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Abstract—Remote sensing image scene classification, which aims
at labeling remote sensing images with a set of semantic categories
based on their contents, has broad applications in a range of fields.
Propelled by the powerful feature learning capabilities of deep neu-
ral networks, remote sensing image scene classification driven by
deep learning has drawn remarkable attention and achieved signif-
icant breakthroughs. However, to the best of our knowledge, a com-
prehensive review of recent achievements regarding deep learning
for scene classification of remote sensing images is still lacking.
Considering the rapid evolution of this field, this article provides
a systematic survey of deep learning methods for remote sensing
image scene classification by covering more than 160 papers. To be
specific, we discuss the main challenges of remote sensing image
scene classification and survey: first, autoencoder-based remote
sensing image scene classification methods; second, convolutional
neural network-based remote sensing image scene classification
methods; and third, generative adversarial network-based remote
sensing image scene classification methods. In addition, we intro-
duce the benchmarks used for remote sensing image scene classi-
fication and summarize the performance of more than two dozen
of representative algorithms on three commonly used benchmark
datasets. Finally, we discuss the promising opportunities for further
research.

Index Terms—Deep learning, remote sensing image, scene
classification.

I. INTRODUCTION

R EMOTE sensing images, a valuable data source for earth
observation, can help us to measure and observe detailed
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Fig. 1. Illustration of remote sensing image scene classification, which aims
at labeling each remote sensing image patch with a semantic class based on its
content.

structures on the Earth’s surface. Thanks to the advances of
earth observation technology [1], [2], the volume of remote
sensing images is drastically growing. This has given particular
urgency to the quest for how to make full use of ever-increasing
remote sensing images for intelligent earth observation [3], [4].
Hence, it is extremely important to understand huge and complex
remote sensing images. As a key and challenging problem for
effectively interpreting remote sensing imagery, scene classifi-
cation of remote sensing images has been an active research
area. Remote sensing image scene classification is to correctly
label given remote sensing images with predefined semantic
categories, as shown in Fig. 1. For the last few decades, extensive
research works on remote sensing image scene classification
have been undertaken driven by its real-world applications, such
as urban planning [5], [6], natural hazards detection [7]–[9],
environment monitoring [10]–[12], vegetation mapping [13],
[14], and geospatial object detection [15]–[22].

With the improvement of spatial resolution of remote sensing
images, remote sensing image classification gradually formed
three parallel classification branches at different levels: pixel-
level, object-level, and scene-level classification, as shown in
Figs. 2 and 3. Here, it is worth mentioning that we use the term
of “remote sensing image classification” as a general concept,
which includes pixel-level, object-level, and scene-level classi-
fication of remote sensing images. To be specific, in the early
literatures, researchers mainly focused on classifying remote
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Fig. 2. Road map of remote sensing image classification. With the improvement of spatial resolution of remote sensing images, remote sensing image classification
gradually formed three parallel classification branches at different levels: pixel-level, object-level, and scene-level classification. Here, it is worth mentioning that
we use “remote sensing image classification” as a general concept.

Fig. 3. Three levels of remote sensing image classification. (a) Pixel-level
remote sensing image classification focuses on labeling each pixel with a class.
(b) Object-level remote sensing image classification aims at recognizing objects
in remote sensing images. (c) Scene-level remote sensing image classification
seeks to classify each given remote sensing image patch into a semantic class.
This survey focuses on scene-level remote sensing image classification.

sensing images at pixel level or subpixel level [23]–[25], through
labeling each pixel in the remote sensing images with a semantic
class, because the spatial resolution of remote sensing images
is very low—the size of a pixel is similar to the sizes of the
objects of interest [26]. To date, pixel-level remote sensing image
classification [sometimes also called semantic segmentation, as
shown in Fig. 3(a)] is still an active research topic in the areas of
multispectral and hyperspectral remote sensing image analysis
[27]–[31].

Due to the advancement of remote sensing imaging, the spatial
resolution of remote sensing images is increasingly finer than
common objects of interest, such that single pixels lose their
semantic meanings. In such case, it is not feasible to recognize
scene images at the pixel level solely and so per-pixel analysis
began to be viewed with increasing dissatisfaction. In 2001,
Blaschke and Strobl [32] questioned the dominance of per-pixel
research paradigm and concluded that analyzing remote sens-
ing images at the object level is more efficient than per-pixel
analysis. They suggested that researchers should pay attention
to object-level analysis, which aims at recognizing objects in
remote sensing images, as shown in Fig. 3(b), where the term
“object” refers to meaningful semantic entities or scene units.
Subsequently, a series of approaches to analyze remote remote
sensing images at object level has dominated remote sensing
image analysis for the last two decades [33]–[36]. Amazing
achievements of certain specific land use identification tasks
have been accomplished by pixel-level and object-level classi-
fication algorithms.

However, remote sensing images may contain different and
distinct object classes because of the increasing resolutions of
remote sensing images. Pixel-level and object-level methods
may not be sufficient to always classify them correctly. Under
the circumstances, it is of considerable interest to understand
the global contents and meanings of remote sensing images. A
new paradigm of scene-level analysis of remote sensing images
has been recently suggested. Scene-level remote sensing image
classification, namely remote sensing image scene classification,
seeks to classify each given remote sensing image patch (e.g.,
256 × 256) into a semantic class, as illustrated in Fig. 3(c).
Here, the item “scene” represents an image patch cropped from
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a large-scale remote sensing image that contains clear semantic
information on the earth surface [37], [38].

It is a significant step to be able to represent visual data with
discriminative features in almost all tasks of computer vision.
The remote sensing domain is no exception. During the previous
decade, extensive efforts have been devoted to developing dis-
criminative visual features. A majority of early remote sensing
image scene classification methods relied on human-engineering
descriptors, e.g., scale-invariant feature transformation (SIFT)
[39], texture descriptors (TD) [40]–[42], color histogram (CH)
[43], histogram of oriented gradients (HOG) [44], and GIST
[45]. Owing to their characteristic of being able to represent
an entire image with features, it is feasible to directly apply
CH, GIST, and TD to remote sensing image scene classification.
However, SIFT and HOG cannot represent an entire image di-
rectly because of their local characteristic. To make handcrafted
local descriptors represent an entire scene image, these local
descriptors are encoded by certain encoding methods (e.g., the
improved fisher kernel (IFK) [46], vector of locally aggregated
descriptors [47], spatial pyramid matching (SPM) [48], and
the popular bag-of-visual-words (BoVW) [49]). Thanks to the
simplicity and efficiency of these feature encoding methods,
they have been broadly applied to the field of remote sensing
image scene classification [50]–[55], whereas the representation
capability of handcrafted features is limited.

