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Rainfall Monitoring Based on Machine Learning by
Earth-Space Link in the Ku Band
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Abstract—Recently, the oblique earth-space links (OELs) be-
tween satellite and earth station have been used for rainfall moni-
toring as a supplement to existing observation methods. Most recent
studies achieved the rainfall measurement by OELs based on the
empirical method such as power-law (PL) model. In practice, two
crucial issues need to be addressed: 1) identification of rain and
no-rain periods; and 2) determination of attenuation baseline. To
solve these problems, this article adopts several machine learning
algorithms based on the analysis of earth-space link signal charac-
teristics. For the first issue, we choose the support vector machine
as a classifier and the adaptive synthetic sampling algorithm is
deployed to eliminate the effects caused by the data imbalance. For
the second issue, the long short-term neural network is selected for
the determination of attenuation baseline since it has a good ability
to solve time-series problem. In terms of the rainfall inversion, we
establish a new model by combining the back-propagation (BP)
network and genetic algorithm (GA). The PL model is also used as
a comparison. To validate the proposed method, we set up an earth-
space link that receives the signal from AsiaSat5 in 12.32 GHz. The
results demonstrate that the two issues are successfully addressed
and the inversion of precipitation is also carried out. Compared to
disdrometer, the correlation and mean absolute error of GA-BP
model are 0.83 and 1.30 mm/h, respectively, indicating a great
potential to use densely OELs for global precipitation monitoring.

Index Terms—Earth-space link, ku-band, machine learning,
rainfall monitoring, remote sensing.

I. INTRODUCTION

ACCURATE and real-time rainfall measurement plays an
important role in many aspects of human life such as

agricultural issues, water resource management, and natural
disaster warning. Existing rainfall detection method mainly
comprises rain gauge, weather radar, and weather satellite [1].
Based on the exploitation of existing radio spectrum sources,
the opportunistic use of microwave links has become a new
approach to detect precipitation. Messer et al. first suggested the
application of commercial wireless communication networks
to environmental monitoring [2]. In recent years, the use of
horizontal microwave links (HMLs) has been developed rapidly
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in many fields such as path-average rain intensity inversion
[3], [4], radar calibration [5], and regional rainfall monitoring
[6]. With the deployment of 5G wireless system, there will
be more and more millimeter-wave HMLs all over the world.
Relevant research has shown these densely distributed HMLs
are capable of monitoring precipitation in urban areas [7]. It can
be said HMLs have become a supplement to existing rainfall
measurement method.

In fact, the oblique earth-space links (OELs) as another source
of microwave links also have potential to measure precipitation.
Barthes et al. used the OELs from television satellite located at
geostationary earth orbit (GEO) and successfully retrieved the
rain intensity in Paris area [8]. In space, there are hundreds of
GEO satellites operated by broadcast and telecommunication
companies, and satellites emit stable microwave signal in C
(4–8 GHz) and Ku (12–18 GHz) bands toward the earth. Theo-
retically speaking, three GEO satellites are capable of covering
the whole globe expect polar regions, and with sufficient OELs,
it is possible to monitor the global precipitation. Mercier et al.
proved the feasibility of this idea through their experiment [9].
They made use of four OELs to successfully retrieve 2-D rain
maps with high resolution in Vivarais region in the south of
France. Now there are many research works demonstrating that
the GEO OELs are qualified for real-time rainfall monitoring
[10]–[13].

Recently, communication satellite constellation (CSC) has
been under construction by many technology companies such
as spaceX and OneWeb [14], [15]. The CSC consists of many
low-earth orbit (LEO) satellites using Ku, Ka (27–40 GHz), or
even higher bands. For example, OneWeb plans to adopt 882
LEO satellites in the Ku band to establish their first-generation
CSC and provides commercial services for global users in 2021
[15]. The Ku and Ka bands satisfy the demand of high capa-
bility and available bandwidth, at the same time, they are very
suitable for rainfall measurement. Moreover, to make the CSC
commercially feasible, user ground terminals must be at a lower
price. The relevant studies have shown the potential of LEO
OEL system for precipitation monitoring [16], [17]. Therefore,
in the near future, using the densely commercial OEL networks
can develop a high-resolution precipitation observation system
all over the world, which is part of the wireless environmental
sensor networks [18].

Different from HML, there are more complex factors affecting
the OEL because it penetrates the whole troposphere. Due to the
effects of no-rain atmospheric factors such as gasses, cloud, and
turbulence [12], [13], two critical issues need to be addressed
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in the application of OELs: 1) identification of rain and no-rain
periods; and 2) determination of attenuation baseline. It is worth
noting that the two issues also exist in the use of HMLs.

