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Abstract—The classification of hyperspectral imagery (HSI) is
an important part of HSI applications. The nearest-regularized
subspace (NRS) is an effective method to classify HSI as one of the
sparse representation methods. However, its high computational
complexity confines usage in a time-critical scene. In order to
enhance the computation efficiency of the NRS classifier, this article
proposed a new parallel implementation on the graphics processing
unit (GPU). First of all, an optimized single-GPU algorithm is
designed for parallel computing, and then the multi-GPU version
is developed to improve the efficiency of parallel computing. In
addition, optimal parameters for the data stream and memory
strategy are put forward to adapt a parallel environment. In order
to verify the algorithm’s effectiveness, the serial algorithm based
on central processing unit is used for a comparative experiment.
The performance of the multi-GPU approach is tested by two
hyperspectral image datasets. Compared with the serial algorithm,
the multi-GPU method with four GPUs can achieve up to 360×
acceleration.

Index Terms—Graphics processing unit (GPU), high-perfor-
mance computing (HPC), hyperspectral imagery (HSI), image
classification, nearest-regularized subspace (NRS).

I. INTRODUCTION

OVER the last decade, hyperspectral imagery (HSI) has
been garnering growing attention in the remote sensing

field [1]–[3]. Hyperspectral imaging system acquires hundreds
of images at corresponding continuous narrow spectral chan-
nels [4]–[6], which provide rich discriminative spectral infor-
mation. HSI has been widely applied in many scene interpre-
tation and sensing communities, such as agricultural monitor-
ing [7], target recognition [8], large-scale urban or agriculture
mapping [9], etc. Compared with the low-dimensional remote
sensing imagery (i.e., traditional optical imagery and synthetic
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aperture radar imagery [10]), the high-dimensional nature of HSI
hinders the transfer of traditional imagery processing algorithms
to HSI classification tasks. As a result, the classification of HSI
has become a hot topic in remote sensing imagery interpretation
field [11].

Recently, some representation-based classifiers achieve ex-
cellent results in land cover images [12], [13]. The pixel label
can be determined by the category of the closest representation
based on the principle that a pixel can be represented as a linear
combination of the labeled samples. Compared with existing
deep learning methods [14]–[18], the representation-based clas-
sifiers do not require a large number of training samples to
obtain better classification results, and complicated parameter
tuning. The essence of the sparse representation-based classifi-
cation (SRC) method is to represent a known pixel as the linear
combination of labeled samples via l1-based sparsity-inducing
regularization [19]. Although achieving satisfied classification
results, SRC encounters the problems of high computational cost
and higher accuracy improvement. Therefore, a collaborative-
representation classifier is developed by replacing l1-norm-
based regularization with l2-norm to avoid the algorithmic com-
plexity [20], [21]. Considering the drawback of representation-
based classifiers (i.e., SRC, and CRC) in dealing with spectral
diversity of intraclass samples, the nearest-regularized-subspace
(NRS) classifier is proposed by coupling nearest-subspace learn-
ing with the distance-weighted Tikhonov regularization [22],
[23]. Through the distance-weighted Tikhonov regularization,
the NRS classifier can dynamically learn the similarity between
the test sample and each training sample in one dictionary to
obtain a more accurate prediction vector. When applied in high-
dimensional signal classification, NRS tends to be chosen as the
optimal classifier as it can achieve tradeoff performance in clas-
sification accuracy and computation efficiency, compared with
SRC and CRC, as well as support vector machine (SVM) [22],
[24], [25]. However, introducing NRS to HSI classification is
still limited because HSI usually boasts of a large number of
pixels in real scenarios. Matrix computation and linear solutions
of NRS for HSI classification on CPU are time-consuming and
storage-cost.

With the rapid development of hyperspectral imaging tech-
niques, spatial and spectral resolutions of HSI are getting more
and more finer. The finer the resolution is, the large the data

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2058-2373
https://orcid.org/0000-0001-7015-7335
https://orcid.org/0000-0001-7261-7606
mailto:88371447@qq.com
mailto:nijunbuct@163.com
mailto:zhangf@mail.buct.edu.cn
mailto:zhyosh@mail.buct.edu.cn
mailto:liwei089@ieee.org
http://penalty -@M ieeexplore.ieee.org


LI et al.: MULTI-GPU IMPLEMENTATION OF NEAREST-REGULARIZED SUBSPACE CLASSIFIER FOR HYPERSPECTRAL IMAGE CLASSIFICATION 3535

volume is. Hence, it is necessary to develop real-time clas-
sification methods. Although cloud computing can speed up
the algorithms’ running time [26], [27], it heavily relies on
computer hardware resources, resulting in increased hardware
costs and a waste of resources. In terms of one device, the
performance of algorithms in the hyperspectral image meets
more challenges because of the high computational complexity
of the classification, as mentioned in earlier models. All of these
methods are time-consuming and limited their application in
real-time scenarios.