In this case, unsupervised learning, such as k-means clus-
tering, principal component analysis (PCA) [56], and sparse
coding [57], which automatically learns features from unlabeled
images, become an appealing alternative to human-engineering
features. A considerable amount of unsupervised learning-based
scene classification methods have emerged [58]–[66], and made
substantial progress for scene classification. Nevertheless, these
unsupervised learning approaches cannot make full use of data
class information.

Fortunately, due to the advances in deep learning theory and
the increased availability of remote sensing data and parallel
computing resources, deep learning-based algorithms have in-
creasingly prevailed the area of remote sensing image scene
classification. In 2006, Hinton and Salakhutdinov [67] created an
approach to initialize the weights for training multilayer neural
networks, which builds a solid foundation for the development
of deep learning later. During the period 2006 to 2012, simple
deep learning models have been developed (e.g., deep belief nets
[68], autoencoder [67], and stacked autoencoder [69]).

The feature description capabilities of these simple deep
learning models have been demonstrated in many fields,
involving remote sensing image scene classification. Since
the AlexNet, a deep convolutional neural network (CNN)
designed by Krizhevskey et al. [70] in 2012, obtained the best
results in the large-scale visual recognition challenge (LSVRC)
[71], a great many advanced deep CNNs have come forth and
broken a number of records in many fields. In the wake of
these successes, CNN-based methods have emerged in remote
sensing image scene classification [72]–[74] and achieved
advanced classification accuracy. Nevertheless, CNN-based
methods generally demand massive annotated training data,
which greatly limits their application scenarios. More recently,

Fig. 4. Number of publications in remote sensing image scene classification
from 2012 to 2019. Data from Google scholar advanced search: allintitle: (“re-
mote sensing” or “aerial” or “satellite” or “land use”) and “scene classification.”

generative adversarial networks (GANs) [82], a promising
unsupervised learning method, have achieved significant
success in many applications. To remedy the abovementioned
limitations, GANs have been employed by some researchers on
the field of remote sensing image scene classification [83], [84].

Currently, driven by deep learning, a great number of methods
of remote sensing image scene classification have sprung up
(see Fig. 4). The number of papers in remote sensing image
scene classification dramatically increased after 2014 and 2017,
respectively. There are two reasons for the increase. On one hand,
around 2014, deep learning techniques began to be applied to
remote sensing data analysis. On the other hand, in 2017, large-
scale remote sensing image scene classification benchmarks
appeared, which have greatly facilitated the development of deep
learning-based remote sensing image scene classification.

In the past several years, numerous reviews of remote sensing
image classification methods have been published, which are
summarized in Table I. For example, Tuia et al. [25] surveyed,
tested, and compared three active learning-based remote sensing
image scene classification methods: committee, large margin,
and posterior probability. GóChova et al. [2] surveyed mul-
timodal remote sensing image classification and summarized
the leading algorithms for this field. In [78], Maulik et al.
conducted a review of remote sensing image scene classification
algorithms based on support vector machine (SVM). Li et al.
[75] surveyed the pixel-level, subpixel-level, and object-based
methods of image classification and emphasized the contribution
of spatio-contextual information to remote sensing image scene
classification.

As an alternative way to extract robust, abstract, and high-level
features from images, deep learning models have made amazing
progress on a broad range of tasks in processing image, video,
speech, and audio. After this, a number of deep learning-based
scene classification algorithms were proposed, such as CNN-
based methods and GAN-based methods. A number of reviews
of scene classification approaches have been published. Penatti
et al. [85] assessed the generalization ability of pretrained CNNs
in classification of remote sensing images. In [38], Hu et al.
surveyed how to apply the CNNs that trained on the ImageNet
dataset to remote sensing image scene classification. Zhu et al.
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TABLE I
SUMMARIZATION OF A NUMBER OF SURVEYS OF REMOTE SENSING IMAGE ANALYSIS

[77] presented a tutorial about deep learning-based remote
sensing data analysis. In order to make full use of pretrained
CNNs, Nogueira et al. [86] analyzed the performance of CNNs
for remote sensing image scene classification with different
learning strategies: full training, fine tuning, and using CNNs
as feature extractors. In [76], Zhang et al. reviewed the recent
deep learning-based remote sensing data analysis. Considering
the number of scene categories and the accuracy saturation
of the existing scene classification datasets, Cheng et al. [80]
released a large-scale scene classification benchmark, named
NWPU-RESISC45, and provided a survey of recent advance in
remote sensing image scene classification before 2017. In [79],
Xia et al. proposed a novel benchmark, called AID, for aerial
image classification and reviewed the existing methods of scene
classification before 2017. Ma et al. [81] provided a review of
the applications of deep learning in remote sensing image anal-
ysis. In addition, there have been several hyperspectral image
classification surveys [27]–[29].

However, a thorough survey of deep learning for scene classi-
fication is still lacking. This motivates us to deeply analyze the
main challenges faced for remote sensing image scene classi-
fication, systematically review those deep learning-based scene
classification approaches, most of which are published during

the last five years, introduce the mainstream scene classification
benchmarks, and discuss several promising future directions of
scene classification.

The rest of this article is organized as follows. Section II
discusses the current main challenges of remote sensing image
scene classification. A brief review of deep learning models and
a comprehensive survey of deep learning-based scene classifica-
tion methods are provided in Section III. The scene classification
datasets are introduced in Section IV. In Section V, the compar-
ison and discussion of the performance of deep learning-based
scene classification methods on three widely used scene clas-
sification benchmarks are given. In Section VI, we discuss the
promising future directions of scene classification. Finally, we
conclude this article in Section VII.

II. MAIN CHALLENGES OF REMOTE SENSING IMAGE

SCENE CLASSIFICATION

The ideal goal of scene classification of remote sensing
images is to correctly label the given remote sensing images
with their corresponding semantic classes according to their
contents, for example, categorizing a remote sensing image
from urban into residential, commercial, or industrial area.
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Fig. 5. Challenges of remote sensing image scene classification, which include (a) big within-class diversity, (b) high between-class similarity (also known as low
between-class separability), (c) large variance of object/scene scales, and (d) coexistence of multiple ground objects. These images are from the NWPU-RESISC45
dataset [80].

