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Abstract—To avoid using a large 4D-Hough counting space
(HCS) and complex invariant features of generalized Hough trans-
form (GHT) or its extensions when detecting objects in remote sens-
ing image (RSI), a tensored GHT (TGHT) is proposed to extract
object contour by simple gradient angle feature in a 2D-HCS using
a single training sample. Considering that tensor can record the
structure relationship of object contour, tensor representation R-
table is constructed to record the contour information of template.
For slice centered at each position of RSI, the tensor-space-based
voting mechanism is presented to use the tensor that records the
contour information of slice to gather votes at the same entry of
2D-HCS. Furthermore, a multiorder binary-tree-based searching
method is presented to accelerate voting by searching the index
numbers of elements in tensors. In addition, by solving the tensor-
space-based optimization problem that is used to determine the
candidates objects, the cause of false alarms (FAs) caused by in-
terferences with complex contour and FAs caused by interferences
that are partial-similar to objects is revealed, and the matching
rate and matching sparsity-based strategies are then proposed to
remove these FAs. Using public RSI datasets with different scenes,
experimental results demonstrate that TGHT reduces nearly 99%
storage requirement compared with GHT for RSI with size exceed-
ing 1000 × 1000 under small time consumption, and outperforms
the well-known contour extraction methods and state-of-the-art
deep-learning-based methods in terms of precision and recall.

Index Terms—Multiorder binary-tree-based searching method,
object detection, tensor-space-based contour extraction, tensor-
space-based false alarms (FAs) removal, tensored generalized
Hough transform (TGHT).

I. INTRODUCTION

W ITH the development of imaging sensor technology,
there is a growing interest in various applications for

remote sensing information processes, such as object detec-
tion [1]–[3], unmixing [4], and hyperspectral image classifica-
tion [5]. Of these, object detection is considered a fundamental
application and challenge task for remote sensing image (RSI)
analysis and processing. Recently, owing to the advantage of
powerful feature representation, various deep-learning-based
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methods have been developed for different object detection
tasks. In [6], the weakly supervised learning method [7] and
high-level feature learning technology were combined to con-
struct an object detection framework for RSIs. In [8], by utilizing
the two-stream pyramid module and an encode–decode module,
the LV-Net was built to achieve salient object detection [9]
in RSIs. Although these deep-learning-based methods can be
used to detect different types of objects, they rely heavily on
many training samples. In comparison, contour extraction based
methods are similarly effective for object detection, but use much
fewer training samples [10]–[12]. Contour extraction methods
can be categorized into two groups: analytical shape-oriented
methods and nonanalytical shape-oriented methods. Represen-
tative analytical shape-oriented contour extraction methods,
such as line segments extraction, circle extraction, and rectangle
extraction, can be used to detect objects with a corresponding
analytical shape. Since airport runways can be described as par-
allel line segments with a certain length, the geometrical features
of line segments are constructed as a saliency map to detect the
airport [13]. By applying the circular Hough transform, the con-
tours of above-ground circular storage structures are extracted
in RSIs for complex industrial environments [14]. In [15], a rect-
angle extraction method was used to detect building rooftops.

As more objects (e.g., airplanes and ships) in RSIs have
complex shapes (i.e., nonanalytical shapes), it is difficult to
detect these objects using analytical shape-oriented methods.
Therefore, contour extraction methods for nonanalytical shapes
have wider application potential. As a typical representative,
the generalized Hough transform (GHT) [16] adopts a reference
table (i.e., R-table) to record edge information of a template
image by defining a mapping from the orientation of contour
points (CPs; calculated by gradient angle feature) to a reference
point (RP) in arbitrary shapes. It then detects a specific shape in
the test image according to the constructed R-table. Considering
typical objects (e.g., airplanes and ships) present with unknown
orientations and sizes in RSIs, the existing contour extraction
methods consume a large parameter space or use complex in-
variant features to cover all potential objects.

In the GHT, the positions of votes are calculated under all
possible rotation angles and scales when the objects to be de-
tected present different orientations and sizes. Votes are gathered
in a large parameter space [i.e., 4D- Hough counting space
(4D-HCS)], where the value of each cell in 4D-HCS indicates the
number of votes for the object with the corresponding horizontal
position, vertical position, rotation angle, and scale. To reduce
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the large storage requirement caused by 4D-HCS, some GHT
extensions replace 4D-HCS with 2D-HCS (i.e., eliminate two
degrees of freedom in the parameter space) at the expense
of using complex rotation-scale invariant features. In invariant
GHT (IGHT), features based on pairs of CPs are constructed to
extract object shapes in 2D-HCS. One weakness of IGHT is that
the pair-CPs-based feature is susceptible to occlusion and inter-
ference compared to the gradient angle feature [17]. Lin et al.
[18] proposed a rotation-invariant feature called radial-gradient
angle (RGA) to search for potential objects in 2D-HCS. The
RGA of the same CP was calculated multiple times during the
process of object detection. More complex invariant features
(e.g., Fourier-based descriptors and the local triangle feature)
were adopted in local-IGHT [19] and polygon-IGHT [20] to
detect objects with different orientations and sizes in 2D-HCS,
but using these features had a higher computational load than
using the gradient angle feature. In [21], by integrating different
channel features, feature learning technology, and an ensemble
classifier, an optical remote sensing imagery detector was estab-
lished to locate objects with different orientations and sizes in
RSIs. In [22], a detection framework was constructed by using a
rotation-invariant Fourier representation for a histogram of gra-
dient orientation (HoG) feature to detect objects with unknown
orientations and sizes. Although Fourier representation for an
HoG feature is invariant to object rotation, it requires multiple
calculations for Fourier transform and convolution operations.

In practice, since object detection in RSIs is susceptible
to interference from other objects with similar characteristics,
false alarms (FAs) often occur for RSIs containing complex
backgrounds. Researchers have developed different strategies
to reduce FAs for contour extraction methods. For example,
weighted voting and outline continuity factor-based strategies
were designed to reduce FAs caused by shape-similar distractors
in RSIs [23]. An iterative training-based IGHT was proposed to
reduce FAs by gradually increasing the number of votes for ob-
jects and decreasing the number of votes for interferences [24].
To improve the contour extraction results of a ship head, contour
refinement strategies and a Gini coefficient-based criterion were
presented to remove nonship-head contours with large curvature
or large Gini coefficients [25]. However, few strategies that are
used to reduce FAs for contour extraction based object detection
in RSIs explore the causes of FAs in detail.

The limitations of existing methods motivate us to consider
two interesting problems.

1) Design a contour extraction method that can extract po-
tential objects with unknown orientations and sizes using
a simple gradient angle feature in 2D-HCS.

2) Analyze the cause of FAs for contour extraction and
construct effective strategies to remove these FAs.

To address these problems, we replace the GHT voting mech-
anism that traverses CPs to accumulate votes in a large 4D-HCS
with the novel approach of using the contour information of
slices centered at arbitrary positions in the RSI to calculate the
number of votes at the corresponding position. Based on this idea
and considering that a tensor can record the structure relationship
of an object contour, it makes sense to exploit the tensor to de-
scribe the contour information of a slice to thus develop a contour

extraction method and analyze the cause of FAs. Therefore, we
propose the tensored GHT (TGHT) to extract object contours
with a single sample in 2D-HCS by using a simple gradient
angle feature. TGHT is a unified tensor-space-based contour
extraction scheme, including three parts, i.e., tensor-space-based
contour representation, a tensor-space-based voting mechanism,
and tensor-space-based FA removal. Specifically, for a template
image containing a certain object, the contour information is
described as a tensor representation R-table (TR-R-table). To
detect potential objects in an RSI, combined with a constructed
TR-R-table, we establish a tensor space-based voting mecha-
nism that traverses positions of the RSI instead of the GHT
voting mechanism that traverses CPs in RSI. In addition, to
reduce storage requirements and time consumption for ten-
sor operations in TGHT, we propose a multiorder binary tree
(BT)-based searching method to accelerate voting by efficiently
calculating the inner product between tensors. Furthermore, to
reduce FAs caused by various interferences in RSIs, the process
of object detection is converted to a tensor-space-based maxi-
mization of the inner product to reveal the cause of two types of
FAs, and two strategies [i.e., matching rate (MR) and matching
sparsity (MS)] are then presented to remove these FAs, respec-
tively. The experiments are conducted on RSIs with different
scenes collected from the publicly available NWPU-VHR-10
[1] dataset to examine the effect of TGHT in terms of storage
requirement, time consumption, and detection results compared
to well-known contour extraction methods.