Benefiting from the improvement of computer performance,
different complex computing methods can be optimized by a
variety of parallel computing approaches. Compared with the
algorithm-level acceleration through precision-for-efficiency,
high-performance computing (HPC) technologies are capable
of improving efficiency while maintaining accuracy. In terms of
parallel computing devices, the HPC technologies can be divided
into two categories, namely the central processing unit (CPU)
parallel and graphics processing unit (GPU) parallel. In the early
remote sensing processing oriented parallel accelerations, the
CPU parallel technologies dominated the primary studies, e.g.,
open multiple processing (OpenMP) with multicores, message
passing interface (MPI) with multi-CPUs, and grid comput-
ing with multi-computers [28], [29]. With the development
of GPU hardware, the general-purpose computation on GPU
(GPGPU) technology has drawn increasing attention in remote
sensing [30]–[35]. GPU has become a universal computing
platform for many data-intensive and computing-intensive sce-
narios. Compared to traditional CPU parallelism, it can achieve
a dozen to several hundred times of acceleration.

In this regard, GPU has been increasingly used as a com-
modity platform for many compute-intensive, massively par-
allel, and data-intensive computations [36], [37]. GPU-based
parallel computing offers a tremendous potential to bridge the
gap toward a real-time analysis of hyperspectral images [38]. In
recent developments, a few parallel implementations of the HSI
classification based on GPUs have been introduced to enhance
calculation efficiency. For instance, SVM with composite ker-
nel [39], SRC [38], the combination of SRC and Markov random
fields (MRF) [40], and spatiality adaptive MRFs [41]. Although
their calculation efficiency has been significantly improved, the
classification accuracy of these methods is inferior to NRS [22].
Despite the importance of the NRS algorithm in HSI classifica-
tion, there are no available GPU implementations for it in the
public literature.

In this article, a novel parallel NRS algorithm is proposed
for hyperspectral image classification on multi-GPUs. First, an
optimized NRS serial method is proposed, which uses mem-
ory to store matrix multiplication results to avoid the repeated
large matrix multiplication task. Subsequently, based on this
optimized serial algorithm, a single-GPU method is proposed
to speed up the calculation of complex matrices. Although the
single GPU can optimize the computation of large matrix in the
NRS algorithm, it cannot simultaneously solve the processing
problem of batch samples. An optimized multi-GPU method is
designed for batch processing of samples after comparing differ-
ent task allocation and scheduling strategies. By using NVIDIA’s

Compute Device Unified Architecture (CUDA) and NVIDIAs
Tesla K 10 GPU, our methods can reach up to 50× speedup
in Pavia University dataset and 360× speedup in Pavia Centre
dataset. The main contributions of our work are as follows.

1) Based on the serial NRS model, an optimized NRS model
is introduced. By using this model, a single-GPU algo-
rithm is proposed to realize the initial parallel acceleration.

2) The single-GPU method is extended to a multi-GPU
method by considering the multiple task partition and
scheduling.

3) An optimal multi-GPU approach is proposed by compar-
ing different strategies of task partition and scheduling.

The rest of this article are organized as follows. Section II
presents the basic procedure and sequential analysis of the NRS
algorithm. Section III describes the single-GPU and multi-GPU
parallel classification algorithms. Section IV conducts some
experiments on processing performance and result accuracy that
use real datasets. Eventually, Section V draws conclusions.

II. RELATED WORK

A. NRS Classifier

By integrating nearest-subspace learning with Euclidean
distance-weighted Tikhonov regularization, NRS predicts the
label of the target test pixel. An approximation for each test
sample is generated through a linear combination of all training
samples of each class. In this way, the approximation of each
test sample is created separately from the training samples of
each class. Then, the closest class representation will label the
corresponding test data. NRS and SRC both get the approxi-
mation of the test sample via linear combinations of training
samples. But NRS not only does this by using a noncollaborative
approach to the approximation but also makes use of nonuniform
regularization. In addition, NRS uses Tikhonov regularization to
generate ỹl, but NRS decides bias atoms ofXl by their Euclidean
distance from the test sample y.