Generally speaking, a remote sensing image contains a vari-
ety of ground objects. For instance, roads, trees, and build-
ings may be included in an industrial scene. Different from
object-oriented classification, scene classification is a consid-
erably challenging problem because of the variance and com-
plex spatial distributions of ground objects existing in the
scenes. Historically, extensive studies of remote sensing image
scene classification have been made. However, there has not
yet been an algorithm that can achieve the goal of classify-
ing remote sensing image scenes with satisfactory accuracy.

The challenges of remote sensing image scene classification
include the following:

1) big intraclass diversity;
2) high interclass similarity (also known as low between-

class separability);
3) large variance of object/scene scales;
4) coexistence of multiple ground objects, as shown in Fig. 5.
In terms of within-class diversity, the challenge mainly stems

from the large variations in the appearances of ground objects
within the same semantic class. Ground objects commonly
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vary in style, shape, scale, and distribution, which makes it
difficult to correctly classify the scene images. For example,
in Fig. 5(a), the churches appear in different building styles,
and the airports and railway stations show in different shapes.
In addition, when airborne or space platforms capture remote
sensing images, there may be large differences in color and
radiation intensity appearing within the same semantic class
on account of the imaging conditions, which can be influenced
by the factors such as weather, cloud, mist, etc. The variations
in scene illumination may also cause within-class diversity, for
example, the appearances of the scene labeled as “beach” show
large differences under different imaging conditions, as shown
in Fig. 5(a).

For between-class similarity, the challenge is chiefly caused
by the presence of the same objects within different scene classes
or the high semantic overlapping between scene categories. For
instance, in Fig. 5(b), the scene classes of bridge and overpass
both contain the same ground objects, namely bridge, and the
basketball courts and tennis courts share high semantic infor-
mation. Moreover, the ambiguous definition of scene classes
degenerates interclass dissimilarity. Some complex scenes are
also similar with each other in terms of their visual contents.
Therefore, it may be extremely difficult to distinguish these
scene classes.

The large variance of object/scene scales is also a nonnegli-
gible challenge for remote sensing image scene classification.
In remote sensing imaging, sensors operate at the orbits of
various altitudes, from a few hundred kilometers to more than ten
thousand kilometers, which leads to imaging altitude variation.
With the examples illustrated in Fig. 5(c), the scenes of airplane,
storage tank, and thermal power station have huge scale differ-
ences under different imaging altitudes. In addition, because of
some intrinsic factors, the variations in size for each object/scene
category can also exist, for example, the rivers shown in Fig. 5(c)
are presented in several different subscenes—stream, brook, and
creek.

Moreover, owing to the complex and diverse distribution of
ground objects and the wide birds-eye perspective of remote
sensing imaging equipments, it is quite common that multiple
ground objects appear in a single remote sensing image. As
illustrated in Fig. 5(d), the scenes of commercial areas may
contain buildings, cars, rivers, roads, parking lots, meadows,
swimming pools, and playgrounds; roads, trees, bridges, rivers,
and cars can coexist in the scenes of industrial areas; the scenes
of ground track fields may accompany with the presence of
swimming pools, cars, roads, meadows, and trees; the scenes of
freeways contain meadows, trees, buildings, cars, rivers, bridges,
forests, parking lots, etc. Faced with the situation, it is difficult
for single-label remote sensing image scene classification to
provide deep understanding for the contents of remote sensing
images.

III. SURVEY ON DEEP LEARNING-BASED REMOTE SENSING

IMAGE SCENE CLASSIFICATION METHODS

In the past decades, many researchers have committed to
scene classification of remote sensing images, driven by its
wide applications. A number of advanced scene classification

systems or approaches have been proposed, especially driven
by deep learning. Before deep learning came to the attention of
this field, scene classification methods mainly relied on hand-
crafted features (e.g., color histogram (CH), texture descriptors
(TD), GIST) or the representations generated by encoding local
features via BoVW, IFK, SPM, etc. Later, considering that
handcrafted features only extract low-level information, many
researchers turned to look at unsupervised learning methods
(e.g., sparse coding, PCA, and k-means). By automatically
learning discriminative features from unlabeled data, unsuper-
vised learning-based methods have obtained good results in the
scene classification of remote sensing images. Yet, unsuper-
vised learning-based algorithms do not adequately exploit data
class information, which limits their abilities to discriminate
between different scene classes. Now, thanks to the availability
of enormous labeled data, the advances in machine learning
theory and the increased availability of computational resources,
deep learning models (e.g., autoencoder, CNNs, and GANs)
have shown powerful abilities to learn fruitful features and have
permeated many research fields, including the area of remote
sensing image scene classification. Currently, numerous deep
learning-based scene classification algorithms have emerged and
have yielded the best classification accuracy. In this section, we
systematically survey about 50 deep learning-based algorithms
for scene classification of remote sensing images. In Fig. 6,
we present some milestone works. That is one small step for
deep learning theory, but one giant leap for the scene classi-
fication of remote sensing images [87]. From autoencoder, to
CNNs, and then to GANs, deep learning algorithms constantly
update scene classification records. To sum up, most of the deep
learning-based scene classification algorithms can be broadly
divided into three main categories: autoencoder-based meth-
ods, CNN-based methods, and GAN-based methods. In what
follows, we discuss the three categories of methods at great
length.

A. Autoencoder-Based Remote Sensing
Image Scene Classification

1) Brief Introduction of Autoencoder: Autoencoder [67] is an
unsupervised feature learning model, which consists of a sort
of shallow and symmetrical neural network [see Fig. 7(a)]. An
autoencoder consists of three layers: input layer, hidden layer,
and output layer. It contains two units—encoder and decoder.
The transformation from input layer to hidden layer is the
process of encoding. The process of encoding can be formulated
as (1), where h ∈ Rn is the output of hidden layers, f denotes a
nonlinear mapping, W ∈ Rn×m stands for the encoding weight
matrix, x ∈ Rm denotes the input of autoencoder, and b ∈ Rn

is the bias vector. Decoding is the inverse of encoding, which is
the transformation from hidden layer to output layer, and can be
formulated as (2), where x̃ ∈ Rm represents the reconstructed
output, the decoding weight matrix is denoted by W ′ ∈ Rm×n,
and b′ ∈ Rm stands for the bias vector

h = f(W · x+ b) (1)

x̃ = f (W ′ · h+ b′) . (2)
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Fig. 6. Milestones of deep learning-based remote sensing image scene classification, including different deep learning-based methods and datasets. The red line
represents typical datasets. The green, blue, and orange lines stand for autoencoder-based, CNN-based, and GAN-based remote sensing image scene classification,
respectively.