The contributions of this article are summarized as follows.
1) Compared to GHT and existing GHT extensions utilizing

a 4D-HCS or complex invariant features to detect objects
with unknown orientations and sizes in RSI, TGHT ex-
ploits a novel tensor space voting mechanism to detect
objects with unknown orientations and sizes by avoiding
using either a large Hough counting space (4D-HCS) or
complex invariant features of other GHT extensions.

2) TGHT provides an analytic expression to calculate the
number of votes at each entry of 2D-HCS, which can
be utilized to reveal the cause of FAs. Reducing FAs
significantly improves object detection results. Although
existing contour extraction methods [13]–[25] have some
specific strategies to reduce FAs, they do not explore
the cause of FAs in detail. In comparison, by virtue of
the analytic expression for TGHT, the process of object
detection is converted to the process of solving the tensor-
space-based optimization problem, whose solution can be
utilized to analyze the cause of FAs. This allows us to
construct two strategies to remove these FAs.

3) TGHT can obtain accuracy votes for potential objects,
which ensures the effectiveness of the detection results.
A conventional GHT and its extensions utilize the tabular
function to accumulate votes, whereas the quantization
coordinates and fuzzy voting strategy cause a single CP
vote for the same position multiple times. This indicates
that the number of votes for GHT and existing GHT
extensions are not accurate. By contrast, by using the
tensor-space-based voting strategy for TGHT, the same
CP will vote for the same position no more than once.
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Thus, TGHT can obtain more accurate votes and better
detection results.

The remainder of our article is organized as follows. Sec-
tion II presents a brief review of the conventional GHT and
then presents TGHT in detail. Section III proposes a multiorder
BT-based searching method to reduce the storage requirements
and time consumption of TGHT. By virtue of the analytic
expression for TGHT, Section IV reveals the cause of two types
of FAs and proposes two respective strategies to remove these
FAs. Section V provides the experimental results. Section V-A
discusses the impact of parameter setting of TGHT on detection
results, Section V-B verifies the generality of two types of
interferences, Section V-C compares the storage requirements
and time consumption of TGHT and GHT, and Section V-D
compares the performance of TGHT with well-known contour
extraction methods and state-of-the-art deep learning methods
using publicly available datasets. Section VI concludes this
article.

II. TENSORED GHT

A brief introduction to the notation used in this article and the
conventional GHT is given in the following sections.

A. Notations and Operations

According to the conventional notations in [26], the lowercase
letter (e.g., s), the lowercase boldface letter (e.g., v), the upper-
case boldface letter (e.g.,M ), and the Euler script letter (e.g.,X )
denote scalar, vector, matrices, and tensors, respectively. For the
n-order tensor X ∈ Rd1×d2×,...,×dn , its (i1, i2, . . . , in) th entry
is denoted X (i1, i2, . . . , in), where di denotes the dimension
of the ith mode for the tensor. The definitions of basic tensor
operations used in this article are summarized as follows.

Definition 1 (Mode-k product): Let X ∈ Rd1×d2×,...,×dn be
an n-order tensor and M ∈ Rdk×d′

k be a matrix. The mode-
k product of X with M is denoted as X×dM , whose re-
sult is an n-order tensor of dimension d1×, . . . ,×dk−1 × d′k ×
dk+1×, . . . ,×dn with its (i1, . . . , ik−1, i

′
k, ik+1, . . . , in) entry

given by

(X×dM)(i1,...,ik−1,i′k,ik+1,,...,in)

=
∑

i

X (i1, . . . , ik−1, i, ik+1, , . . . , in)×M (i, i′k). (1)

Definition 2 (Inner product of tensors): Let X1 ∈
Rd1×d2×,...,×dnand X2 ∈ Rd1×d2×,...,×dn be n-order tensors.
The inner product of X1 and X2 is given by

〈X1,X2〉 =
∑

i1,i2,...,in

X1 (i1, i2, . . . , in)×X2 (i1, i2, . . . , in).

(2)
The operation of extracting the subtensor from the given

tensor is applied frequently in this article. For convenience,
the MATLAB notation is introduced to denote the subtensor
of a given tensor. For example, the notation X (:, :, :, i4, i5)
denotes the three-order subtensor of X ∈ Rd1×d2×,...,×d5 and

is calculated by

X (:, :, :, i4, i5) = X×4v1×5v2v1 ∈ Rd4v2 ∈ Rd5

v1 (i) =

{
1, if i = i4
0, otherwise

v2 (j) =

{
1, if j = i5
0, otherwise.

(3)

B. Brief Introduction to the GHT

GHT was introduced by Ballard [16] and is generalized from
the Hough transform to address contour extraction for nonan-
alytic shapes. As illustrated in Fig. 1, the RP (see the notion
(xr, yr) in Fig. 1) is selected in the template image, and the
gradient angles θ are calculated quantized to iθ for all the CPs.
Then, the R-table extracted from the template is constructed
to describe the mapping from CPs to RP by recording all the
reference vectors R(θ) (i.e., the displacement from CP to RP)
and the corresponding index numbers of gradient angles (i.e., iθ)
as entries in the offline phase. In the online phase, considering
that there are objects with different orientations and sizes in
RSIs, 4D-HCS is set up over the domain of the parameters,
where each finite cell of the HCS corresponds to a certain range
of positions, orientations, and scales of the object in the RSI.
To extract the potential objects in the RSI, the gradient angle
θ for each CP in the RSI is extracted and quantized to iθ,
and the position of vote [xr, yr] is calculated according to the
reference vectors R(θ) recorded in entry iθ of the R-table under
all potential rotation angles and scales. The generated votes are
gathered at the corresponding entry [xr, yr, α, s] of 4D-HCS, as
shown in

[xr, yr]
T = [x (θ) , y (θ)]T + s · β(α) ·R(θ) + [τ, τ ]T (τ ≤ δ)

(4)
where [xr, yr], θ, α, s, [x(θ), y(θ)], β(α), R(θ) and δ, respec-
tively, denote the position of the vote in the RSI, the gradient
angle, the rotation angle (i.e., the difference between the orienta-
tion of the object in the template image and that in the RSI), the
scale (i.e., the ratio between the size of the object in the template
image and that in the RSI), the position of CPs, the rotation
matrix, the reference vector, and the length of step for the fuzzy
voting strategy. For convenience, α and s hereinafter represent
the rotation angle and scale, respectively. After traversing all
the CPs in the RSI, the accuracy position, orientation, and size
of the potential objects are determined by the index number of
maxima in 4D-HCS.

The procedure for implementation of GHT is concluded as
follows.

1) For a given RSI, extract the contour image by using an
edge detection operator.

2) Traverse CPs in the RSI and calculate the index number
of the gradient angle for the corresponding CP.

3) Look up the reference vectors in the entry of the R-table
and increment the corresponding entries of 4D-HCS.

4) Select entries with values exceeding the threshold in 4D-
HCS as the RPs of candidate objects.
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Fig. 1. Illustration of object detection in RSIs using GHT and TGHT.

C. Extend GHT to TGHT

As discussed, 4D-HCS as used in GHT has a large storage
requirement. To reduce the dimensionality of 4D-HCS to 2D
and avoid using the complex invariant feature of other GHT
extensions, we propose the TGHT, as illustrated in Fig. 1. In the
offline phase, by utilizing the tensor-space-based contour repre-
sentation, the object contour in the template image is described
and recorded as a TR-R-table. In the online phase, to extract
potential objects in RSIs, we apply the tensor-space-based voting
mechanism instead of the GHT voting mechanism to gather
votes in 2D-HCS with the constructed TR-R-table.