The first issue is essential for determining the attenuation
baseline during rain period, and many relevant methods have
been proposed. Rahimi et al. used the relations between two
different signals from dual-frequency microwave link to address
this issue [19]. Schleiss et al. introduced a statistic that is related
to signal variation and achieved the identification based on a
given threshold [20]. Binsheng et al. extracted signal features
with different time scale to train long short-term (LSTM) neural
network that was used to distinguish the two situations [21].
Barthes et al. also proposed an identification method based on
multilayer perceptron [8].

The second issue is an important process for obtaining the
attenuation caused by rainfall. As for this, Jonatan et al. pre-
sented that minimal value of signal attenuation can be used
for the determination of baseline [22]. Schleiss et al. intro-
duced a moving time window to calculate attenuation caused
by the factors other than rain [20]. Many researchers also
suggested that the attenuation baseline during rain period can
be obtained by interpolation according to the signal before
and after rainfall [8], [12], [13]. However, if the rainfall lasts
long time, the delay of rainfall measurements will become
obvious.

With the development of machine learning, it is gradually
being applied to precipitation observation [23]–[27]. To the
best our knowledge, the earliest application of artificial neural
network (ANN) to rainfall estimation can be traced back to 1992
when French et al. used current data to forecast rainfall an hour
later by back-propagation (BP) neural network [23]. Similar
rainfall measurement method was tested in many regions by
Ahuna et al. and showed reliable performances [26]. In addition,
Michaelides et al. used the ANN to fill up missing rainfall
data [24], and Lathifah et al. identified different precipitation
categories based on classification and regression tree [27]. In our
work, we also try to propose a new rainfall inversion approach
based on the machine learning because it can accurately establish
the mapping relation between rainfall and satellite signal without
any assumptions.

The primary aim of this article is to improve the practical
application of rainfall monitoring by OELs. In this article, we
set up an antenna in Nanjing to receive 12.32-GHz signal from
AsiaSat5 and test our approach by this earth-space link.

First, we extract 12 statistical features from link signal, which
have obvious differences between rain and no-rain periods.
Then, these features are used to train support vector machine
(SVM) that focuses on the identification of the two states.
Due to the imbalance of data type, adaptive synthetic sampling
algorithm (ADSYN) is adopted to improve the accuracy of SVM
classifier. Second, we use the LSTM network to determine the at-
tenuation baseline because it is capable of solving time-sequence
problem. This method only depends on the signal prior to current
rain period, which avoids the delay in rainfall measurement.
Finally, we try to inverse precipitation based on the BP network
because the selected features are related to rain intensity. The GA

is also used to optimize the connection weights of BP network,
which avoids the latter getting trapped into local optimal and
speeds up convergence.

We achieve the identification of rain and no-rain periods with
higher accuracy and determine the attenuation baseline in real
time. Moreover, the GA-BP model shows a good performance
on rainfall inversion. Although we only use single link to carry
out our approach, the proposed algorithm is also applicable to
multilinks with different frequencies and polarizations.

II. MATERIALS AND METHODS

A. Rain Attenuation of Earth-Space Link

When the earth-space link passes through rainfall region, the
scattering and absorption of raindrops will cause satellite signal
attenuation. According to the analysis by Sheng et al. [28], the
near scattered field of raindrops is negligible. Therefore, the
specific attenuation γrain [dB/km] for raindrops in unit volume
can be considered as the linear sum of extinction effects from
each particle

γrain = 10 lg e

∫ ∞

0

πD2

4
Qext(D)N(D)dD (1)

where D is the equivalent diameter of raindrop [mm], Qext (D) is
the extinction efficiency that can be obtained from T-matrix, and
N(D) is the equivalent raindrop size distribution (DSD) along the
link. In fact, it has been proven that the specific attenuation is
related to rain intensity in power-law manner [29]. And existing
studies on path-average rain intensity R [mm/h] inversion by
OELs are almost based on the power-law model (PL)

γ̄rain = αR̄β (2)

where γrain is the path-average specific attenuation, and the co-
efficients α and β are related to frequency, polarization, temper-
ature, and DSD. Combining the distance lr [km] of earth-space
link in rainfall region, the rain attenuation AR [dB] is described
as

AR = γ̄rainlr. (3)

B. No-Rain Attenuation of Earth-Space Link

Compared to HMLs, there are more complicated atmospheric
conditions affecting the earth-space link, which makes it more
difficult to separate rain attenuation from satellite signal [30].
In application of HMLs, the assumption, that the horizontal
distribution of oxygen and water vapor is constant, is widely
adopted to simplify the rainfall inversion. Due to gas content
changing with height, this assumption may be no longer valid.
Moreover, the liquid water in cloud also affects the Ku band sig-
nal [31]. The scintillation caused by turbulence makes the signal
amplitude fluctuates rapidly and irregularly [32]. In addition to
the effects from above sources, nonatmospheric factors also have
an influence on earth-space link such as free-space propagation
and orbit perturbations; but these effects are generally constant
or regular [12].
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Fig. 1. Horizontal distribution of experimental site (green triangle) located
in Jiangning district of Nanjing, China (31°58′27’N, 118°48′52’E), Nanjing
reference climatological station (blue square) located about 9.8 km southeast of
experimental site, and the earth-space link (red line). The antenna, OTTPAR-
SIVEL (OTT) as well as terminal are located at the same position.