Fig. 7. Architectures of (a) autoencoder and (b) stacked autoencoder. The red, yellow, and green nodes stand for the hidden layers of autoencoders AE1, AE2,
and AE3, respectively. When stacking these autoencoders, the output of the hidden layer of the previous autoencoder is the input of the following autoencoder.
For example, the output of the hidden layer of AE1 is the input of AE2, and the output of the hidden layer of AE2 is the input of AE3.

Autoencoder is able to compress high-dimensional features
by minimizing the cost function that usually consists of a
reconstruction error term and a regularization term. By using
gradient descent with back propagation, autoencoder can learn
the parameters of networks. In real applications, multilayer
stacked autoencoders are used [see Fig. 7(b)] for feature learn-
ing. For example, three individual autoencoders AE1, AE2,
and AE3 are stacked together to form a stacked autoencoder,
as shown in Fig. 7(b). When stacking these autoencoders, the
output of the hidden layer of the previous autoencoder is the
input of the following autoencoder. For example, the output of
the hidden layer of AE1 is the input of AE2, and the output
of the hidden layer of AE2 is the input of AE3. The key to
training stacked autoencoders is how to initialize the network.
The way of initializing the parameters of networks influences
the network convergence especially the early layers, as well as
the stability of training. Fortunately, Hinton et al. [67] provided
a good solution to initialize the weight of the network by using
restricted Boltzmann machines.

2) Autoencoder-Based Scene Classification Methods: Au-
toencoder is able to automatically learn mid-level visual rep-
resentations from unlabeled data. The mid-level features play
an important role in remote sensing image scene classification
before deep learning takes off in the remote sensing commu-
nity. Zhang et al. [88] introduced sparse autoencoder to scene
classification. Cheng et al. [89] used the single-hidden-layer
neural network and autoencoder for training more effective
sparselets [90] to achieve efficient scene classification and object
detection. In [91], Othman et. al proposed a remote sensing
image scene classification algorithm relied on convolutional
features and a sparse autoencoder. Han et al. [92] provided the
scene classification methods based on hierarchical convolutional
sparse autoencoder. Cheng et al. [93] demonstrated mid-level
visual feature learned from autoencoder-based method is dis-
criminative and able to facilitate scene classification tasks. In
light of the limitation of feature representation of a single autoen-
coder, some researchers stacked multiple autoencoders together.
Du et al. [94] came up with stacked convolutional denoising
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Fig. 8. Aarchitecture of CNNs.

autoencoder networks. After extensive experiments, their pro-
posed framework showed superior classification performance.
Yao et al. [95] integrated pairwise constraints into a stacked
sparse autoencoder to learn more discriminative features for
land-use scene classification and semantic annotation tasks.

The autoencoder and the algorithms derived from autoencoder
are unsupervised-learning methods and have obtained good re-
sults in scene classification of remote sensing images. However,
most of the above-mentioned autoencoder-based methods can-
not learn the best discrimination features to distinguish different
scene classes because they do not fully exploit scene class
information.

B. CNN-Based Remote Sensing Image Scene Classification

1) Brief Introduction of CNN: CNNs have shown powerful
feature learning ability in the visual domain. Since Krizhevsky
and Hinton proposed the Alexnet [70] in 2012, a deep CNN that
obtained the best accuracy in the LSVRC, there have appeared
an array of advanced CNN models, such as VGGNet [96],
GoogleNet [97], ResNet [98], DensNet [99], SENet [100], and
SKNet [101]. CNNs are a kind of multilayer network with
learning ability that consists of convolutional layers, pooling
layers, and fully connected layers (see Fig. 8).

Convolutional layers: Convolutional layers play an important
role on feature extraction from images. The convolutional layers
input X ∈ Rn×w×h consists of n 2-D feature maps of size
w × h . The output H ∈ Rm×w′×h′

of convolutional layers is
m 2-D feature maps of size w′ × h′ via convolutional kernels
W . W ∈ Rm×l×l×n is m trainable filters of size l × l × n
(typically l =1, 3, or 5). The entire process of convolution is
described as (3), where ∗ denotes 2-D convolution operation,
additionally by using b to denote them dimensional bias term. In
general, a nonlinear activation function f is performed after the
convolution operation. As the convolutional structure deepens,
the convolutional layers can capture different level features (e.g.,
edges, lines, corners, structures, and shapes) from the input

feature maps

H = f(W ∗X + b). (3)

Pooling layers: Pooling layers are to execute a max or average
operation over a small area of each input feature map, which can
be defined as (4), where pool represents the pooling function
(e.g., average pooling, max pooling, and stochastic pooling),
H l−1 and H l denotes the input and output of the pooling layer
respectively. Usually, pooling layers are applied between two
successive convolutional layers. Pooling operation can create
invariance, such as small shifts and distortions. In the object
detection and scene classification tasks, the characteristic of
invariance provided by pooling layers is very important

H l = pool(H l−1). (4)

Fully connected layers: Fully connected layers usually appear
in the top layer of CNNs, which can summarize the features
extracted from the bottom layers. Fully connected layers process
its input X̃ with linear transformation by weight W̃ and bias
b̃, then map the output of linear transformation by a nonlinear
activation function f . The entire process can be formulated as
(5). In the task of classification, to output the probability of each
class, a softmax classifier is connected to the last fully connected
layer generally. The softmax classifier is used to normalize the
fully connected layer output y ∈ Rc (c is the number of classes)
between 0 and 1, which can be described as (7), where e is the
exponential function. The output of softmax classifier denotes
the probability that the given input image belongs to each class.
The dropout method [59] operates on the fully connected layers
to avoid overfitting because a fully connected layer usually
contains a large number of parameters

y = f(W̃ · X̃ + b̃) (5)

P (yi) =
eyi

∑c
i=1 e

yi
. (6)
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2) CNN-Based Scene Classification Methods: In the wake of
CNNs successfully being applied to large-scale visual classifi-
cation tasks, around 2015, the use of CNNs has finally taken off
in the remote sensing image analysis field [76], [77]. Compared
with traditional advanced methods, e.g., SIFT [39], HOG [44],
and BoVW [49], CNNs have the advantage of end-to-end feature
learning. Meanwhile, it can extract high-level visual features
that handcrafted feature-based methods cannot learn. By using
different strategies of exploiting CNNs, a variety of CNN-based
scene classification methods [73], [102]–[107] have emerged.
Generally, the CNN-based methods of remote sensing image
scene classification can be divided into three groups: using
pretrained CNNs as feature extractors, fine-tuning pretrained
CNNs on target datasets, and training CNNs from scratch.