1) Offline Phase of TGHT: In the offline phase of TGHT,
the contour information of the template image is described
and recorded as a TR-R-table for detecting objects with spe-
cific shapes in the RSI (denoted as IRSI ∈ RM ′×N ′

). Before
constructing the TR-R-table, the edge image Dtem ∈ RM×N is
extracted by an edge detection operator [27] from the given tem-
plate image (denoted Item ∈ RM×N ), where Dtem(i, j) = 1
denotes that the CP exists in position (i, j) of the template image.
According to the process of R-table construction for GHT, the
R-table describes the object shape by recording reference vectors
and corresponding gradient angles as entries. In other words,
the CPs for GHT have three attributes (i.e., horizontal position,
vertical position, and gradient angle). Since the potential objects
in the RSI may present different poses (i.e., different orientations
and sizes) relative to that in the template image, the same CP
in objects with different poses will have different positions and
gradient angles. An example of object rotation and scaling is
shown in Fig. 2. It is observed in Fig. 2 that after undergoing
rotation and scaling, the position of the CP changes from (i, j)
to (i′, j ′), and the gradient angle of the CP changes from θ to
θ′. This indicates that the attributes of CPs for an object with a
single orientation and size cannot be utilized directly to extract
an object contour with an unknown orientation and size in an
RSI. Therefore, it is necessary to calculate the attributes of CPs
in Item under different rotation angles and scales to cover all
potential objects in RSIs.

Proper steps Δα and Δs are used to traverse possible ranges
of rotation angle α and scale s, respectively, i.e., α ∈ [0, 2π]
and s ∈ [smin, smax], where smin and smax denote the possible
minimum and maximum scale, respectively. For current α =
(iα − 1)×Δα and s = (is − 1)×Δs+ smin, where iα and

Fig. 2. Illustration of the changes of attributes for object rotating and scaling.

is denote the index number of the rotation angle and the index
number of the scale, respectively, the new position of the CP
after rotation and scaling can be calculated by (5). Since the
gradient angle changes in the same ratio as the rotation of the
object [17], the new gradient angle of the CP can be calculated
by (6) as follows:

[i′, j ′]
T
= s · β (α) [i− xr, j − yr]

T + [xr, yr]
T (5)

θ′ = mod (θ + α, 2π) (6)

where [i′, j ′], [i, j], [xr, yr], θ′, θ, and mod(·), respectively,
denote the position of the CP after rotation and scaling, the
position of the CP, the position of the RP in Item, the gradient
angle of the CP after rotation and scaling, the gradient angle
of the CP, and the remainder operator. To reduce the slight
difference in the gradient angle for the same CP caused by
different imaging conditions, the gradient angle is separated into
iθ levels with the interval of Δθ, i.e., iθ = �θ/Δθ�, where ��
denotes the ceiling operator. Thus, the CP in the template image
has five attributes: horizontal position, vertical position, gradient
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Algorithm 1: Process of TR-R-Table Construction.

Input: template image Item ∈ RM×N

Initialization: set proper values to
Δα,Δs,Δθ, smin, smax, and construct a zero tensor
R ∈ RM×N×d3×d4×d5

Step1: Extract CPs in Item and calculate the
corresponding gradient angle using edge detection
operator.

for iα = [1 : d4]
{for is = [1 : d5]
{for each CP in Item
{Step2: Calculate the position (i, j) and the index
number of gradient angle θ for CP under rotation angle
α = (iα − 1)×Δα and scale
s = (is − 1)×Δs+ smin by using (5) and (6),
respectively.

Step3: Recording the CP indexed by attributes
(i, j, iθ, iα, is) to TR-R-table, i.e., R(i, j, iθ, iα, is)=
1.}}}

Output: R

angle, rotation angle, and scale. Considering that a tensor can
record the structure relationship of multiattribute data, it is
suitable to describe the object shape by recording the CPs with
different indices of attributes. Therefore, the R-table in GHT is
extended to the TR-R-table by constructing a five-order tensor
(i.e., R ∈ RM×N×d3×d4×d5 ) to record the contour information
of the object, where the first, second, third, fourth, and fifth
orders, respectively, represent the horizontal spatial domain, the
vertical spatial domain, the gradient angle domain, the rotation
angle domain, and the scale domain. According to the obtained
(i′, j ′, iθ) under indices iα and is, if the CP indexed by different
attributes (i, j, iθ, iα, is) exists, the corresponding element in
the TR-R-table is set to 1, i.e., R(i, j, iθ, iα, is)= 1; otherwise,
it is set to 0. After the attributes of each CP for all possible
α and s are calculated and recorded in R, the construction of
the TR-R-table is complete. The detailed process of TR-R-table
construction is concluded as shown in Algorithm 1.

Analogous to the fuzzy voting strategy in GHT, to prevent
the slight deformation of an object impacting contour extraction
caused by occlusion and imaging condition in RSIs, we adopt
the fuzzy strategy to tolerate the slight deformation of the object
contour, i.e., the position of CPs in the template image are
allowed to vary within a small neighborhood. To record the
fuzzy positions of CPs in the TR-R-table, we use two band
matrices, F 1 ∈ RM×M and F 2 ∈ RN×N , to generate the fuzzy
TR-R-table, as per

RF = binary

(
R

2∏

k=1

×kFk

)

Fk (i, j) =

{
1, if |i− j| ≤ δ
0, otherwise

(7)

where ×k, binary(·), and RF , respectively, denote the mode-k
product, the binarization operator that converts the input tensor

to a binary tensor, and the fuzzy TR-R-table. The detailed
operation of binary(·) is given in

binary (RF ) (i, j, iθ, iα, is)

=

{
1 if RF (i, j, iθ, iα, is) ≥ 1
0 otherwise.

(8)

For convenience, the fuzzy TR-R-table is hereinafter denoted
as TR-R-table (i.e., R).

2) Online Phase of TGHT: In the online phase, the potential
objects are detected for a given RSI (denoted as IRSI ∈ RM ′×N ′

)
by using the constructed TR-R-table in the offline phase. First,
the CPs in IRSI are extracted by an edge detection operator,
and the attributes of CPs are calculated, including the positions
and gradient angles. Subsequently, it is essential to construct
an effective voting mechanism to locate potential objects. Since
the position, rotation angle, and scale for potential objects are
unknown, the GHT voting mechanism requires the construction
of a 4D-HCS to store generated votes to locate potential objects.
To reduce the dimensionality of HCS from 4-D to 2-D, the slice
centered at each position in the RSI is operated to calculate the
number of votes at the corresponding position and store these
results in the same entry of 2D-HCS.

In detail, a window with the same size as the template image is
adopted to scan each position (xr, yr) in the RSI to obtain a series
of slices. For each slice (denoted Is), the gradient angle of the
CPs is separated into iθ levels with the interval ofΔθ just as in the
process of the offline phase. To describe these CPs with different
attributes (i.e., the position and gradient angle) in the slice, the
attributes of CPs in the slice are recorded into the tensor as part of
the TR-R-table construction. Note that the orientation and size of
the object in the template image are known, whereas those of the
potential object in the slice are unknown. Therefore, by reducing
the rotation angle domain and scale domain of the TR-R-table,
only a three-order tensor, denoted X (xr,yr)

s ∈ RM×N×d3 , is
required to describe the contour information of the slice. Here,
the first, second, and third orders represent the horizontal spatial
domain, vertical spatial domain, and gradient angle domain,
respectively. Similar to the TR-R-table construction, if the CP
indexed by attributes (i.e., the position (i, j) and iθ) exists in
the slice, the corresponding element of X (xr,yr)

s is set to 1, i.e.,
X (xr,yr)

s (i, j, iθ) = 1; otherwise, it is set to 0.
Next, the number of votes at the candidate RP (xr, yr)

of the RSI is calculated according to the constructed TR-
R-table and X (xr,yr)