C. Experimental Setup

We establish the experimental system at Jiangning district
of Nanjing, China (31°58’27’N, 118°48’52’E). A dish antenna
in 1.2 m diameter receives vertically polarized signal in 12.32
GHz from AsiaSat5. This satellite operates in GEO above
100.5°E and emits relatively stable signal in C and Ku bands
toward east Asia. The original received signal is transmitted
to terminal and then the latter outputs processed signal once
every 6 s for 24 h a day. In addition, an OTTPARSIVEL (OTT)
is colocated with satellite antenna and provides rain intensity
with 1-min temporal resolution. Radiosonde data from Nan-
jing reference climatological station is used to calculate the
height of local rainfall region top. This station is located about
9.8 km southeast of our experimental site. The corresponding
horizontal distribution of experimental system and climatolog-
ical station is shown in Fig. 1. Furthermore, this experiment
lasts three months from July to September 2019, and the mea-
surements over this period are used to achieve the proposed
approach.

The received signal power (Pr in dB) is described as (4),
where Pe is the power of the satellite transmitter; Ge and Gr

are the transmitter and receiver antennas gain; AL is the free
space attenuation, and At is the tropospheric attenuation [8]. Due
to adopting an efficient hydrophobic coating, the wet antenna
attenuation caused by residual water is negligible and thus not
considered in this article

Pr(t) = Pe(t) +Ge(t) +Gr(t)−AL(t)−At(t). (4)

In the Ku band, At consists of attenuation caused by oxygen
Ao, water vapor Av, liquid water in cloud Ac, scintillation As,
rain AR, and other factors Aother, which is expressed by

At(t)=Ao(t) +Av(t) +Ac(t) +As(t) +AR(t) +Aother(t).
(5)

The processed signal from our terminal is defined as an
attenuation compensation (AC, in dB) that is related to the
gain provided by the receiver in order to compensate for the

Fig. 2. When there is no rain, the obvious periodic variation of attenuation
compensation (AC) due to obit perturbations is observed from measured values
(blue dots), and by zooming into finer grade (red box) the fluctuations of
amplitude are fast and irregular caused by atmospheric factors.

atmospheric attenuation. The relation between AC and At is

AC(t) = At(t) + C (6)

where C is a constant.
To obtain the rain attenuation, (6) is described as

AC(t) = ACbase(t) +AR(t) (7)

where ACbase is the attenuation baseline denoted as

ACbase(t)=AO(t) +AV (t) +AC(t) +AS(t) +Aother + C.
(8)

During no-rain period, we have

ACbase(t) = ACno−rain(t). (9)

Fig. 2 shows the measured AC on five no-rain days from
September 6 to 10. We can clearly observe the periodic vari-
ations of AC due to satellite perturbations (blue dots and black
line). By zooming into finer grade (red box), the fluctuations of
amplitude are very fast and irregular caused by turbulence and
other atmospheric factors.

Although there are so many no-rain factors attenuating Ku
band signal, rain is still the dominant factor in overall attenua-
tion. It can be observed from the measurements (see Fig. 3) that
the amplitude fluctuation of AC is obviously consistent with rain
intensity. During rain period, AC is significantly higher than that
of no-rain period, and the correlation coefficient between AC (red
line) and rain intensity (blue line) is 0.78. Moreover, the green
dotted line denotes the attenuation baseline in rain situation,
which is used to obtain rain attenuation.

III. EARTH-SPACE LINK RAINFALL INVERSION MODEL

A. Identification of Rain and No-Rain Periods

In practice, the identification of rain and no-rain periods is a
two-class classification problem: judge if it is raining at a given
time. In present studies, many algorithms are designed to solve
this problem such as probabilistic neural network, random forest
(RF), and SVM, etc. The SVM is initially proposed to carry out
two-class classification [33]. The theory of SVM is searching for
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Fig. 3. This rain event happened on July 12, 2019. During rain period, the
correlation coefficient between AC (red line) and rain intensity (blue line) is
0.78, and the green dotted line denotes the attenuation baseline.

an optimal hyperplane that separates the data into two classes.
Its main objective in training process is to solve the following
quadratic optimization problem [33]:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK (Xi,Xj)−
n∑

i=1

αi

s.t.