Using pretrained CNNs as feature extractors: In the begin-
ning, CNNs appeared as feature extractors. Penatti et al. [85]
introduced CNNs in 2015 into remote sensing image scene
classification, and evaluated the generalization capability of
off-the-shelf CNNs in classification of remote sensing images.
Their experiments show that CNNs can obtain better results
than low-level descriptors. Later, Hu et al. [38] treated CNNs
as feature extractors and investigated how to make full use of
pretrained CNNs for scene classification. In [108], Marmanis
et al. introduced a two-stage CNN scene classification frame-
work. It used pretrained CNNs to derive a set of representations
from images. The extracted representations were then fed into
shallow CNN classifiers. Chaib et al. [109] fused the deep
features extracted with VGGNet to enhance scene classification
performance. In [110], Li et al. fused pretrained CNN features.
The fused CNN features show better discrimination than raw
CNN features in scene classification. Cheng et al. [104] de-
signed the bag of convolutional features (BoCF) for remote
sensing image scene classification by using off-the-shelf CNN
features to replace traditional local descriptors such as SIFT.
Yuan et al. [111] rearranged the local features extracted by
an already trained VGG19Net for remote sensing image scene
classification. In [112], He et al. proposed a novel multilayer
stacked covariance pooling algorithm (MSCP) for remote sens-
ing image scene classification. MSCP can combine multilayer
feature maps extracted from pretrained CNN automatically. Lu
et al. [113] introduced a feature aggregation CNN (FACNN)
for scene classification. FACNN learns scene representations
through exploring semantic label information. These methods
all used pretrained CNNs as feature extractors and then fused or
combined the features extracted by existing CNNs. It is worth
noticing that the strategy of using off-the-shelf CNNs as feature
extractors is simple and effective on small-scale datasets.

Fine-tuning pretrained CNNs: However, when the amount
of training samples is not adequate to train a new CNN from
scratch, fine-tuning an already trained CNNs on target datasets
is a good choice. Castelluccio et al. [114] delved into the
use of CNNs for remote sensing image scene classification
by experimenting with three learning approaches: using pre-
trained CNNs as feature extractors, fine tuning, and training
from scratch. And they concluded that fine-tuning gave better
results than full training when the scale of datasets is small. This
made researchers interested in fine-adjusting scene classification
networks or optimizing its loss functions. Cheng et al. [73]

designed a novel objective function for learning discriminative
CNNs (D-CNNs). The D-CNNs shows better discriminability
in scene classification. In [115], Liu et al. coupled CNN with a
hierarchical Wasseratein loss function (HW-CNNs) to improve
CNNs discriminatory ability. Minetto et al. [72] devised a new
remote sensing image scene classification framework, named
Hydra, which is an ensemble of CNNs and achieve the best
results on the NWPU-RESISC45 dataset. Wang et al. [74]
introduced attention mechanism into CNNs and designed the
ARCNet (attention recurrent convolutional network) for scene
classification. It is capable of highlighting key areas and discard
noncritical information. In [116], to handle the problem of object
scale variation in scene classification, Liu et al. formulated the
multiscale CNN (MCNN). Fang et al. [117] designed a robust
space-frequency joint representation (RSFJR) for scene classifi-
cation by adding a frequency domain branch to CNNs. Because
of fusing features from the space and frequency domains, the
proposed method is able to provide more discriminative feature
representations. Xie et al. [118] designed a scale-free CNN
(SF-CNN) for the task of scene classification. SF-CNN can
accept the images of arbitrary size as input without any resizing
operation. Sun et al. [119] proposed a gated bidirectional net-
work (GBN) for scene classification, which can get rid of the
interference information and aggregate the interdependent in-
formation among different CNN layers. In the abovementioned
methods, CNNs can learn discriminative features and obtain
better performance by fine adjusting their structures, optimizing
their objective function, or fine-tuning the modified CNNs on
the target datasets.

Training CNNs from scratch: Even though fine-tuning pre-
trained CNNs can achieve remarkable performance, there exist
some limitations relying on pretrained CNNs: learned features
are not fully suitable for the characteristics of target datasets and
it is inconvenient for researchers to modify pretrained CNNs.
In [120], Chen et al. introduced knowledge distillation into
scene classification to boost the performance of light CNNs.
Zhang et al. [121] illustrated a lightweight and effective CNN
that introduces the dilated convolution and channel attention
into Mobilenetv2 [122] for scene classification. In addition, it
is of considerable interest to design more effective and robust
CNNs for scene classification. He et al. [123] introduced a novel
skip-connected covariance (SCCov) network for remote sensing
image scene classification. The SCCov is to add skip connection
and covariance pooling to CNNs, which can reduce the amount
of parameters and achieve better classification performance.
In [102], Zhang et al. presented a gradient boosting random
convolutional network (GBRCN) for scene classification via
assembling different deep neural networks.

These CNN-based methods have obtained astonishing scene
classification results. However, they generally require numerous
annotated samples to fine-tune already trained CNNs or train a
network from scratch.

C. GAN-Based Remote Sensing Image Scene Classification

1) Brief Introduction of GAN: Generative adversarial net-
work (GAN) [82] is another important and promising machine



3744 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 9. Architecture of GANs.

learning method. As its name implies, GAN models the distri-
bution of data via adversarial learning based on a minimax two-
player game, and generates real-like data. GANs contain a pair
of components—the discriminatorD and generatorG. As shown
in Fig. 9, G can be analogs to a group of counterfeiters who take
the role of generating fake currency, while D can be thought of
as polices who determine whether the currency is made by G
or bank. G and D constantly pit against each other in this game
until D cannot distinguish between the counterfeit currency and
genuine articles. GANs see the competition between G and D as
the sole training criterion. G takes an input z, which is a latent
variable obeying a prior distribution pz(z), then maps z with
noise into data space by using a differential function G(z;θg),
where θg denotes the generator G’s parameters. D outputs the
probability of the input data x that comes from real data rather
than generator through a mappingD(x;θd)with parameters θd,
where θd denotes the discriminator D’s parameters. The entire
process of the two-player minimax game is described as (7),
where pdata is the distribution of data x and V(G,D) is an object
function. From D’s perspective, given an input data generated
by G, D will play a role in minimizing its output. While if a
sample is real data,Dwill maximize its output. This is the reason
why the term log(1−D(G(z))) is plugged into (7). Meanwhile,
to fool D, G makes an effort to maximize D’s output when a
generated data is input to D. Thus, the relationship that D wants
to maximize V(G,D) and G struggles to minimize V(G,D)
is formed

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pt(z)[log(1−D(G(z)))]. (7)