s . Note that if both R(i, j, iθ, iα, is) and
X (xr,yr)

s (i, j, iθ) are equal to 1, i.e., there is a CP with the same
attributes (i, j, iθ) in both the template image and the slice, the
CP in the slice will vote for the candidate RP (xr, yr) under the
specific index number iα of rotation angle and index number is
of scale. Therefore, 〈X (xr,yr)

s ,R(:, :, :, iα, is)〉 can be used to
calculate the number of votes at a candidate RP (xr, yr) under a
corresponding index number of rotation angle (i.e., iα) and index
number of scale (i.e., is), where 〈〉 denotes the inner product op-
eration. For specific iα and is, larger 〈X (xr,yr)

s ,R(:, :, :, iα, is)〉
means more votes are gathered at the candidate RP under iα and
is. Thus, the accurate rotation angle and scale of the potential
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object are determined by the maximum votes index number
iα and is for 〈X (xr,yr)

s ,R(:, :, :, iα, is)〉∀iα, is. Additionally,
since there is an approximately linear relationship between the
number of CPs and the scale of the object, to prevent the scale
from impacting the number of votes, the scale (smin + is ×Δs)
corresponding to is for the potential object is used to normalize
the number of votes. The final number of votes for a candidate RP
(xr, yr) is calculated by (9) and recorded in the corresponding
entry of 2D-HCS

HCS (xr, yr) = max
iα,is

〈
X (xr,yr)

s ,R (:, :, :, iα, is)
〉

(smin + is ×Δs)
. (9)

After calculating the number of votes at each position of
the RSI, the positions of candidate objects can be extracted
by searching the maxima in entries of 2D-HCS. Note that the
elements in X (xr,yr)

s and R(:, :, :, iα, is) are binary, so a single
CP in the RSI generates no more than one vote at the specific
position of the RSI for TGHT. By contrast, in the GHT voting
mechanism, which incorporates a fuzzy voting strategy and
coordinate quantification, by using different reference vectors
R(θ) recorded in the R-table, a single CP [x(θ), y(θ)] may
increment the same entry of 4D-HCS multiple times [see (4)],
i.e., a single CP in the RSI may generate more than one vote at
the specific position of the RSI for GHT. Thus, TGHT appears
to output more accurate votes than GHT.

III. EFFECTIVE IMPLEMENTATION OF TGHT

To reduce the time consumption and storage requirement for
tensor operations in TGHT, we propose an effective implemen-
tation of TGHT based on an index number searching strategy.

TGHT utilizes the inner product of two tensors (i.e.,
R,X (xr,yr)

s ) to calculate the number of votes at position
(xr, yr) of the RSI [see (9)], and store them into the corre-
sponding entry (xr, yr) of 2D-HCS. In this way, it will con-
sume the store space of the entire tensor R ∈ RM×N×d3×d4×d5

and X (xr,yr)
x ∈ RM×N×d3 , and some dynamically allocated

storage space caused by accumulating votes. Therefore,
the spatial complexity of using tensor operations directly
isO(M ×N × d3 × d4 × d5). Note that the number of multi-
plications for calculating the number of votes at entry (xr, yr)
in (9) is equal to M ×N × d3 × d4 × d5 + d4 × d5. There-
fore, the time complexity of using tensor operations directly
isO(M ×N × d3 × d4 × d5). According to the construction
process of X (xr,yr)

s and R, if CPs with specific attributes exist
in the template image or slice of the RSI, the elements in the
corresponding entries ofX (xr,yr)

s orR are equal to 1; otherwise,
they are equal to 0. This means that X (xr,yr)

s and R are binary.
Moreover, since the number of CPs in the template image or
slice of the RSI is much smaller than the number of elements in
X (xr,yr)

s or R, X (xr,yr)
s and R are sparse (i.e., only a small

number of elements are 1). From the definition of the inner
product between tensors, the result of the inner product is not
related to the 0 elements. Therefore, it only needs to store the

p×M ×N × d3 × d4 × d5 index numbers of elements corre-
sponding to a 1 value inR instead of storing entire tensor, where
p denotes the proportion of the elements corresponding to a 1
value in all the elements for R. Thus, the storage load caused by
X (xr,yr)

s and R is significantly reduced. Based on these index
numbers, an index number searching method is constructed to
calculate the number of votes at the entry of 2D-HCS, according
to the following steps.

For each index number that corresponds to an element with
a 1 value in X (xr,yr)

s , search the same index number among
all the index numbers that correspond to elements with a 1
value in R(:, :, :, iα, is). If the same index number exists, the
number of votes under iα and is will be accumulated by 1. The
final number of votes at each entry of 2D-HCS is determined
by the maxima of the number of votes under different iα and
is.

Note that the time consumption of the index number searching
method is related to the searching strategy. As an example, for
exhaustive searching (i.e., compare the index number (i, j, iθ)
of elements equal to 1 in X (xr,yr)

s with the index number of all
elements equal to 1 in R until the same index number is found),
the largest number of comparison operations for searching the
index number (i, j, iθ) is equal to p×M ×N × d3 × d4 × d5.
To reduce the time consumption of voting for TGHT, an efficient
searching strategy is required.

Inspired by the search tree [31] method that is widely used
in data searching, we propose a multiorder BT-based searching
method to accelerate obtaining the number of votes at each entry
of 2D-HCS by reducing comparison operations for index num-
ber searching. Compared with the typical search tree methods,
including the binary search tree, 2-3-4 tree, and k-d tree, the
multiorder BT is constructed for specific applications (e.g., to
accelerate voting) and is more suitable for matching indices of
multiorder tensor data. Fig. 3 illustrates the procedure of the
multiorder BT-based searching method.

As can be seen in Fig. 3, the multiorder BT-based searching
method traverses each index number (i, j, iθ) that corresponds
to an element with a 1 value in X (xr,yr)

s and accumulates the
generated votes under different iα and is in accumulator P,
where the resulting P (iα, is) denotes the number of votes under
rotation angle iα and scale is. The final number of votes in
HCS(xr, yr) is determined by the maxima in P. From Fig. 3,
the multiorder BT-based searching method consists of the four
stages detailed ahead.

To conveniently describe the detailed process for the
multiorder BT-based searching method, we define the sets
S
(xr,yr)
X = {(i, j, iθ)|X (xr,yr)

s (i, j, iθ) = 1, ∀i, j, iθ} and SR =
{(i′, j ′, i′θ, i′α, i′s)|R(i′, j ′, i′θ, i

′
α, i

′
s) = 1, ∀i′, j ′, i′θ, i′α, i′s},

where (i, j, iθ) ∈ S
(xr,yr)
X and (i′, j ′, i′θ, i

′
α, i

′
s) ∈ SR,

respectively, denote the index numbers that correspond to
elements with a 1 value in X (xr,yr)

s and the index numbers that
correspond to elements with a 1 value in R.

In the first stage of the searching method, the index num-
ber (i, j, iθ) ∈ S

(xr,yr)
X along the first order (e.g., i) is searched

among all the index numbers (i′, j ′, i′θ, i
′
α, i

′
s) ∈ SR along the
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Fig. 3. Procedure of using multiorder BT-based searching method to calculate
the number of votes in 2D-HCS.

first order (i.e., horizontal spatial domain). To build the first-
order BT, all the index numbers (i′, j ′, i′θ, i

′
α, i

′
s) ∈ SR along

the first order are extracted using

v1 = R
5∏

k=2

×k1dk

S1 = {s|v (s) > 0, 1 ≤ s ≤ M} (10)

where 1dk
=

T

[1, . . . , 1]︸ ︷︷ ︸
dk

, and S1 denotes a set containing the

index numbers of elements equal to 1 in R along the first order.
Subsequently, the first-order BT is constructed according to the
following steps to record these index numbers in set S1. For the
index numbers of elements equal to 1 in R along the first order
recorded in set S1, choose the median index number of all the
index numbers as the key of the root node, and partition the other
index numbers into two approximately equal-sized sets, where
the first set contains all the index numbers whose values are
less than this median, and the second set contains the remaining
index numbers. The medians of the first subpartition set and
the second subpartition set are regarded as the keys of the root
node for the left and right subtrees, respectively. The tree is
built recursively until all the index numbers recorded in S1 are
assigned to the keys of nodes. Fig. 4 presents an example of
constructing a first-order BT.