{ ∑n
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n
(10)

where Xi is the signal feature vector at the ith moment; K (Xi, Xj)
is the Gaussian kernel function used to change the dimension of
sample space; C is the penalty coefficient; yi is the corresponding
label at the ith moment which can be described as

yi =

{
0 if ROTT ≤ 0.1 mm/h the ith moment ∈ dry period

1 if ROTT > 0.1 mm/h the ith moment ∈ rain period

(11)

where ROTT is the rain intensity measured by OTT. Furthermore,
the sequential minimal optimization algorithm is deployed in the
SVM classifier training process.

According to the similar methods proposed by Barthes et al.
[8] and Binsheng et al. [21], various characteristics with different
time windows have been used such as standard deviation, local
trend, and information entropy, etc. Based on these studies,
we extract 12 statistical features from satellite signal to form
the feature vector Xi, which could discriminate between rainy
and dry periods. Due to the limitation of OTT, the temporal
resolution of selected feature is changed to 1 min. The time
window of each feature should have a suitable length, because it
relates to the time delay of rainfall measurement and meanwhile
determines the feature differences between rain and no-rain. The
12 elements of X and corresponding symbols are tabulated in
Table I.

The expression of the signal feature vector Xi is shown as
follows:

Xi =
[
xi
1;x

i
2;x

i
3; · · · ;xi

11;x
i
12

]

TABLE I
STATISTICAL FEATURES OF EARTH-SPACE LINK SIGNAL WITH DIFFERENT

TIME WINDOWS

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
1 =

[
1

T+1

∑T
t=1

(
AC(i− T + t)−AC

)2]
;

xi
2 = 1

T

∑−T/2
t=−T/2 αtAC(i+ t)

α = (−1,−1, . . . ,−1, 0, 1, . . . , 1);

xi
3 = maximum(AC(i− T + t));xi

4

= minimum(AC(i− T + t));

xi
5 = 1

T

∑T
t=1 AC(i− T + t);

xi
6 = T (T+1)

(T−1)(T−2)(T−3)

∑N
i=1

(
AC(i−T+t)−AC

std(AC)

)4

− 3(T−1)2

(T−2)(T−3) ;

xi
7 =

(
1
T

∑T
t=1

(
AC(i− T + t)−AC

)3)/
(

1
T

∑T
t=1

(
AC(i− T + t)−AC

)2) 3
2

;

xi
8 =

∑T
t=1 −ACt log(ACt); x

i
9 =

∑T/2
t=1 λt

/
λ1;

xi
10 =

∑
i [ω1(i)]

2
/∑8

j=2

∑
i [ωj(i)]

2;

xi
11 = P (STD > stdi);x

i
12 = P (AV E > avei)

(12)

where T is the ratio of time window to the temporal resolution of
AC equal to 6 s; ωj is a coefficient sequence from satellite signal
with three-layer wavelet decomposition; λt is the singular value
of Hankel matrices composed by received AC over a 30 min time
window; and the calculation of last two elements is based on
the statistical database established by our experimental system.
To diminish the effects caused by magnitude, it is necessary to
normalize the feature so that their values fall into a specified
range. In this article, we scale our features into the range [0,1]
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TABLE II
VALUES OF MEAN AND STANDARD DEVIATION OF NORMALIZED FEATURES OF RAINY AND DRY MOMENTS

based on the following equation [34]:

V = [v1, v2, . . . , v12] =
(xi − xi,min)

(xmax − xmin)
i = 1, 2, . . . , 12

(13)
where xi,min and xi,max are the minimum and maximum values
of each feature, respectively. The means and standard deviations
of each normalized feature during rainy and dry periods are given
in Table II. It shows that except the Kurtosis and Skewness, the
means for each feature at rain and no-rain moments have obvious
differences especially for the last two. The values of standard
deviation in the two situations are very close except the first
feature, indicating each of them has similar divergence.

In addition, the statistical distributions of each normalized
features during rainy and dry periods are compared to test
their ability to distinguish the two states. As can be seen in
Fig. 4, the statistical distributions of characteristics at rain and
no-rain moments are significantly different except Kurtosis and
Skewness. As for the two features, their distributions at the two
states are almost coincided with each other. However, in the
training process, we found Kurtosis and Skewness enhanced
the identification of some rain moments (highlighted by purple
dotted line in figure), which is capable of improving the accuracy
of the SVM classifier.

The correlation coefficients among extracted features and rain
intensity are shown in Fig. 5. As can be observed, seven of
these features, such as trd, max, min, etc., are highly correlated
whose correlations are around 0.85. It also indicates that the rain
intensity is related to these characteristics. The correlation with
H/L is as high as 0.46, and values with other features are between
0.01 and 0.25.