The symbols used are as follows:
1) C: number of classes;
2) l: a class label, l ∈ {1, 2, . . . , C};
3) Nt: spectrum number of hyperspectral image;
4) y: a test sample (vector);
5) Xl: the training samples of class l;
6) Pl: the quantity of training sample in Xl;
7) xl,p: a test sample (vector) of class l, and p is the number

of training sample Xl, p ∈ {1, 2, . . . , Pl};
8) αl: the coefficients of class l;
9) ỹl : class-specific approximation for a text sample y in

class l;
10) ‖ · ‖2: the l2 Euclidean distance.
In the NRS method, ỹl represents the class-specific approx-

imation between the dictionary Xl of lth category and the
test sample y, which is calculated via a linear combination of
available training samples in each class,Xl andαl represents the
weighting factor. The per-class coefficients are first calculated
according to the l2-norm regularization

αl = argmin
α∗

l

‖y −Xlα
∗
l ‖22 + λ‖Γl,yα

∗
l ‖22 (1)
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where λ is a global regularization parameter to balance the
minimization between the regularization terms and residual,Γl,y

is the biasing Tikhonov diagonal matrix to each training sample
xl,p of class l and test sample y

Γl,y =

⎡
⎢⎢⎢⎣

||y − xl,1||2 · · · 0

...
. . .

...

0 · · · ||y − xl,Pl
||2

⎤
⎥⎥⎥⎦ . (2)

A closed-form solution of the weighting vector αl can be
directly calculated as

αl = (XT
l Xl + λΓT

l,yΓl,y)
−1XT

l y. (3)

After the weighting vector is obtained, the label of the test
pixel is determined according to the category that minimizes the
Euclidean distance between y and ỹl

rl(y) = ‖ỹl − y‖22 = ‖Xlαl − y‖22. (4)

According to the aforementioned formulas, the approximate
ỹl of each test sample y can be solved as

ỹl = Xl(X
T
l Xl + λΓT

l,yΓl,y)
−1XT

l y. (5)

Then, the label of test sample y is calculated by

class(y) = arg min
l=1...C

rl(y). (6)

Although the CRC is similar to the NRS classifier, the latter
uses the regularization term instead of an identity matrix I of
CRC, and the experimental results have been illustrated that NRS
outperforms CRC in hyperspectral image classification [22].
By using a biasing Tikhonov matrix, the samples Xl, which
is different from y in the Euclidean distance, should contribute
less to the linear combination. As a result, the more relevant
weighting vector αl has better similarity with the test sample,
which results in better classification performance than CRC.

B. Serial Algorithm Analysis

Although the bias of NRS provides enormous benefits and
makes it receive extensive attention in HSI classification, its
computationally expensive implementations limit the practical
application.

Supposed thatΛ_Range is the range of regularization param-
eter λ, Testdata is the test dataset, andXl is the training sample
set of lth class. According to the analysis in Section II-A, the
serial method is shown in Algorithm 1.

In Algorithm 1, Γl,y is evaluated by function
normKernel(·), corresponding to (2), geagKernel(·) is used
to calculate XT

l Xl + λΓT
l,yΓl,y in (3), and norm1Kernel(·)

is preformed to calculate the residual between the predicted
vector ỹl and the test sample y, expressed by Euclidean distance
in (4). minKernel(·) is implemented to realize classification
in (6). Therefore, the NRS algorithm includes the following
five steps in common.

1) Input regularization parameter λ, one test sample y[1×Nt]

and one labeled training samples Xl[Sl×Nt] of class l.
2) Calculate the distance Dn[Sl×Sl] of y[1×Nt] to each train-

ing sample x[1×Nt].

Algorithm 1: NRS Classifier: Serial Version.
Require: DataTest: Test samples, Λ_Range: range of λ,

Training dataset
Ensure: Result: classified result
1: for each λ ∈ Λ_Range do
2: for each y ∈ Testdata do
3: for each l ∈ [1, C] do
4: get Xl the training samples of l-th category;
5: norms = normKernel(y,Xl);
6: Xsq = Xl

T ∗Xl;
7: Temp = geagKernel(Xsq, norms, λ);
8: αl = Temp−1 ∗Xl

T · y;
9: ỹl = Xl ∗ αl;

10: res(l) = norm1Kernel(ỹl, y);
11: end for
12: Result = minKernel(res);
13: end for
14: end for

Fig. 1. Histogram of computational complexity for the six steps.