Note that all the first-order index numbers for elements equal
to 1 in R, i.e., {i′|(i′, j ′, i′θ, i′α, i′s) ∈ SR, ∀i′, j ′, i′θ, i′α, i′s}, are
recorded into corresponding nodes of the first-order BT. For the
first index number i to be searched, the first-order BT can be
used to search the same index number from the keys of nodes

Fig. 4. Constructing first-order BT.

using the following steps. Compare i with the key of the root
node for the first-order BT. If i is smaller, the left subtree is
searched. If i is larger, the right subtree is searched. If i is equal
to the key of root node, the search is successful. The process
is repeated until i is found or the remaining subtree is null. If
the search is successful, i.e., there is a same first-order index
number i among all {i′|(i′, j ′, i′θ, i′α, i′s) ∈ SR, ∀i′, j ′, i′θ, i′α, i′s},
the second index number (e.g., j) is searched later. If there is
no node with a key with i, the search is stopped because the
corresponding elements in X (xr,yr)

s will not generate votes.
Similar to the first stage, the second-order index number

j is searched among all the{(i′, j ′, i′θ, i′α, i′s)|(i′, j ′, i′θ, i′α, i′s) ∈
SR, i

′ = i, ∀j ′, i′θ, i′α, i′s} along the second order (i.e., ver-
tical spatial domain). To build the second-order BT,
the index numbers{(i′, j ′, i′θ, i′α, i′s)|(i′, j ′, i′θ, i′α, i′s) ∈ SR, i

′

= i, ∀j′, i′θ, i′α, i′s} along the second order (i.e., vertical spatial
domain) are extracted using

M2 = R
5∏

k=3

×k1dk

S
(i)
2 = {s|M2 (i, s) > 0, 1 ≤ s ≤ N} (11)

where S
(i)
2 denotes a set containing the index numbers {(i′,

j′, i′θ, i
′
α, i

′
s)|(i′, j ′, i′θ, i′α, i′s) ∈ SR, i

′ = i, ∀j′, i′θ, i′α, i′s} along
the second order. By using the extracted index number recorded
in S

(i)
2 , the corresponding second-order BT is built in the same

way as the first-order BT.
The constructed second-order BT is searched with the same

approach as the first-order BT, but for j. If the search is success-
ful, the third-order index number iθ is searched later. If there
is no node containing a key with j in the second-order BT, the
search is stopped.

Similar to the first and second stages, the third-order
index number iθ is searched among all the index numbers
{(i′, j ′, i′θ, i′α, i′s)|(i′, j ′, i′θ, i′α, i′s)∈SR, i

′= i, j′=j,∀j ′, i′θ, i′α,
i′s} along the third order (i.e., gradient angle domain). To build
the third-order BT, the index numbers {(i′, j ′, i′θ, i′α, i′s)|
(i′, j ′, i′θ, i

′
α, i

′
s) ∈ SR, i

′ = i, j ′ = j,∀i′θ, i′α, i′s} along the third
order are extracted using

T3 = R
5∏

k=4

×k1dk

S
(i,j)
3 = {s|T3 (i, j, s) > 0, 1 ≤ s ≤ d3} (12)
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where S
(i,j)
3 denotes a set containing the index numbers

{(i′, j ′, i′θ, i′α, i′s)|(i′, j ′, i′θ, i′α, i′s) ∈ SR, i
′ = i, j′ = j,∀i′θ, i′α,

i′s} along the third order. Similar to the first and second-order
BTs, the third-order BT is built to record the index numbers
{(i′, j ′, i′θ, i′α, i′s)|(i′, j ′, i′θ, i′α, i′s) ∈ SR, i

′ = i, j′ = j,∀i′θ, i′α,
i′s} along the third order.

By using the constructed third-order BT, the third-order index
number iθ is searched in the same way again. If the search is
successful, the votes are generated and accumulated in the fourth
stage. If there is no node containing a key with iθ in the third-
order BT, the search is stopped.

In the fourth stage, the index numbers {(i′, j ′, i′θ, i′α, i′s)|
(i′, j ′, i′θ, i

′
α, i

′
s) ∈ SR, i

′ = i, j′ = j, i′θ = iθ, ∀i′α, i′s} along the

fourth and fifth orders are extracted and recoded into set S(i,j,iθ)
4

to generate votes under different rotation angles and scales by
using

S
(i,j,iθ)
4 = {(i′α, i′s) |R (i, j, iθ, i

′
α, i

′
s)

= 1, 1 ≤ i′α ≤ d4, 1 ≤ i′s ≤ d5} (13)

where S
(i,j,iθ)
4 denotes a set containing the index numbers of

rotation angles and of scales for votes. If the search is successful
for the first three stages, the votes under different rotation angles
and scales are generated according to the (i′α, i

′
s) recorded in

S
(i,j,iθ)
4 , and the corresponding entries (i′α, i

′
s) of P ∈ Rd4×d5

are accumulated. After all the index numbers (i, j, iθ) ∈ S
(xr,yr)
X

are processed using the multiorder BT-based searching method,
the number of votes at HCS(xr, yr) is determined by the
maxima of P entries. The multiorder BT is thus complete.

Since the largest number of comparison operations between
the index number i and the keys in the BT is equal to the height
of the corresponding BT, the largest number of comparison
operations for searching the index number (i, j, iθ) ∈ S

(xr,yr)
X

is approximately log(M ×N × d3). Compared with the largest
number of comparison operations (i.e., p×M ×N × d3 ×
d4 × d5) for exhaustive searching, the multiorder BT-based
searching method significantly reduces the comparison oper-
ations to accelerate voting. Therefore, the time complexity of
using multiorder BT is O(Ncp × log(M ×N × d3)), where
Ncp denotes the number of CPs in slice centered at (xr, yr). By
comparing the time complexity between using tensor operations
directly (i.e.,O(M ×N × d3 × d4 × d5)) and using multiorder
BT (i.e., O(Ncp × log(M ×N × d3))), it can be found that the
multiorder BT will obtain smaller time complexity when the
slice contains few CPs or the R presents a large size.

The process for calculating the number of votes by using the
multiorder BT-based searching method is concluded as shown
in Algorithm 2.

By using the proposed multiorder BT-based searching
method, the procedure to implement TGHT is briefly described
as follows.

1) For a given RSI, extract the contour image using an edge
detection operator.

2) Traverse positions (xr, yr) in the RSI, and extract the slice
centered at the corresponding position.

Algorithm 2: Process of Calculating the Number of Votes
by Using Multiorder BT-Based Searching Method.

Input: RSI IRSI ∈ RM ′×N ′
, multiorder BT

for: xr = 1: M’
for: yr = 1: N’
Initialization: accumulator P ∈ Rd4×d5

Step 1: Construct X (xr,yr)
s according to the slice centered

at (xr, yr) in RSI
Step 2: for: each (i, j, iθ) ∈ S

(xr,yr)
X .

Step 3: Search first-order index number i using first-order
BT. If the search is successful, perform step.4,
otherwise, perform step.2

Step 4: Search second-order index number j using
second-order BT. If the search is successful, perform
step.5, otherwise, perform step.2

Step 5: Search third-order index number iθ using
third-order BT. If the search is successful, perform
step.6, otherwise, perform step.2

Step 6: according to all the index numbers of rotation
angle and scale recorded in S

(i,j,iθ)
4 , accumulate votes

to P
end
Step 7: Let HCS(xr, yr) = max

iα,is
P (iα, is)

end
end
Output: 2D-HCS

3) For CPs with attributes in the slice, apply the multiorder
BT-based searching method to obtain the number of votes
at entry (xr, yr) of 2D-HCS.