B. Determination of Attenuation Baseline

Based on , attenuation baseline during rainy period is equal to
the AC value measured by the satellite signal receiving system
while no rain is observed by the OTT. Referring to the relevant
literatures, the baseline can be estimated according to the values
prior to this rain period, which actually is a time-series prediction
problem [20], [22]. In fact, many methods are proposed to
solve this problem such as Kalman Filter, generalized regression
network, and least square method (LS), etc. In this article, we
present a novel approach to predict attenuation baseline based
on LSTM network that is a type of recurrent neural networks
and first introduced by Hchreiter et al. [35]. The LSTM net-
work is capable of learning long-term dependencies between
time sequence data. The estimation of attenuation baseline only
depends on the AC values before precipitation. Compared to the

algorithm proposed by Barthes [8], the LSTM effectively avoids
the time delay in rainfall measurement.

As can be seen from the left side of equation in Fig. 6, the
LSTM block estimates ACbase(t + 1) based on the measured
ACbase(t) and its own outputs at t moment. The specific work
process is explained on the right side in the chronological order.
During dry period (yellow dotted box), the LSTM block receives
the measured ACbase, equal to ACno-rain, and previous infor-
mation to adjust network parameters and predicts the ACbase

for the next moment. During rainy period (blue dotted box),
only previous information enters into the LSTM block to update
network and meanwhile estimate ACbase. Generally speaking,
the LSTM network learns the characteristics of measured ACbase

at no-rain state in chronological order and then predicts the
ACbase in rain situation, which belongs to supervised learning.

In the LSTM block, there are three gates: forget gate, update
gate, and output gate. In work process, forget gate determines
which part of the prior state c(t−1) should be removed according
to the information h(t−1) from prior moment and the measured
ACbase(t). During rain period, this gate only considers the in-
formation h(t–1). Update gate determines which information
should be added to new state c(t) according to its received data.
On the basis of the first two gates, the output gate generates
new state c(t) and new information h(t). At the same time, the
estimated ACbase(t + 1) is also given by output gate. The update
of LSTM network parameters is iteratively carried out by the
following equations [36]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ft = σ (Wxfxt +Whfht−1 + bf )

gt = σ (Wxcxt +Whcht−1 + bc)

it = σ (Wxixt +Whiht−1 + bi)

ct = ft ⊗ ct−1 + it ⊗ gt

ht = ot ⊗ tanh (ct)

(14)

where W and b denote the weights and bias of three gates, x
represents the measured ACbase that is removed in rain situation
and σ(.) is the standard logistics sigmoid function.

C. Inversion of Rainfall

Based on above analysis, there is a certain correlation between
rain intensity and selected features. Therefore, we try to propose
a new approach to discuss the feasibility of rainfall inversion
by BP network, because BP is capable of quickly establishing
the mapping relation between inputs and outputs without any
assumption. On the other hand, this new method is also capable
of being generalized to other regions. As a type of multilayer
feed forward ANN, conventional BP network comprises input
layer, hidden layers, and output layer, and adjacent layers are
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Fig. 4. Statistical distributions of normalized features in Table I are showed
from (a) to (l) in order. Red and green bars are the distributions at rain and
no-rain moments; the dark green bars are their overlapping parts; and the purple
dotted lines highlight the differences between rainy and dry situations.

connected by corresponding weights [37], [38]. The network
designed in this article consists of three hidden layers with
15 ×10 × 5 neurons. The input layer comprises 12 selected
features as well as rain attenuation and the output is rain intensity.

Fig. 5. Correlation coefficients among extracted features and rain intensity.

The learning process of BP network can be divided into two
steps: 1) forward propagation of feature signal and 2) back prop-
agation of error signal. In the first step, the inputs are propagated
to stimulate the first hidden layer’s neurons. Then, the neurons
of prior layer stimulate the next layer until generating estimated
rain intensity. Note that in this process all connection weights
remain unchanged. In the second step, according to the errors
between estimations and measurements, BP network adjusts
these weights along the direction of the fastest error gradient
decent until the output is close to the expected one.

However, there are some inherent disadvantages with the
conventional BP network such as poor rate of convergence
and getting trapped into a local optimum easily [39], [40]. To
overcome these drawbacks, many optimization algorithms have
been introduced such as GA and particle swarm optimization
algorithm. In this article, the GA is used to enhance the robust-
ness and effectiveness of BP network. The training processes of
GA-BP network are shown in Fig. 7. As can be seen, the GA
actually optimize the generation of initial connection weights,
which is important for the result of a BP network [38], [41]. In
general, the optimization is carried out in the following way.

First, GA provides the initial weights that are close to global
optimum. Based on this original state, BP network searches the
optimal result in a small solution space. This method combines
the advantages of these two algorithms. The GA as a heuristic
stochastic search algorithm is good at searching global optimum
and BP is more effective for the local search. The evolution
process in GA mainly consists of selection, cross over, and
mutation, which are performed for the individuals with high
fitness. The specific calculation of GA can refer to the literature
[41]. Moreover, the fitness used here is the reciprocal of test
error E that is defined as

E =
1

2m

m∑
i=1

(Ri − ri)
2 (15)

where m is the number of samples in test set and R and r are
the measured and estimated rain intensity, respectively. The
termination conditions are test error lower than 0.01 or procedure
reaching maximum iteration that is set to 500.
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Fig. 6. Architecture of long short-term memory (LSTM) layer in this article. The yellow and blue dotted boxes indicate the working process of LSTM layer
during no-rain and rain periods, respectively.