2) GAN-Based Scene Classification Methods: As a key
method for unsupervised learning, since the introduction by

Goodfellow et al. [82] in 2014, GANs have been gradually
applied to many tasks such as an image to image translation,
sample generation, image superresolution, and so on. Facing
the tremendous volume of remote sensing images, CNN-based
methods need to use massive labeled samples to train mod-
els. However, annotating samples is labor-intensive. Some re-
searchers began to employ GANs to scene classification. In
2017, Lin et al. [84] proposed a multiple-layer feature-matching
generative adversarial networks (MARTA GANs) for the task of
scene classification. Duan et al. [83] used an adversarial net to
assist in mining the inherent and discriminative features from
remote sensing images. The dug features are able to enhance
the classification accuracy. Bashmal et al. [132] provided a
GAN-based method, called Siamese-GAN, to handle the aerial
vehicle images classification problems under cross-domain con-
ditions. In [133], to generate high-quality remote sensing images
for scene classification, Xu et al. added the scaled exponential
linear unites to GANs. Ma et al. [134] designed the Sifting-
GAN, which can generate a large variety of authentic annotated
samples for scene classification. Teng et al. [135] presented
a classifier-constrained adversarial network for cross-domain
semisupervised scene classification. Han et al. [136] introduced
a generative framework, named SSGF, to scene classification. Yu
et al. [137] devised an attention GAN for scene classification.
Attention GAN achieves better scene classification performance
by enhancing the representation power of the discriminator.

In the area of remote sensing scene image classification, most
of GAN-based methods usually use GANs for sample generation
or feature learning in an adversarial manner. Compared with
CNN-based scene classification methods, only a small number
of literatures about GAN-based scene classification method have
been reported so far, and the performance of GAN-based scene
classification is inferior to CNN-based methods. In addition,
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TABLE II
13 PUBLICLY AVAILABLE DATA SETS FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION

most of GAN-based scene classification methods cannot be
trained end-to-end because they often require labels for training
an additional classifier. However, the powerful self-supervised
feature learning capacity of GANs provides a promising future
direction for the scene classification.

IV. SURVEY ON REMOTE SENSING IMAGE SCENE

CLASSIFICATION BENCHMARKS

Datasets play an irreplaceable role on the advance of scene
classification. Meanwhile, they are crucial for developing and
evaluating various scene classification methods. As the num-
ber of high-resolution remote sensing sensors increases, the
access to massive high-resolution remote sensing images makes
it possible to build large-scale scene classification bench-
marks. In the past few years, the researchers from different
groups have proposed several publicly available high-resolution
benchmark datasets for scene classification of remote sensing
images [49], [74], [79], [80], [85], [124]–[131] to facilitate
this field forward. Starting with the UC-Merced dataset [49],
some representative datasets include WHU-RS19 [124], SAT-
4&amp; 6 [126], RSSCN7 [125], Brazilian Coffee Scene [85],
RSC11 [128], SIRI-WHU [127], RSCI-CB [129], AID [79],
NWPU-RESISC45 [80], OPTIMAL-31 [74], EuroSAT [130],
and BigEarthNet [131]. The characteristics of these 13 datasets
are listed in Table II. Among them, the UC-Merced data [49],
AID dataset [79], and NWPU-RESISC45 dataset [80] are three
commonly used benchmark datasets, which will be introduced
below in detail.

A. UC-Merced Dataset

The UC-Merced dataset1 [49] was released in 2010 and con-
tains 21 scene classes. Each category consists of 100 land-use

1Online. [Available]: http://weegee.vision.ucmerced.edu/datasets/form.html

images. In total, the dataset comprises 2100 scene images, of
which the pixel resolution is 0.3 m. These images were obtained
from United States Geological Survey National Map of 21 U.S.
regions and fixed at 256× 256 pixels. Fig. 10 lists the samples
of each category from the dataset. Up to now, the dataset contin-
ues to be broadly employed for the scene classification. When
conducting algorithm evaluation, two widely used training ratios
are 50% and 80%, and the remaining 50% and 20% are used for
testing.

B. AID Dataset

The AID [79] dataset2 is a relatively large-scale dataset for the
aerial scene classification. It was published in 2017 by Wuhan
University and consists of 30 scene classes. Each scene class
consists of 220 to 420 images, which were cropped from Google
Earth imagery and fixed at 600× 600 pixels. In total, the dataset
comprises 10 000 scene images. Fig. 11 lists the samples of
each category from the dataset. Different from the UC-Merced
dataset, the AID dataset is multisourced because these aerial
images were captured with different sensors. Moreover, the
dataset is also multiresolution and the pixel resolution of each
scene categories varies from about 8 m to about 0.5 m. When
conducting the algorithm evaluation, two widely used training
ratios are 20% and 50%, and the remaining 80% and 50% are
used for testing.

C. NWPU-RESISC45 Dataset

To the best of our knowledge, the NWPU-RESISC45 dataset3

[80], released by Northwest Polytechnical University, is cur-
rently the largest scene classification dataset. It consists of 45
scene categories. Each category consists of 700 images, which

2Online. [Available]: www.lmars.whu.edu.cn/xia/AID-project.html
3Online. [Available]: http://www.escience.cn/people/gongcheng/NWPU-

RESISC45.html

http://weegee.vision.ucmerced.edu/datasets/form.html
www.lmars.whu.edu.cn/xia/AID-project.html
http://www.escience.cn/people/gongcheng/NWPU-RESISC45.html


3746 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 10. Some example images from the UC-Merced dataset.

were obtained from Google Earth and fixed at 256× 256 pixels.
In total, the dataset comprises 31 500 scene images, which is
chosen from more than 100 countries and regions. Apart from
some specific classes with a lower spatial resolution (e.g., island,
lake, mountain, and iceberg), the pixel resolution of most the
scene categories varies from about 30 to 0.2 m. Fig. 12 lists
the samples of each category from the dataset. The release of
NWPU-RESISC45 dataset has allowed deep learning models to
develop their full potential. When conducting algorithm evalua-
tion, two widely used training ratios are 10% and 20%, and the
remaining 90% and 80% are used for testing.