3) Generate the diagonal matrix G[Sl×Sl] according to λ and
diagonal of Dn.

4) Obtain weight W[Sl×Sl] by solving matrix.
5) Go back to Step (1), and do the iterations.
Generally, λ is considered to be a variable to find an ideal

regularization parameter, despite that it is a constant in an actual
classification task. Therefore, there are three for-loops in the
NRS algorithm: each λ, each test sample, and each training
dictionary of different categories. Supposed L is the number
of regularization parameter λ, T is the number of test samples,
C is the number of categories, and Sl is the number of training
samples Xl of lth category. Because there are matrix multipli-
cation and inversion in (5) corresponding to the Step (4), the
matrix complexity is M = O(max(Sl, Nt)

3). The complexity
of whole serial algorithm is O(L, T,C,M).

In detail, under a given regularization parameter λ, the core
process of a test sample in lth dictionary can be divided into
six steps: Step (5), Step (6), Step (7), Step (8), Step (9), and
Step (10). Suppose that the number of training samples in the
lth dictionary is 300, and each sample has 103 features. The
computational complexity of each step is shown in Fig. 1. From
Fig. 1, the computational resource is mainly consumed in Step
(8), which is the linear solution and multiplication of the matrix,
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Algorithm 2: NRS Classifier: The Optimized Serial Version.
Require: DataTest: Test samples, Λ_Range: range of λ,

Training dataset
Ensure: Result: classified result
1: for each l ∈ [1, C] do
2: Xsq(l) = Xl

T ∗Xl;
3: end for
4: for each y ∈ Testdata do
5: for each l ∈ [1, C] do
6: get Xl the training samples of l-th category;
7: norms = normKernel(y,Xl);
8: XY = Xl

T ∗ y;
9: for each λ ∈ Λ_Range do

10: Temp = geagKernel(Xsq(l), norms, λ);
11: αl = Temp−1 ∗XY ;
12: ỹl = Xl ∗ αl;
13: res(y, l, λ) = norm1Kernel(ỹl, y);
14: end for
15: end for
16: end for
17: Result(y, λ) = minKernel(res);

accounting for about 87.15% of the computational resources.
The matrix multiplication in Step (5) accounts for 12.76% of
the computing resources. Other processes take up about 0.09%
of the computing resources.

The relationship between different for-loops is independent
between each test sample and λ when the matrix multiplication
is performed in the equationXsq = Xl

T ∗Xl in Algorithm 1, so
it can be calculated before the classification is performed. More-
over, if the formula res of each λ and each category is stored
in memory instead of executing Result = minKernel(res)
immediately in Algorithm 1, the relationships between three for-
loops will be independent, so that Algorithm 1 can be optimized
to Algorithm 2. In Algorithm 2, memory is used to save calcula-
tion resources in Step (2), Step (8), and Step (17). Equation (3)
is regarded as αl = (Xsq(l) + λ ∗ norms)−1 ∗XY , and res is
considered as a 3-D matrix. Besides, to speed up the efficiency
of data-parallel computing, XY = XT

l · y is first calculated
in the algorithm and saved in memory XY . Therefore, the
complexity of the whole serial algorithm is realized without the
three for-loops, which will help implement parallel optimization
algorithms, e.g., OMP, MPI, and GPU.

III. MULTI-GPU PARALLEL CLASSIFICATION ALGORITHM

In this section, the aforementioned NRS flow is adapted to fit
the hardware architecture and memory layout of GPU. NVIDIA
CUDA, based on GPU, is used as the parallel platform to achieve
the NRS algorithm. A single-GPU method will be discussed first
because it is the foundation to fulfill the multi-GPU algorithm.

Matrix calculation is the most time-consuming operation in
NRS. First, some functions of matrix operation in our program
are interpreted, and a third party library is introduced to accel-
erate these operations. In the single-GPU method, some GPU
kernel functions are implemented to deal with some special

Fig. 2. Overall flowchart of GPU-based NRS classification.

processes of the matrix. Then, this algorithm is extended from
single-GPU to multi-GPU, namely to divide tasks into some
parts for each GPU, and the task partition and scheduling are
performed in multi-GPU. Finally, some detailed strategies are
designed to enhance the efficiency of memory reading and
copying efficiency.