Fig. 7. Flowchart of GA-BP rainfall estimation model that consists of back
propagation (BP) neural network module (the purple box) and genetic algorithm
(GA) optimization module (the blue dotted box). The BP network comprises
one input layer with 13 features, three hidden layers with 15×10×5 neurons,
and one output layer with estimated rain intensity. In the GA optimization
module, selection, cross over, and mutation are three basic operators to form
new population.

IV. RESULTS AND DISCUSSIONS

A. Validation of the SVM Classifier

Because the rain time in Nanjing is much less than the no-rain
time, the ratio of rainy moments to dry is approximately equal
to 1:20 [see Fig. 8(a)]. This situation makes the SVM classifier
harder to learn the characteristics of minority class (rain), which
has been exposed in the training process. The accuracy of rain-
no-rain identification is lower than 40%. To diminish the effects
caused by this problem, an oversampling approach, ADASYN,
is used [42], [43]. This method is an improvement to synthetic
minority oversampling technique. The ADSYN is capable of
generating new minority samples around an original sample. The
number of new produced samples depends on the distribution
of learning weights that are related to the difficulty in learning
original minority sample. The specific calculation process of

Fig. 8. Distribution of rainy and dry samples in the feature space before and
after the ADSYN processing. (a) The original distribution (b) the distribution
after processed by ADSYN.

ADSYN can refer to the literature [42]. After processed by the
ADSYN, the ratio of rainy samples to dry raises to about 1:2
[see Fig. 8(b)].

Moreover, five evaluation metrics are used to assess the per-
formance of the SVM classifier and they are defined as following
equations [42]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

OA = TR+TD
TR+FR+TD+FD

Precision = TR
TR+FR

Recall = TR
TR+FD

F_measure = 2×Recall×Precision
Recall+Precision

G_mean =
√

TR
TR+FD× TD

TD+FR

(16)
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Fig. 9. Identification results of the SVM classifier on July 12, July 25, August
10, and August 28. The red line is AC, the blue line is rain intensity and the blue
background denotes the rainy moments identified by SVM classifier.

where TR denotes the number of rainy samples that are identi-
fied correctly, TD denotes the number of dry samples that are
identified correctly, FR is the number of no-rain samples that are
identified as rain, and FD is the number of rain samples that are
identified as no-rain. In addition, OA indicates the accuracy that
the SVM classifier identify overall samples, Precision reflect
the ability of classifier to distinguish the no-rain samples whose
features are similar to that of rain, and Recall indicates the
accuracy of identifying rain samples [44]. The aim of using
ADSYN is to enhance the ability of SVM to identify rainy
moment and meanwhile not reduce its performance on dry
moment. Therefore, the F_measure combines Precision and
Recall to assess the generalization of SVM to the two states.
G_mean indicates the degree of inductive bias with respect to
the accuracy of rain-no-rain identification [42]–[44].

The identification results on July 12, July 25, August 10, and
August 28 are shown in Fig. 9. As can be seen, the SVM classifier
has a good performance on different precipitation situations:
continuous moderate rain (2.5–10 mm/h) on July 12, short-time
heavy rain (10–50 mm/h) on July 25, continuous light rain (0–2.5
mm/h) on August 10 and intermittent light rain on August 28.
However, many rainy moments are not identified accurately
especially for the light rain, which can be observed from July
12 and August 28. This is because their corresponding signal
features are very close to dry moment. It also can be seen

on August 10, many dry moments appearing in rainy period
are misidentified since signal features have no enough time to
change back. On July 12, some dry moments are misclassified
caused by the effects of other atmospheric factors.

Furthermore, Table III shows the statistical results of eight
rainfall events. It can be seen on July 25 that the rainy moments
of short-time heavy rain are identified easily; however, the FR
is very close to the TR, which causes Recall is 1 but Precision
is only 0.797. The values of F_measure on these events are all
higher than 0.87 indicating the ability of the SVM classifier to
identify rain and no-rain moments is close. Therefore, above
results demonstrate that the method based on SVM achieves
the rain-no-rain identification, but it is still insufficient for the
recognition of light rain.

B. Attenuation Baseline From the LSTM Network

To evaluate the performance of LSTM network, estimated
ACbase over 200 min after precipitation are used since the real
baseline during rainy period cannot be obtained. The root-mean-
square error (RMSE), coefficient of determination (R2), and
correlation coefficient (CC) are chosen as evaluation metrics
and defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RMSE =
√

1
N

∑N
i=1 (ye(i)− yr(i))

2

R2 = 1−∑N
i=1 (yr(i)− ye(i))

2
/∑N

i=1 (yr(i)− ȳr)
2

CC =
∑N

i=1 (ye(i)− ȳe) (yr(i)− ȳr)
/

√∑N
i=1 (ye(i)− ȳe)

2
√∑N

i=1 (yr(i)− ȳr)
2

(17)

where ye and yr are the estimated and real values, respectively,
and N is equal to 200.