4) Select entries with values exceeding the threshold in 2D-
HCS as the RPs of candidate objects.

IV. FURTHER IMPROVEMENT TO TGHT FOR FA REMOVAL

Since the contour extraction results are susceptible to other
objects with similar characteristics, FAs occur frequently in RSI
object detection. Before constructing an effective strategy to re-
duce FAs, the cause of FAs for contour extraction must be under-
stood. Unlike other contour extraction methods that utilize the
discrete tabular function to gather votes, TGHT provides an an-
alytic expression [see (9)] to calculate the number of votes at an

arbitrary entry of 2D-HCS, i.e., it utilizes 〈X (xr,yr)
s ,R(:,:,:,i∗α,i∗s)〉

(smin+is×Δs)
to calculate the number of votes at a specific entry of 2D-HCS,
where i∗α and i∗s, respectively, denote the optimal index number
of the rotation angle and the scale for the potential object. Note
that the contour extraction method searches the entries with
maximum votes in HCS as the RPs of candidate objects. That is,
searching the maxima in entries of 2D-HCS as RPs of candidate
objects can be converted to a tensor-space-based optimization
problem, as shown in

arg max
(xr,yr)

〈
X (xr,yr)

s ,R (:, :, :, i∗α, i
∗
s)
〉
/ (smin + i∗s ×Δs)

s.t. X (xr,yr)
s (i, j, k) ∈ {0, 1} ∀i, j, k. (14)



CHEN et al.: TENSORED GENERALIZED HOUGH TRANSFORM FOR OBJECT DETECTION IN REMOTE SENSING IMAGES 3511

For a specific RSI, the optimal (x∗
r, y

∗
r) denotes the position

of candidate objects. To obtain X (x∗
r,y

∗
r)

s of candidate objects
to analyze FA causes, the optimal X (x∗

r,y
∗
r)

s that can maximize
(14) must be solved. Although typical optimization algorithms
(e.g., the simplex algorithm [28]) can be used to solve (14), it
is complex and difficult to obtain all the solutions when the
solutions are not unique. To solve the optimization problem
effectively, we observe from (14) that the objective function
belongs to the simple inner product operation, and the feasible
region of each element in X (xr,yr)

s is {0, 1}. Therefore, the
optimal solution of X (xr,yr)

s can be conveniently formulated
using the following logical analysis.

According to (14), since (smin + i∗s ×Δs) > 0
and Rare binary, the value for each element of
R(:, :, :, i∗α, i

∗
s)/(smin + i∗s ×Δs) is nonnegative. If the

elements in R(:, :, :, i∗α, i
∗
s)/(smin + i∗s ×Δs) are positive,

the corresponding elements in optimal X (xr,yr)
s are set to 1

to maximize the objective function [i.e., (14)]. If the elements
in R(:, :, :, i∗α, i

∗
s)/(smin + i∗s ×Δs) are equal to 0, the value

of the objective function is not affected by the value of the
corresponding elements in optimal X (x∗

r,y
∗
r)

s . Therefore, the
optimal X (xr,yr)

s can be written as

X (x∗
r,y

∗
r)

s (i, j, iθ) =

{
1, ifR (i, j, iθ, i

∗
α, i

∗
s) = 1

t ∀t ∈ {0, 1} , otherwise
(15)

where X (x∗
r,y

∗
r)

s is the optimal X (xr,yr)
s . According to (15),

X (x∗
r,y

∗
r)

s only depends on the value of elements in entry
{(i, j, iθ)|R(i, j, iθ, i

∗
α, i

∗
s) = 1∀(i, j, iθ)}. This indicates that

the decision criterion that searches the entries with maximum
votes as positions of candidate objects only needs to focus on
CPs in the slice with attributes (i, j, iθ), where the template
image containing CPs with the same attributes (i, j, iθ) (i.e.,
R(i, j, iθ, i

∗
α, i

∗
s) = 1), and it can ignore CPs in slice with at-

tributes (i, j, iθ) such that R(i, j, iθ, i
∗
α, i

∗
s) = 0. In other words,

the decision criterion focuses solely on the number of CPs in the
slice that match the template image, and it ignores the CPs in
the slice that do not match the template image and the structure
relationship of matched CPs. In the following, according to the
weakness of the decision criterion, two FA removal strategies
are proposed to reduce FAs caused by two representative types
of interference respectively.

A. Removal of FAs Caused by Interference With
Complex Contour

For a noninteresting object with a large number of CPs, there
are more elements equal to 1 in the corresponding X (xr,yr)

s .
Thus, more elements are coincidentally matched by the ele-
ments equal to 1 in R(:, :, :, i∗α, i

∗
s) to generate enough votes

to be mistaken as objects using the contour extraction method,
causing FAs. In our article, this type of interference is defined as
noninteresting objects with more CPs than objects to be detected
and is called interference with complex contour (ICC). To further
illustrate this concept, some representative examples obtained
using the template image of an airplane [see Fig. 6(a)] and the
RSI collected from the NWPU-VHR 10 dataset are displayed in

Fig. 5, which shows the objects to be detected in the first two
rows and ICCs in the middle two rows. It can be seen that ICCs
have more CPs than objects, some of which are coincidentally
matched by template images, so it is easy for them to be mistaken
as objects. Therefore, the decision criterion that focuses on the
number of votes cannot be used to distinguish between objects
and ICCs. Notably, although both an object and an ICC present
various CPs matched by the template image, the ICC has more
unmatched CPs than an object, i.e., only a small proportion of
CPs for the ICC are matched by a template image. Therefore,
we define the MR score to distinguish between objects and FAs
caused by ICCs in

VMR (xr, yr) = HCS (xr, yr) /sum
(
X (xr,yr)

s

)
(16)

where VMR(·) and sum(·) denote the MR score of a candidate
object and the summation operator, respectively. Note that there
are enough matched CPs (i.e., enough votes) for both ICCs and
objects, whereas the sum(X (xr,yr)

s ) that corresponds to ICCs is
much larger than the sum(X (xr,yr)

s ) that corresponds to objects.
Therefore, the VMR(·) of ICCs is much smaller than that of
objects. For the examples in Fig. 5, the MR scores for the objects
in the first and second rows are 0.118 and 0.109, respectively,
whereas the MR scores for the ICCs in the third and fourth rows
are only 0.058 and 0.058, respectively. Therefore, candidate RPs
with a small MR are considered to be FAs and are removed.

B. Removal of FAs Caused by Interferences that are Partially
Similar to Objects

For a noninteresting object that is partially similar to an object,
parts of CPs are easily matched to the corresponding CPs in the
template image because the CPs in this type of noninteresting
object and an object have similar attributes. For convenience, this
type of interference is defined as interferences that are partially
similar to objects (IPSs). Representative examples of IPSs can
be seen in last two rows of Fig. 5, where the fifth and sixth rows
show the boarding bridge and stripe on the ground, respectively.
Since part of the contour for this type of interference (see Fig. 5)
is similar to the partial contour of the object, these interferences
generate enough matched CPs to be mistaken as objects.

Unlike ICCs, FAs caused by IPS are difficult to remove with
the MR criterion because the number of CPs for IPS is not large
enough (see the last rows of Fig. 5). Therefore, it is necessary
to develop another strategy to remove FAs caused by IPS.