V. PERFORMANCE COMPARISON AND DISCUSSION

A. Evaluation Criteria

There exist three commonly used criteria for evaluating the
performance of the task of remote sensing image scene clas-
sification: overall accuracy (OA), average accuracy (AA), and
confusion matrix. The metric of OA is an evaluation of the
performance of the classifiers over the entire test dataset, which
is formulated as the total number of accurately classified sam-
ples Nc divided by the total number of tested samples Nt, as
described in (8). OA is a commonly used criterion for evaluating
the performance of the methods for the scene classification of
remote sensing images. The criterion of AA is defined as the

sum of the accuracies of each category Ai divided by the total
number of class c, as described in (9). When the sample number
of each category is equal on the test set, OA and AA have the
same value. The confusion matrix is a detailed classification
result table about the performance of each single classifier. For
each element xij in the table, the proportion of the images that
are predicted to be the ith category while actually belonging to
the jth class is computed. Therefore, the confusion matrix can
directly visualize the performance of each category and through
it we can easily get which classifiers are getting it right and what
types of errors they are making. In this survey, we only use OA
as evaluation criterion because the confusion matrix will take a
lot of space

OA = Nc/Nt (8)

AA =
1

c

c∑

i=1

Ai. (9)

B. Performance Comparison

In recent years, a variety of scene classification algorithms
have been published. Here, 27 deep learning-based scene clas-
sification methods are selected for the performance comparison
on three widely used benchmark datasets. Among the 27 deep
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Fig. 11. Some example images from the AID dataset.

learning methods, 3 of them are autoencoder-based methods, 22
of them are CNN-based methods, and 2 of them are GAN-based
methods.

Tables III–V report the classification accuracy comparison of
deep learning-based scene classification methods on the UC-
Merced dataset, the AID dataset, and the NWPU-RESISC45
dataset, respectively, measured in terms of OA.

C. Discussion

As can be seen from Tables III–V, the performance of
remote sensing image scene classification has been succes-
sively advanced. In the early days, deep learning-based scene
classification approaches were mainly based on autoencoder,

and researchers usually use the UC-Merced dataset to evaluate
autoencoder-based algorithms. As an early unsupervised deep
learning method, the structure of autoencoder was relatively
simple, so its feature learning capability was also limited. The
accuracies of the autoencoder-based approaches had plateaued
on the standard benchmarks.

Fortunately, after 2012, CNNs, a powerful supervised learning
method, have proved to be capable of learning abstract features
from raw images. Despite their powerful potential, it took some
time for CNNs to take off in the remote sensing image scene
classification domain, until 2015. A short while later, CNN-
based algorithms mainly used CNNs as feature extractors, which
outperformed autoencoder-based methods. However, only using
CNNs as feature extractors did not make full use of the potential
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TABLE III
OVERALL ACCURACY (%) COMPARISON OF 21 SCENE CLASSIFICATION METHODS ON THE UC-MERCED DATA SET

TABLE IV
OVERALL ACCURACY (%) COMPARISON OF 16 SCENE CLASSIFICATION METHODS ON THE AID DATASET
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Fig. 12. Some example images from the NWPU-RESISC45 dataset.

of CNNs. Thanks to the release of two large-scale scene clas-
sification benchmarks, namely AID and NWPU-RESISC45 in
2017, fine-tuning off-the-shelf CNNs have shown better gener-
alization ability in the task of scene classification than only using
CNNs as feature extractors.

Generally, CNN-based methods require large-scale labeled
remote sensing images to train CNNs. To deal with this issue,

GANs, a novel self-supervised learning method, were intro-
duced into remote sensing image scene classification. Through
adversarial training, GANs can model the distribution of real
samples and generate new samples. According to the reported
accuracy of scene classification in Tables III–V, the develop-
ment of autoencoder-based methods have reached a bottleneck,
CNNs-based methods still dominate and have some upside
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TABLE V
OVERALL ACCURACY (%) COMPARISON OF 15 SCENE CLASSIFICATION METHODS ON THE NWPU-RESISC45 DATA SET

potential, the performance of GAN-based methods is relatively
low on the three benchmarks, and so there remains much
room for further improving the performance of GAN-based
methods.

Moreover, learning discriminative feature representation is
one of the critical driving forces that improve the scene clas-
sification performance. Fusing multiple features [109], [117],
designing effective cost functions [72], [115], modifying deep
learning models [72], [118], and data augmentation [84] are all
beneficial for attaining better performance. Meanwhile, with the
access to large-scale benchmark data sets, it will become smaller
for the gap between the scene classification approaches based
on supervised learning and the scene classification approaches
relied on unsupervised learning.

The release of publicly available benchmarks, such as the
UC-Merced dataset, the AID dataset, and the NWPU-RESISC45
dataset, makes it easier to compare scene classification al-
gorithms. From the perspectives of datasets, the UC-Merced
dataset is relatively simple, and the results on the dataset driven
by CNNs have reached saturation (above 99% classification
accuracy by using the training ratios of 80%). The AID dataset
is of moderate difficulty. The classification accuracy on the
AID dataset can reach about 97% by using 50% training sam-
ples. For NWPU-RESISC45, some advanced methods based on
CNNs have reached about 96% classification accuracy when
the training ratio is fixed at 20%. Up to the present, the NWPU-
RESISC45 dataset is still challenging compared with the UC-
Merced dataset and the AID dataset.

The performance of CNN-based methods depends very much
on the quantity of training data, so developing larger scale and
more challenging remote sensing image scene classification
benchmarks can further promote the development of data-driven
algorithms.

VI. FUTURE OPPORTUNITIES

Scene classification is an important and challenging problem
for remote sensing image interpretation. Driven by its wide
application, it has aroused extensive research attention. Thanks
to the advancement of deep learning techniques and the estab-
lishment of large-scale datasets for scene classification, scene
classification has been seeing dramatic improvement. In spite
of the amazing successes obtained in the past several years,
there still exists a giant gap between the current understanding
level of machines and human-level performance. Thus, there
is still much work that needs to be done in the field of scene
classification. By investigating the current scene classification
algorithms and the available datasets, this article discusses sev-
eral potential future directions for scene classification in remote
sensing imagery.

1) Learning discriminative feature representations. Two key
factors that influence the performance of scene classifi-
cation tasks are intraclass diversity and interclass simi-
larity existing in remote sensing images. To tackle the
challenges, some representative methods [72], [73], [145]
have been introduced over the past few years, such as
multitask learning (e.g., unifying classification and simi-
larity/metric learning) and designing/fusing CNNs. Even
though these methods are effective to learn discriminative
CNN features, the challenges of higher intraclass variation
and smaller interclass separability are still not fully solved.
These challenges seriously affect the performance of scene
classification. In the future, learning more discriminative
feature representations to handle the challenges needs to
be addressed by various learning ways.