The estimated attenuation baselines on July 6, July 9, July
19, and August 10 are shown in Fig. 10, where the picture
at bottom left of each subgraph is the comparisons between
measured and estimated ACbase in a finer grade and the bottom
right is corresponding error. These results show the feasibility
of the LSTM network to baseline prediction. Except for above
days, Table IV also tabulates the evaluation metrics on other four
precipitation days, which consist of different situations. In terms
of RMSE and errors, the LSTM network has a good performance
on predicting ACbase during rainy period. However, there are two
obvious disadvantages that could be observed from R2 and CC.

First, the rainfall characteristics of July 9 and July 19 are
similar but their prediction results are obviously different. Based
on lots of experiments, we found this problem often happens
in the light rain that lasts a relatively long time because it
makes other atmospheric factors such as water vapor change
dramatically after the precipitation. However, this problem is
not obvious in the continuous heavy rain (see August 10) since
the effects caused by precipitation are more significant. Second,
as can be seen from July 6, the value of R2 is only 0.8. This
is caused by short-time extreme rain (50 mm/h) whose effects
are so significant that the signal has not yet changed back as
entering dry period. This problem is particularly obvious in
intermittent heavy or extreme precipitation. Based on the above
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TABLE III
IDENTIFICATION RESULTS OF SVM CLASSIFIER ON EIGHT RAINFALL EVENTS

a.tR is the time of rainfall (in min) and maxR is the maximum of rain intensity.

Fig. 10. Results of estimated attenuation baseline: (a) July 6, (b) July 9, (c)
July 19, and (d) August 10. The picture at bottom left of each subgraph is the
comparison between estimated and measured ACbase in a finer grade and bottom
right is corresponding error. The red line is estimated attenuation baseline, the
black line is measured AC, and the green background denotes the rainy period.

TABLE IV
EVALUATION METRICS ON ATTENUATION BASELINE PREDICTION OF EIGHT

PRECIPITATION EVENTS

a.aveR is the average of rain intensity.

analysis, the LSTM network has a reliable performance on
predicting attenuation baseline, but it still needs to be improved
for overcoming the drawbacks occurring in the continuous light
rain and intermittent extreme rain.

C. Rainfall Inversion by the GA-BP Model

As a comparison, the PL model is also used. Referring to
ITU-R P.838, the coefficient α is equal to 0.027, and β is
equal to 1.126 for 12.32 GHz [29]. The calculation of lr is
described as

lr = hr/sin θ (18)

where θ is an antenna elevation angle and hr is the height of
rain region top. According to ITU-R P.839, the height can be
obtained by [31]

hr = h0 + 0.36 (19)

where h0 is the height of 0 °C isotherm. We can obtain the
statistical height of 0 °C isotherm in Nanjing from the appendix
of ITU-R P.839, which is equal to 4.67 km [45].

However, in this article, the measured 0 °C isotherm height
by radiosonde is used. Fig. 11 shows the values of 0 °C isotherm
height from July to September, 2019, which is obviously differ-
ent from the statistical value.

The comparisons of rain intensity and accumulated rain be-
tween OTT, PL, and GA-BP are given in Fig. 12. Here, only
precipitation data are selected over three months and shown in
the chronological order. As can be seen, estimations by GA-BP
and PL models are consistent with OTT measurements. In terms
of rain intensity, the RMSE, CC, and mean absolute deviation
(MAD) of GA-BP model are 3.14 mm/h, 0.83, and 1.3 mm/h,
which shows a better performance than the PL model whose
values are 5 mm/h, 0.47 and 1.68 mm/h, respectively. In this
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TABLE V
COMPARISONS BETWEEN OTT, GA-BP, AND PL ON TEN RAINFALL EVENTS

a.acR is the total accumulated rain.

Fig. 11. 0 °C isotherm height from July to September, 2019 (blue line,
measured by radiosonde) and the statistical height in Nanjing (black dotted
line).

Fig. 12. Comparisons of rain intensity and accumulated rain between OTT,
PL, and GA-BP over three months. (a) Rain intensity. (b) Accumulated rain.

Fig. 13. Estimation errors of GA-BP and PL for different rainfall categories.

article, we use OTT measurements to train the GA-BP network
and the rain-intensity provided by the PL model is actually
path-averaged value, which accounts for the difference in rainfall
inversion.