A. CUDA-Based GPGPU Application

NVIDIA CUDA technology has powerful parallel processing
capability because of its massive multi-processors and easy-to-
control instruction architecture, i.e., single-instruction multiple-
data, which allows us to execute same operation on different
data. Each multiprocessor maintains its local variables and
shares memory with other multiprocessors. When GPU dealing
with a parallel task, data should copy from host memory to device
memory since GPU could only access display memory via a
allocated device memory pointer.

The architecture of GPU is suited to data-intensive linear
algebra calculations. The GPU-based NRS classifier runs a great
number of threads in one GPU for parallel computation. In
order to utilize each parallel thread and grid, the algorithm
needs to consider data independence in each grid, because data
exchange in different grids cannot be exchanged. Therefore, the
NRS-GPUs flows can be designed as Fig. 2.

In Fig. 2, the HSI is first converted to binary files to compress
their size and save the loading time. Second, the training data and
test data will be copied to device memory from host memory.
And then, computationally intensive tasks (i.e., memory alloca-
tion, common variable computation, weights computation, norm
computation, and data copy) will be performed on the GPU,
such as Step (4) to Step (15) in Algorithm 2. After the GPU
calculation, the results will be copied from device memory on the
GPU to host memory. The classification results will be calculated
by CPU on the host. Of course, GPUs information and initiate
CUDA devices should be obtained before a new GPU function
is designed, so as to maximize the usage of GPU computing
resources.
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Fig. 3. Specific implementation of GPU-based NRS classification.

B. Single-GPU-Based NRS Algorithm

GPU has powerful computing capabilities, so it should be
assigned as many computing tasks as possible when processing
computation-intensive tasks. However, it is hard to provide data
for GPUs computation since that data need to be loaded and
copied not only from host to the device but also from device
memory to GPU. The key strategy is to reduce memory access
and memory usage. The order of memory access speed is GPU
register, GPU shared memory, GPU constant memory, GPU
display memory, and from any host memory.

According to the previous description, the overall flowchart
can be designed and shown in Fig. 3. The GPU-NRS algorithm is
divided into two parts: (1) parallel task partition and scheduling,
and (2) specific matrix operation designing.

1) Parallel Task Partition and Scheduling: As the men-
tioned sequential algorithm in Algorithm 2, the calculation
in different test samples can be generated to one matrix
operation, such as, XY = Xl

T ∗ y with a size of Pl × 1
is replaced by XY = Xl

T ∗ Testdata with a size of Pl ×
T , and normsAll = normsKernel(y,Xl) is replaced by
normsAll = normsGPU(Testdata,Xl). As a result, more
kernels of GPU and more device memory can be used. Therefore,
the NRS algorithm can be implemented with one GPU, as shown
in Algorithm 3.

Especially, in some devices of computing capability 2× and
higher, stream allows devices perform an asynchronous mem-
ory copy to or from the GPU concurrently with kernel execution.
In Algorithm 3, stream is used to resolve the parallel time
consumption of data computation algorithm and data copy at
Step (8) to Step (12).

Algorithm 3: NRS Classifier: Single-GPU Version.
Require: DataTest: Test samples, Λ_Range: range of λ,

Training dataset
Ensure: Result: classified result
1: Copy data from the host memory to device memory;
2: for each l ∈ [1, C] do
3: get Xl the training samples of l-th category;
4: normsAll = normsGPU(Testdata,Xl);
5: XY = Xl ∗DataTest;
6: Xsq = Xl

T ·Xl;
7: for each λ ∈ [0,Λ_Range] do
8: for each i ∈ [1, T ] do
9: calculate y in Testdata, i is the index, stream

is used for each test sample y;
10: Temp = geagGPU(Xsq, normsAll[i], λ);
11: αl[i] = posv(Temp,XY [i]);
12: end for
13: ỹl = Xl ∗ αl;
14: res = norm1GPU(ỹl, T estdata);
15: end for
16: end for
17: Result(y, λ) = minKernel(res);

2) Matrix Operation in GPU: Based on the NRS method,
some GPU functions are designed to resolve a series of matrix
operation problems, and they are defined as follows.