To distinguish between objects and IPSs, we need to construct
an effective strategy to quantitatively describe the characteristic
that the matched CPs for IPS are concentrated on the partial
contour of an object. To this aim, we first count the histograms
for the objects and IPSs (see the last column of Fig. 5), where
each bin denotes the proportion between the number of matched
CPs with corresponding iθ (i.e., the index number of the gra-
dient angle) and the sum(R(:, :, iθ, i

∗
ϕ, i

∗
s)). Compared with the

histogram obtained by an object (see Fig. 5), the matched CPs
in an IPS concentrate on parts of objects, so only a few bins
in the histogram have large values and the others have very
small values. In other words, the histogram for an IPS is sparser
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Fig. 5. Representative examples of objects and false alarms. The first two rows are examples of the objects, the middle two rows are examples of interference
with complex contour (ICC), and the last two rows are examples of interference with partial-similarity (IPS). The columns from left to right show an input slice,
the edge detection results of the slice, matched CPs in the slice, and the histogram of matched CPs.

than the histogram for an object. To capture this characteristic,
we introduce a sparsity measure [29] to calculate the matching
sparsity score (MS) as follows:

VMS (xr, yr) =
‖y‖1 −

√
d3‖y‖2

‖y‖2 −
√
d3‖y‖2

y (n) =
Z (n)

Ztotal (n)

Z =
(
X (xr,yr)

s &R (:, :, :, i∗α, i
∗
s)
)∏

k �=3

×k1dk
Ztotal

= R (:, :, :, i∗α, i
∗
s)
∏

k �=3

×k1dk
(17)

where 1dk
=

T

[1, . . . , 1]︸ ︷︷ ︸
dk

, the operator & denotes the logic and

operation, VMS(·) denotes the MS, and d1 = M,d2 = N . Here,
Z is a vector, where the value in the iθ th entry indicates the
number of matched CPs with index number iθ of the gradient
angle. Ztotal is a vector, where the value in the iθ th entry
indicates the number of CPs in the template image (undergoing
rotation and scale transformation) with index number iθ of the
gradient angle. The value in the entry iθ of y (i.e., the value in iθ
th bin of histogram) denotes the proportion between the number
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of matched CPs with index number iθ of the gradient angle and
the total number of CPs in the template with index number iθ
of the gradient angle. The MS score is a scale ranging from
0 to 1. The sparser is y, the larger is the MS score. Since the
matched CPs of an IPS concentrate part of the contour, the y of
an IPS is sparser than that of an object. This indicates that the
IPS will obtain a larger MS than objects. For the examples in
Fig. 5, the MS scores for the objects in the first and second rows
are 0.179 and 0.185, respectively, whereas the MS scores for the
IPSs in the fifth and sixth rows of Fig. 5 are 0.598 and 0.584,
respectively.

Combined with the constructed MR score, the MS score and
the number of votes, the final decision criteria in TGHT are given
in

C (xr, yr) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ifHCS (xr, yr) ≥ V th and
VMR (xr, yr) ≥ V th

MR and
VMS (xr, yr) ≤ V th

MS

0, otherwise

(18)

where Vth, V th
MR, and V th

MS denote the threshold for the number
of votes, the threshold of MR score, and the threshold of MS
score, respectively. If C(·) is equal to 1, the object exists in the
corresponding RP; otherwise, the object does not exist.

Note that there is a distance between different objects in RSIs.
To prevent the detected objects from overlapping, we adopt
the nonmaximum suppression method [30] to remove those
RPs (xr, yr)whose number of votes is not the maxima in the
HCS neighborhood of (xr, yr). The final RPs are treated as the
positions of the detected objects, and the bounding boxes with
the proper size are used to mark the detection results.

V. EXPERIMENTS AND ANALYSIS

In the experiments, two datasets containing RSIs with differ-
ent scenes were utilized to evaluate the performance of TGHT in
terms of storage load, time consumption, and detection results.
The detailed information of the two datasets are given as follows.

1) Dataset 1: This dataset contains 30 RSIs with differ-
ent scenes collected from the publicly available North-
western Polytechnical University very high resolution-10
(NWPUVHR-10) dataset [1]. These RSIs contain three
types of objects with different orientations and sizes.
Among these, 10 RSIs contain 94 airplanes, 10 RSIs
include 227 oil tanks, and the remaining 10 RSIs contain
31 ships.

2) Dataset 2: This is the NWPU-2 dataset. There are 41
harbor images for the training and test sets, which, respec-
tively, consist of 322 ships and 151 ships. Furthermore,
these RSIs are extended by ten times using data augmenta-
tion, i.e., scale transform and rotation transform. Detailed
information about NWPU-2 dataset can be found in [35].

Representative RSIs are displayed in Fig. 11, of which the
three RSIs [see Fig. 11(a), (f), and (l)] are used to extract slices
(see Fig. 6) as the three types of template image. The contours
of the template images are generated by edge detection and
interference removal.

Fig. 6. Template image and contour: (a) template image of airplane,
(b) template image of ship, (c) template image of oil tank, (d) contour of
(a), (e) contour of (b), and (f) contour of (c).

The experiments consist of four parts. The impact of parame-
ter setting on TGHT is detailed in Section V-A, and the generality
of the defined two types of FAs is verified in Section V-B. In
Section V-C, the main storage requirement and time consump-
tion for TGHT are discussed and compared with those of the
conventional GHT. In Section V-D, the performance of TGHT
in terms of object detection is evaluated and compared with
three representative contour extraction based object detection
methods (i.e., GHT, IGHT, and RGA) and some state-of-the-art
deep-learning-based object detection methods (i.e., HSF-Net,
Fast R-CNN, and Faster R-CNN).

All the simulations are performed running on an i7-7700
Intel processor at 3.6 GHz and 8 GB memory with a Windows
10 system. The MATLAB interpreter consumes extra time to
translate the algorithm, impacting the performance evaluation in
terms of time consumption. Thus, to effectively evaluate the time
consumption of TGHT and GHT, the simulations in Section V-C
are implemented using Visual Studio 2017 (C++ programing
language). However, the simulations in the other sections that
are not related to time consumption are implemented using
MATLAB 2018b.

A. Analyze the Impact of Parameter Setting on TGHT

The main parameters of TGHT are smin, smax, d3, d4, d5, Vth,
and δ, which, respectively, denote the minimum possible scale
of objects to be detected in RSIs, the maximum possible scale
of objects to be detected in RSIs, the dimension of the gradient
angle domain for the TR-R-table, the dimension of the rotation
angle domain for the TR-R-table, the dimension of the scale
domain for the TR-R-table, the threshold of the number of votes,
and the threshold of the fuzzy strategy, as described in Section II.
Since the parameters smin and smax can be determined by the
size of objects to be detected in RSIs and the size of the object
in the template, in our experiments, smin and smax were set to
0.5 and 2, respectively.
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TABLE I
DETECTION RESULTS WITH VARIOUS d3

TABLE II
DETECTION RESULTS WITH VARIOUS d4

TABLE III
DETECTION RESULTS WITH VARIOUS d5

TABLE IV
DETECTION RESULTS WITH VARIOUS Vth

To demonstrate the impact of parameter setting on TGHT
and to select the optimal parameter setting for subsequent ex-
periments, the detection results of 10 RSIs with airplanes under
different parameter settings (see Tables I–V) are discussed in
detail. Here, Rr(%), Rp(%), and Nt, respectively, denote the
recall, precision, and number of CPs in the template. Since
the gradient angle of CPs in the object of the RSI is slightly
different from that of CPs in the object of the template image, a
proper interval of gradient angle (i.e.,Δθ) ensures the CPs of the
object in the template image and the RSI obtain the same index
number of gradient angles. In other words, a proper d3 ensures
the corresponding CPs in objects of the RSI and the template
image have the same attribute of gradient angle. If d3 is too
large, the corresponding CPs in the object of the RSI and the
object of the template image will have different gradient angle
attributes, and potential objects may be missed. From Table I,
TGHT has low recall when d3 >12. Furthermore, Tables II
and III show the precision and recall under different numbers
of intervals for rotation angles (i.e., d4) and scales (i.e., d5),
respectively. For a large d4 or d5, the contour information of the
object under different poses with slight differences is recorded in
the TR-R-table, which means that potential objects with different
poses are more easily detected. It is observed that as d4 or d5
increases, recall improves. Since the entries of 2D-HCS with
values larger than Vth are considered the positions of objects,
a larger Vth indicates fewer FAs and detected objects. Thus, as
Vth decreases, the recall of TGHT improves, but the precision
of TGHT decreases. Because δ determines the threshold of the
fuzzy strategy, a proper δ ensures TGHT is robust to the object
shape with slight deformation. However, too large δ causes inter-
ferences with similar shapes to be mistaken as potential objects.