Moreover, ten rainfall events of various intensities and dura-
tions are selected. The dates, durations, measured, and estimated
precipitation are given in Table V. It can be seen that the
intensities given by OTT, GA-BP, and PL are close to each
other especially for light (0–2.5 mm/h) and moderate (2.5–10
mm/h) rain events lasting long-time (events 2, 3, 9, and 10).
However, for short-time heavy (10–50 mm/h) and extreme (50
mm/h) precipitation, the maximum values of rain intensity
are obviously underestimated by GA-BP and PL (events 4, 5,
and 6).

To evaluate the performances of GA-BP and PL on different
precipitation categories, Fig. 13 shows the absolute error dis-
tributions between estimations and measurements. As also can
be observed, the GA-BP and PL are good at light and moderate
precipitation inversion whose error medians are close to zero. It
can be seen that the width of the boxes and error increases with
rain intensity. As for the GA-BP model, the samples of heavy and
extreme precipitation in training set only accounts for 2.6% and
0.2% which causes the mapping relation between signal features
and rain intensities are not obtained accurately. On the other
hand, the presence of heavy and extreme rain often associates
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with obvious spatial heterogeneity so that significant differences
can appear because the measured volumes of atmosphere are
different between the OTT and earth-space link. This explains
the differences from the PL model since it provides the average
rain intensity along link.

Compared with OTT measurements and PL estimations, the
GA-BP model has a good performance on rainfall inversion,
proving the feasibility of the proposed approach in this article.
It also shows a great potential to use advanced machine learning
algorithms for the precipitation monitoring by OELs.

V. CONCLUSION

Based on the exploitation of existing radio spectrum sources,
the opportunistic use of widely distributed microwave links has
a great potential for the global precipitation monitoring. This
article improves the practical application of oblique earth-space
links (OELs) to rainfall detection. A novel inversion method
is proposed based on machine learning and capable of being
generalized to other regions in the world.

In this article, we set up an antenna in Nanjing to receive
12.32-GHz signal from AsiaSat5. The data from satellite signal
receiving system is used to achieve the proposed approach.
First, 12 statistical features are extracted from the link signal
and used to train SVM classifier that focuses on rain-no-rain
periods identification. To diminish effects caused by the im-
balance of data type, ADSYN is adopted. Second, the long-
short term memory (LSTM) network is used to determine the
attenuation baseline during rainy period because it is good at
solving the time-sequence problem. During the experiment, we
found the selected features are related to rain intensity so that
the back propagation (BP) network is used to perform rainfall
inversion. At the same time, we adopt the genetic algorithm
(GA) to optimize the connection weights of BP, which avoids
the latter getting trapped into local optimal and speeds up
convergence. The main conclusions can be drawn from our
work

1) For the identification of rainy and dry periods, the ADSYN
effectively eliminates effects due to data imbalance, and
the SVM classifier is capable of identifying the two states.
The overall accuracy (OA) of identification is higher than
0.94 and the value of recall is higher than 0.82. However,
the classifier is still insufficient for the recognition of
light rain (0–2.5 mm/h) and easily disturbed by other
atmospheric factors.

2) For the determination of attenuation baseline, we evaluate
the performance of LSTM network based on the compar-
ison between estimated and measured baseline over 200
min after precipitation, because the real value in rainy
situation cannot be obtained. The RMSE is lower than
0.1 dB and CC is higher than 0.81 indicating a good
performance of LSTM on the baseline determination. But
it still needs to be improved for overcoming the drawbacks
that occur in the continuous light rain (0–2.5 mm/h) and
intermittent extreme rain (50 mm/h).

3) For the rainfall inversion, the comparisons of rain intensity
and accumulated rain between OTT, GA-BP, and PL are

performed. The estimations from GA-BP are consistent
with OTT measurements whose RMSE and CC are 3.14
mm/h and 0.83, respectively. Moreover, the performances
of GA-BP and PL on different precipitation categories
are evaluated. Both methods are good at the inversion
of light (0–2.5 mm/h) and moderate (2.5–10 mm/h) rain,
but significantly underestimate heavy (10–50 mm/h) and
extreme (50 mm/h) rain. In terms of GA-BP, this is because
the samples of heavy and extreme rain in training set only
account for 2.6% and 0.3%. On the other hand, the pres-
ence of heavy and extreme rain often associates with ob-
vious spatial heterogeneity, which causes the differences
between path-averaged (PL) and single-point measured
(OTT) rain intensity. These results prove the feasibility of
using machine learning algorithms to detect precipitation.

This article only uses single link to validate our approach,
but the proposed method is also applicable to multilinks with
different frequencies and polarizations. In the future, we will
continue improving the performance of our approach in different
regions and seasons. With the implementation of communication
satellite constellation, using OELs for rainfall monitoring will
become very common like water vapor measurement by global
navigation satellite system. This work will also focus on the
application of multilinks to regional rainfall monitoring and 3-D
precipitation field reconstruction.
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