1) normsGPU(): Calculate the biasing Tikhonov matrix in
(2) for test samples by GPU.

2) gemm(): Compute a matrix–matrix product with general
matrices.

3) geagGPU(): Calculate the results about XT
l Xl +

λΓT
l,yΓl,y in (3) for ith test sample by GPU.

4) posv(): Compute the solution to the system of linear
equations A ∗X = B, where A is an symmetric positive-
definite coefficient matrix, and B is used to store solution
matrix X .

5) norms1GPU(): Computes the residuals between the pre-
dicted vectors and all test samples by GPU.

Those five global kernel functions are designed with CUDA,
and they are defined with the prefix “__global__”. In addition,
NVIDIA supplies some basic libraries in CUDA such as BLAS
(i.e., Basic Linear Algebra Subprograms). BLAS is a library
that contains basic linear algebra functions. In order to enhance
the efficiency of such matrix functions, a third-party library,
namely CULA, is used in our implementations [42]. CULA is
a set of GPU-accelerated linear algebra libraries utilizing the
NVIDIA CUDA parallel computing architecture to dramatically
improve the computation speed of sophisticated mathematics. It
provides not only BLAS functions, but also LAPACK (Linear
Algebra PACKage) functions such as general matrix multiplica-
tion gemm() and positive matrix equation solution posv().

C. NRS Algorithm Based on Multi-GPU

Although the single-GPU method has been developed in
Section III-B, it is just used to deal with some matrix operations
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Fig. 4. Parallel task scheduling of Multi-GPU v1.

and limited parallel task scheduling. As for the three for-loops
mentioned in Section II-B, a lot of parallel limitations have not
been resolved, in spite of some computations are implemented
in parallel, e.g., normsGPU(), geagGPU(), norms1GPU(),
and stream. The reason is that most of the resources are used to
accelerate matrix operations, so that the single GPU cannot offer
more resources for these for-loops. In addition, these for-loops
are nested, and single GPU cannot accelerate two or more nested
parallel problems at the same time. Therefore, it is necessary to
develop a multi-GPU version of the NRS algorithm, so as to
achieve real-time processing of a large number of test samples.

Based on single GPU-NRS, a multi-GPU version of the NRS
method, namely MGPU-NRS, is used to deal with one of the for-
loops. For controlling each GPU at the same time, multithread is
a common technique. In MGPU-NRS, some macros are inserted
into the single-GPU version, and OpenMP is used to control
GPUs. CUDA toolkit offers a function to bound a thread with
a device. At first, the number of created threads is the same as
the number of GPUs. Then, the same memory allocation will
be done. Data will be copy from host memory according to
thread ID (start from 0). As a result, different GPUs are used to
deal with a classification task in one of the for-loops. Finally,
two versions of MGPU-NRS methods are developed according
to different needs, named Multi-GPU v1 and Multi-GPU v2,
respectively.

1) Multi-GPU v1: In the first task division method, multiple
GPUs are used to accelerate the for-loop about the training
dictionary of each category. The training dictionary of each
category is assigned to a different GPU to calculate residual for
one test sample, and the residuals of all categories will be copied
to the host. The advantage of this version is that the category
attributes of a test sample can be calculated immediately. The
parallel task scheduling is shown in Fig. 4.

As shown in Fig. 4, four GPUs are used to accelerate the
NRS algorithm. The training dictionaries are divided into several
parts according to their labels and assigned to the specified GPU,
respectively. Test samples are copied to each GPU to calculate
residuals.

2) Multi-GPU v2: In case that the number of each category
of training sample may be uneven, the corresponding GPU of
the category with many training samples will slow down the
computing speed of other GPUs (waits for the slower GPU),

Fig. 5. Parallel task scheduling of Multi-GPU v2.

