step University of Pavia ROSIS Indian Pines Salinas
HGFEM Feature extraction 87.44 (82.17) 13.65 (12.38) 73.66 (69.87)
Classification 8.14 11.65 6.79
HA Feature extraction 325.48 50.61 280.59
Classification 11.03 8.61 6.9
GF Feature extraction 1.7 0.24 0.61
Classification 8.14 12.14 9.19
EAP, Feature Vextra.uction 2.53 0.3 1.33
Classification 7.67 13.09 7.63
EAP, Feature .extra.uction 2.85 0.33 1.51
Classification 8.63 14.12 8.41
EAP, Feature .extrafction 14.21 2.55 4.44
Classification 6.23 9.08 6.21
EAP Feature .extrafction 15.57 2.14 4.4
s Classification 6.18 9.08 6.33
EMP Feature extraction 1.43 0.44 0.74
Classification 8.58 14.09 9.19
Feature extraction 28.09 4.76 15.76
GLCM Classification 12.29 20.37 54.96
IFRF Feature extraction 2.27 0.31 1.13
Classification 6.13 5.25 4.13

contribution of each part. Loss accuracy can be expressed as
OA of HGFM feature set minus OA of GFM, HM, or HGF. For
example, the contribution of HA is measured by analyzing the
loss accuracy of GFM, that is, the OA of HGFM is subtracted
from that of GFM. If the obtained value is positive, it means
that removing HA from HGFM will reduce the classification
accuracy of the HGFM feature set. The larger the value, and the
greater the contribution of HA. If the value is negative, it means
that removing HA will improve the classification accuracy of
the HGFM feature set, and the contribution of HA is negligible.

As shown in Fig. 12, the OA of the HGFM feature set in three
common hyperspectral scenes is over 96%, and the classification
effect is better than others. The classification accuracy (OA) of
HGEF is the lowest, which indicates that OBR/CBR is an impor-
tant part in the construction of HGFM feature set. If OBR/CBR is
removed, the classification performance of the HGFM feature set

will decline. In general, the order of contribution is OBR/CBR
> HA > GF during the construction of the HGFM feature set.

G. Complexity Analysis

Table V reports the running time of different feature sets on
the three commonly used HSIs. All the experiments are imple-
mented in MATLAB R2017a on Intel Core i7-6700 Desktop
PC with 3.4-GHz CPU and 32 GB of RAM. It should be noted
that the computational time is mainly composed of two parts:
feature extraction time and classification time. From Table V,
the classification time of the HGFM feature set is acceptable
compared with GF, EAP ;, EMP, and GLCM feature sets. How-
ever, it is not computationally efficient in comparison to other
feature sets such as IFRF. It can be found that the main time
consumption of HGFM is concentrated on the feature extraction.
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The time in brackets represents the cost of building HA, which
is 82.17, 12.38, and 69.87 s for University of Pavia ROSIS,
Indian Pines, and Salinas, respectively. The reason is that the
HA requires multiple iterations to decompose components. One
of our ongoing efforts is to design graphics processing unit to
speed up this process.

IV. CONCLUSION

To improve the discrimination capacity from feature space,
the HGFM feature set is established and used for ensemble clas-
sification of HSIs. The main advantages of the HGFM feature
set lie in optimizing the feature representation and enhancing
the classification performance simultaneously.

The proposed methodology is investigated by three publicly
available hyperspectral scenes: The University of Pavia RO-
SIS, Indian Pines AVIRIS, and Salinas AVIRIS images. The
classification results of HGFM are compared with some other
benchmark feature sets. It reveals that the proposed HGFM
can improve classification accuracies with small-size training
samples, and the optimal OA obtained by the new feature set
is all higher than 96%. In addition, the proposed classification
framework shows a certain generalization ability and fine clas-
sification performance of HSIs, which is helpful to provide a
powerful alternative approach. Furthermore, the sensitivity of
the parameters in the HGFM feature set is also investigated,
and the base classifiers PSO-SVM and RoF exhibit a good
classification effect.

In future research, we would like to extend the proposed
classification framework to the classification of multisource data
(e.g., Lidar, SAR, etc.) and the exploration of HA with other
spatial algorithms. Moreover, the connection to deep learning
can be explored and bring about more novel way to exploit and
choose the features.
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