2) Learning multiscale features. In the task of remote sensing
image scene classification, the same scene/object class can
appear in different scales due to the changes in imaging
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distance and the intrinsic properties of scenes/objects in
size, so how to learn multiscale features has been a crucial
and open problem. Some researches [116], [123], [146]–
[149] in multiscale representations have been done over
the past few decades, such as multiscale training, multires-
olution feature fusion, and changing receptive field. How-
ever, these existing methods for learning scale-invariance
features are far from the capability of human vision and
cannot easily respond to the challenge of large variance of
scene/object scale. For example, building deeper CNNs in
order to extract high-level features has the side effect that
small-sized object information is easily discarded. In the
future, designing more robust way to extract multiscale
features, especially for small-sized scenes/objects, would
be promising for numerous vision tasks.

3) Multilabel remote sensing image scene classification. In
the past few decades, extensive efforts have been made
for the task of single-label image classification. However,
in the real world, it is extremely common that multiple
ground objects will appear in a remote sensing image
because of the birds-eye imaging method. Therefore,
single-label remote sensing image scene classification
does not allow for a deep understanding of the intricate
content of remote sensing images. In recent years, research
has been conducted on multilabel remote sensing image
scene classification [150]–[156], but it still faces many
challenges that need to be further addressed, such as how
to exploit the relationship between different labels, how to
learn more generalized discriminative features, and how
to build large-scale multilabel remote sensing image scene
classification datasets.

4) Developing larger scale scene classification datasets. An
ideal scene classification system would be capable of
accurately and efficiently recognizing all scene types in all
open world scenes. Recent scene classification methods
are still trained with relatively limited datasets, so they
are capable of classifying scene categories within the
training datasets but blind, in principle, to other scene
classes outside the datasets. Therefore, a compelling scene
classification system should be able to accurately label a
novel scene image with a semantic category. The existing
datasets [49], [79], [80] contain dozens of scene classes,
which are far fewer than those that humans can distinguish.
Moreover, a common deep CNN has millions of parame-
ters and it tends to over-fit the tens of thousands of training
samples in the training set. Hence, fully training a deep
classification model is almost impracticable by using cur-
rently available scene classification datasets. A majority
of advanced scene classification algorithms mainly rely on
fine-tuning already trained CNNs on the target datasets or
utilizing pretrained CNNs as feature extractors. Although
the transferring solutions behave fairly well on the target
datasets with limited types and samples, they are not the
most optimal solution compared with fully training a deep
CNN model because the model trained from scratch is
able to extract more specific features that are adaptable to
the target domain when training samples is large enough.

Considering this, developing a new large scale dataset with
considerably more scene classes for scene classification is
very promising.

5) Unsupervised learning for scene classification. Currently,
the most advanced scene classification algorithms gener-
ally use fully supervised models learned from annotated
data with semantic categories and have achieved amazing
scene classification results. However, such fully super-
vised learning is extremely expensive and time-consuming
to undertake because data annotation must be done man-
ually by researchers with expert knowledge of the area of
remote sensing image understanding. When the number of
scene classes is huge, data annotation may become very
difficult due to the massive amount of diversities and vari-
ations in remote sensing images. Meanwhile, the labeled
data are generally full of noise and errors, especially for
large-scale datasets, since the diverse knowledge levels of
different specialists result in different understandings of
the same classes of scene. Fully supervised learning can
hardly work well without a large dataset with clean labels.
As a promising unsupervised learning method, generative
adversarial networks have been used for tackling scene
classification with datasets that lack annotations [83], [84],
[137]. Consequently, it is valuable to explore unsupervised
learning for scene classification.

6) Compact and efficient scene classification models. During
the past few years, another key factor in the outstanding
progress in scene classification is the evolution of powerful
deep CNNs. In order to achieve high accuracy in classifi-
cation, the layer number of the CNNs has increased from
several layers to hundreds of layers. Most advanced CNN
models have millions of parameters and require a massive
labeled dataset for training and high-performance GPUs,
which severely limits the deploying of scene classifica-
tion algorithms on airborne and satellite-borne embedded
systems. In response, some researchers are working to de-
sign compact and lightweight scene classification models
[120], [121]. In this area, there is much work to be done.

7) Scene classification with limited samples. CNNs have
obtained huge success in the field of scene classification.
However, most of those models demand large-scale la-
beled data and numerous iterations to train their param-
eter sets. This extremely limits their scalability to novel
categories because of the high cost of labeling. Also, this
fundamentally confines their applicability to rare scene
categories (e.g., missile position, military zones), which
are difficult to capture. In contrast, humans are adept at
distinguishing scenes with little supervision learning, or
none at all, such as few-shot [157] or zero-shot learning
[158]. For instance, children can quickly and accurately
recognize scene types ranging from a single image on TV,
in a book, or hearing its description. The current best scene
classification approaches are still far from achieving the
human’s ability to classify scene types with a few labeled
samples. Exploring few-shot/zero-shot learning approach
for scene classification [159]–[161] still needs to be further
developed.
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8) Cross-domain scene classification. Current research
works have confirmed that CNNs are powerful tools for
the task of scene classification and CNN-based methods
have attained remarkable performance. However, the big
achievements are based on the fact that training and testing
data obey the same distribution. What will happen when
train and test sets are from different domains? Can CNN
models trained on a source domain show good generaliza-
tion on another target domain? Generally, the performance
will drop significantly because there exists a big gap
between the source and target domains on data distribu-
tion. In fact, these differences between source and target
domains are quite common on remote sensing images
because of different imaging platforms (e.g., satellites and
unmanned aerial vehicles) or different imaging sensors
(optical sensors, infrared sensors, and SAR sensors). In
the past few years, some researchers have explored cross-
domain scene classification to enhance the generalization
of CNN models and reduce the distribution gap between
the target and source domains [162]–[165]. There is much
potential for improving domain adaption-based methods
for scene classification, such as mapping the feature repre-
sentations from target and source domains onto a uniform
space while preserving the original data structures, design-
ing additional adaptation layers, and optimizing the loss
functions.

VII. CONCLUSION

Scene classification of remote sensing images has obtained
major improvements through several decades of development.
The number of papers on remote sensing image scene clas-
sification is breathtaking, especially the literature about deep
learning-based methods. By taking into account the rapid rate of
progress in scene classification, in this article, we first discussed
the main challenges that the current area of remote sensing image
scene classification faces with. Then, we surveyed three kinds of
deep learning-based methods in detail and introduced the main-
stream scene classification benchmarks. Next, we summarized
the performance of deep learning-based methods on three widely
used datasets in tabular forms, and also provided the analysis of
the results. Finally, we discussed a set of promising opportunities
for further research.
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