Algorithm 4: NRS Classifier: Multi-GPU v2.
Require: DataTest: Test samples, Λ_Range: range of λ,

Training dataset
Ensure: Result: classified result
1: thread_id = omp_get_thread_num();
2: gpu_id = cudaGetDeviceCount();
3: for each l ∈ [1, C] do
4: get Xl the training samples of lth category;
5: normsAll = normsGPU(Testdata,Xl);
6: XY = Xl ∗DataTest;
7: Xsq = Xl

T ·Xl;
8: for each λ ∈ [0,Λ_Range] do
9: XYt = XY ;

10: for testNum ∈ [1, T ] do
11: calculate Testdata in each stream
12: if testNum% gpu_count== thread_id then
13: i = testNum;
14: end if
15: streamBuf [i] = Xsq;
16: Temp = geagGPU(Xsq, normsAll[i], λ);
17: αl[i] = posv(Temp,XY [i]);
18: end for
19: ỹl = Xl ∗ αl;
20: res = norm1GPU(ỹl, T estdata);
21: end for
22: end for
23: Result(y, λ) = minKernel(res);

thus affecting the classification speed. Since Multi-GPU v1 is not
conducive to batch processing of a large number of test samples,
Multi-GPU v2 is designed, and the parallel task scheduling is
shown in Fig. 5.

According to Fig. 5, the test samples are divided into several
parts and assigned to the specified GPU, respectively. Training
samples are copied to each GPU to calculate residuals. Although
the classification speed of one sample is slower than Multi-GPU
v1, it is more suitable for batch processing of test samples. And
the algorithm is described in Algorithm 4.

In Algorithm 4, the test samples are divided according to the
number of GPUs (gpu_count). As a comparison, the training
samples are divided based on gpu_count in the first multi-GPU
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Fig. 6. Comparison of task scheduling: Multi-GPU v1 and Multi-GPU v2.

version. In detail, the comparison of two parallel task scheduling
is shown in Fig. 6. In the first task division method, each GPU
only deals with some training samples and training data of
the specified category and all test data will be copied from
host memory to device memory. The average device mem-
ory usage of each GPU is sizeof(TrainData/gpu_count) +
sizeof(TestData). In the second task partition, whole training
data and TestDate/gpu_count of test data will be copied
form host memory to device memory. Therefore, the total de-
vice memory usage of each GPU is sizeof(TrainData) +
sizeof(TestData/gpu_count).

IV. EXPERIMENTAL RESULTS

In this section, a series of experiments are performed for eval-
uating the efficiency of single- and multi-GPU implementations.
First, the experiment setup is introduced, including computing
environment and HSI. Next, the classification accuracy of the
NRS algorithm is analyzed. Then, the process of the NRS
algorithm is divided into six steps. The computational efficiency
comparison for each step can be analyzed to demonstrate the ef-
fectiveness of our methods based on both single and multi-GPU
implementations. Finally, the results of the two experiments are
exhibited to discuss our methods.

A. Experiment Setup

1) Computing Environment Specification: The experimental
environment consists of one Xeon with a 24-core processor
and four NVIDIA Tesla K10 GPUs, as shown in Table I. Each
Tesla K10 has 448 cores with 8 multiprocessors, single-precision
floating-point performance of 500 GFlops, double-precision
floating-point performance of 200 GFlops, total dedicated mem-
ory of 3.5 GB (3583 MB), and power consumption of 300 W.

TABLE I
EXPERIMENT ENVIRONMENT SETUP

Fig. 7. Ground truths of two hyperspectral images: PaviaCentre (left),
PaviaUniversity (right).

TABLE II
DETAILS OF DATASETS USED AS EXPERIMENTS

All devices are installed in one server so that we could neglect
the influence of network setup.

2) Hyperspectral Image Dataset: In order to verify the effec-
tiveness of our methods, two hyperspectral image datasets are
used for comparative experiments, i.e., PaviaCentre with 102
bands and PaviaUniversity with 103 bands. The two datasets
are acquired by the ROSIS sensor during a flight campaign over
Pavia of northern Italy. The geometric resolution is 1.3 m. The
image ground truths differentiate nine classes, and their ground
truths are shown in Fig. 7. In the first dataset, the image size is
1096× 715 after ignoring some strip samples, and 42 776 pixels
are labeled. In the second dataset, the image size is 610× 340,
with 148 152 labeled pixels. The detailed information of two
datasets is shown in Table II.
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TABLE III
SIZE OF DATASET

TABLE IV
CLASSIFICATION ACCURACIES OBTAINED FOR PAVIA CENTRE BY DIFFERENT λ

Based on the datasets, a few training samples and test samples
are randomly picked for verification. As shown in Table III ,
the number of training samples of each category in the two
experiments is kept consistent to ensure the equalization of
training samples. In the first experiment, six tests are performed
with different numbers of training samples (20 × 9, 100 × 9,
200 × 9, 300 × 9, 500 × 9, and 1000 × 9). The classification
accuracy and time are evaluated by 900 (100 × 9) test samples.
Correspondingly, six tests are also performed with different
numbers of training samples (15 × 9, 75 × 9, 150 × 9, 225 ×
9, 375 × 9, and 750 × 9) in the second experiment, and the
results are evaluated by 720 (80× 9) test samples. Moreover, the
number of training samples in the two experiments is set slightly
different, so as to prove the effectiveness of our methods from
different aspects. Training samples and test samples are stored
line-by-line in float binary format (IEEE754) without the header.

B. Classification Accuracy Analysis

According to the analysis in Section III, the parallel methods
must speed up the algorithm operation without reducing the
classification accuracy. Therefore, accuracies obtained for Pavia
Centre and Pavia University by different regularization param-
eters are first analyzed, which is shown in Tables IV and V. It is
clear that the accuracy is similar to the serial version algorithm.
Meanwhile, the result is consistent with Li’s conclusion [22].

In both tables, the classification accuracy varies with the num-
ber of training samples and regularization parameters. In the first

TABLE V
CLASSIFICATION ACCURACIES OBTAINED FOR PaviaUniversity BY

DIFFERENT λ

experiment, the average accuracy, namely Ave, is maintained at
a high and stable level after the number of training samples in
each category exceeds 200. The maximum accuracy, namely
Max, is 97.22%, and the number of training samples accounted
for 6%. In the second experiment, the maximum accuracy is
97.22%, and the number of training samples accounted for 0.9%.
The results show that the classifier can get a good classification
result under the limited training samples [22].

C. Computational Efficiency Comparison
for Two Experiments

In Algorithm 2, a series of parallel versions have been de-
signed. The algorithm (2) is designed as a comparison experi-
ment, in which the third-party C library CBLAS is used for the
matrix operation. The classification consumption time based on
the two datasets is shown in Tables VI and VII.

In the first experiment, although the CPU-based algorithm is
faster than the single-GPU algorithms when the training samples
per class is 20, the Multi-GPU v2 algorithm has achieved over
3.39× acceleration. Especially compared with the CPU-based
algorithm, the algorithms based on multiple GPUs accelerate by
2.3× at least and 360× at most. In addition, whenever it is a
single-GPU algorithm or multi-GPUs algorithm, their speedup
increases with the increase of the training sample number, as
shown in Fig. 8. At the same time, the computational per-
formance of the Multi-GPU v2 algorithm is better than that
of the Multi-GPU v1 algorithm, which is consistent with the
description in Section III-C.

In terms of the six tests, the number of training samples of
each category in the second experiment is set slightly smaller
than that in the first experiment, so as to verify the effectiveness
of the algorithms more comprehensively. Because the number
of test samples and the training samples are smaller than the
first experiment, the computation speed is faster than the first
experiment. From Table VII, the algorithms based on single
GPU accelerate by 0.28× at least and 12.85× at most, and the
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TABLE VI
EFFICIENCY COMPARISON OF SINGLE-GPU- AND MULTI-GPU-BASED NRS ON PAVIA CENTRE DATASET UNDER DIFFERENT SAMPLE PERCENTAGES

The boldface values mean the optimal results in this experiment.

TABLE VII
EFFICIENCY COMPARISON OF SINGLE-GPU- AND MULTI-GPU-BASED NRS ON PAVIA UNIVERSITY DATASET UNDER DIFFERENT SAMPLE PERCENTAGES

The boldface values mean the optimal results in this experiment.

Fig. 8. Speedup of different versions in the first experiment.

algorithms based on multi-GPUs accelerate by 1.3× at least
and 50.57× at most. As shown in Fig. 9, GPUs are better at
computationally intensive operations than CPUs.

V. CONCLUSION

This article first proposed a series of parallel methods to
optimize the NRS classifier by GPU. An optimal serial NRS
model is introduced to improve the performance of the data
stream by changing the loop order of variables. In addition, a
parallel implementation of the NRS algorithm is developed by
NVIDIA CUDAs GPU. From the experimental results of actual
hyperspectral datasets, including comparisons with equivalent
serial versions, the proposed method has a higher speedup
and computational efficiency without decreasing accuracy.

Fig. 9. Speedup of different versions in the second experiment.

Furthermore, this method can be significantly improved by
adopting an updated GPU platform. Due to the unique advan-
tages of the NRS classifier, our method is meaningful.
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