TABLE V
DETECTION RESULTS WITH VARIOUS δ

TABLE VI
OPTIMAL PARAMETER SETTING OF TGHT

From Table V, precision is reduced under large δ. Based on the
abovementioned analysis, the determined optimal parameters
(see Table VI) are adopted in the subsequent experiments.

Next, we consider the essential preprocessing step of edge
detection. Considering that deep-learning-based edge detection
methods can obtain better performance than the conventional
Canny operator, we select a representative deep-learning-based
method [i.e., the holistically-nested edge detection method
(HED)] instead of the Canny operator to evaluate the detection
results of TGHT. Here, the HED networks are considered image-
to-image edge detection technology by means of a deep learning
model that leverages fully convolutional neural networks and
deep supervised nets. The HED networks have obtained excel-
lent edge detection results for natural images (e.g., 0.782 ODS
F-score on the BSD500 dataset), and the source code and the
pretrained models are available in [34].

To demonstrate the impact of different edge detection methods
on the performance of TGHT, the Canny operator and the
HED-network-based edge detection method were utilized. Fig. 7
displays the edge detection results for different methods.

Compared to the Canny operator, the HED method can reduce
the edges of interferences with small sizes by using multiscale
and multilevel feature learning. As shown in Fig. 7, the HED
method obtains a more complete contour of the object and
fewer contours of interferences than the Canny operator. This
indicates that the HED method can be used to effectively prevent
interference from being determined as objects. To verify this
interpretation, the optimal parameters of TGHT (see Table VI)
were adopted to evaluate TGHT with the Canny operator and
with the HED method. Table VII presents the corresponding
detection results. Notably, TGHT with the HED method outper-
formed TGHT with the Canny operator in terms of recall and
precision. However, the HED method requires many training
samples, whereas the Canny operator does not need any training
samples. To ensure the proposed TGHT can be used to detect
objects by using limited samples, TGHT with the Canny operator
is adopted in our experiments.

B. Verify the Generality of FAs Caused by ICC and IPS in RSI

In Section IV, the representative examples of FAs caused by
ICC and IPS are given in Fig. 5. In this section, more experiments
are conducted on 30 RSIs to verify the generality of FAs caused
by ICC and IPS.
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Fig. 7. Edge detection results for different methods. (a) RSI, (b) edge detection
results of the Canny operator, (c) edge detection results of the HED method.

TABLE VII
COMPARISON OF OBJECT DETECTION RESULTS FOR DIFFERENT

EDGE DETECTION METHODS

1) Verify the Generality of FAs Caused by ICC: According to
the definition of ICC, i.e., the noninteresting objects with more
CPs than objects to be detected, the number of CPs for slices
with objects (denoted SO) and slices with noninteresting objects
(denoted SNO) in RSIs are counted to quantitatively illustrate
the generality of ICCs. In detail, for 30 RSIs, we extract a slice
centered at each position of these RSIs to count the number of
CPs, and then obtain the statistical results for different object
detection tasks, as shown in Table VIII. Here No

cp, Nu
cp, and Pu,

respectively, denote the largest number of CPs for all the SOs,

TABLE VIII
STATISTICAL RESULTS FOR THE NUMBER OF CPS FOR OBJECTS TO BE

DETECTED AND NONINTERESTING OBJECTS

TABLE IX
STATISTICAL RESULTS ABOUT THE MS SCORES FOR OBJECTS

TO BE DETECTED AND FAS

the largest number of CPs for all the SNOs, and the proportion
of SNOs containing more than No

cp CPs in all the SNOs. From
Table VIII, we see that No

cp for different object detection tasks
are different because the SOs have different numbers of CPs for
different object detection tasks. For the different object detection
tasks, Nu

cp is larger than the corresponding No
cp, which indicates

that there are always some SNOs (i.e., ICC) with more CPs
than SOs. In particular, it was observed that Pu for airplane
detection, ship detection, and oil tank detection were 12.61%,
21.63%, and 5.36%, respectively. This means that the ICCs
occupy a moderate proportion of detected items for different
object detection tasks.

These ICCs have a large number of CPs, some of which are
coincidentally matched by template image. Therefore, the ICCs
can easily obtain sufficient votes to be mistaken as objects. To
validate this assumption, the relationship between the average
number of votes and the number of CPs in SNOs are counted
and displayed in Fig. 8. It is seen from Fig. 8 that as the
number of CPs in an SNO increases, the corresponding votes
increase, demonstrating that ICCs easily obtain enough votes to
be mistaken as objects, as assumed. Therefore, we conclude that
the FAs caused by ICCs are widespread for contour extraction
based object detection methods.

2) Verify the Generality of FAs Caused by IPS: The IPS in
our article is defined as the interference that is partially similar to
objects to be detected. To quantify this, IPS is defined as interfer-
ence with a large MS score. To demonstrate the generality of FAs
caused by IPSs, different candidate objects containing objects
and FAs whose number of votes and MR score exceed thresholds
are collected from 30 RSIs to calculate the corresponding MS
scores. Table IX shows the statistical results for different object
detection tasks. Here,V O

MS ,V F
MS , andPU

MS , respectively, denote
the largest MS score for all the true objects, the largest MS
score for all the FAs, and the proportion of FAs (i.e., IPS) with
MS score larger than V O

MS of all the FAs. It can be seen that
V F
MS is larger than V O

MS for different object detection tasks,
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Fig. 8. The average number of votes for SNOs under different object detection
tasks. (a) The average number of votes for SNO with different numbers of CPs
for airplane detection. (b) The average number of votes for SNO with different
numbers of CPs for oil tank detection. (c) The average number of votes for SNO
with different numbers of CPs for ship detection.

which indicates that there are always some interferences (i.e.,
IPSs) with larger MS scores than some objects. In particular,
the proportion of FAs caused by IPSs in all the FAs for airplane
detection, ship detection, and oil tank detection were 21.56%,
45.5%, and 69.4%, respectively. These results indicate that FAs
caused by IPSs are widespread for different object detection
tasks.

C. Evaluation of Main Storage Requirements and Time
Consumption for TGHT

One of the main advantages for TGHT is that, in contrast to
GHT, it utilizes 2D-HCS instead of 4D-HCS without using a
complex invariant feature. To verify this advantage, the storage
requirement and time consumption for TGHT and GHT are
analyzed in detail.

TABLE X
STORAGE REQUIREMENTS FOR MULTIORDER BT

1) Evaluate the Main Storage Requirement of TGHT: Ac-
cording to the procedure of implementing GHT (see Section II-
B) and the procedure of implementing TGHT (see Section III),
the main storage load for TGHT is generated by 2D-HCS and
the multiorder BT, whereas the main storage load for GHT is
generated by 4D-HCS and the R-table.

To evaluate the main storage requirements of TGHT and GHT,
the storage requirements for the multiorder BT, 2D-HCS, R-
table, and 4D-HCS are discussed.

Note that the sizes of the multiorder BT and the R-table
relate to the specific template image. Therefore, template images
with three types of objects (see Fig. 5) are used to extract
contour information and generate the corresponding multiorder
BT and R-table for TGHT and GHT, respectively. For TGHT, the
corresponding parameter setting is shown in Table VI. To ensure
a fair comparison, the number of entries indexed by gradient
angles for the R-table in GHT was set to 10, and the number of
intervals for the rotation angle domain and for the scale domain
in 4D-HCS were set to 30 and 10, respectively.

The multiorder BT consists of four parts, i.e., first-
order BT, second-order BT, third-order BT, and the in-
dex numbers for the rotation angles and scales recorded in
{S(i,j,iθ)

4 |(i, j, iθ, i′α, i′s) ∈ SR, ∀i′α, i′s}. To evaluate the storage
requirement for the multiorder BT built according to different
template images, the number of nodes for the first-order BT,
the number of nodes for the second-order BT, the number
of nodes for the third-order BT, and the number of index
numbers recorded in {S(i,j,iθ)

4 |(i, j, iθ, i′α, i′s) ∈ SR, ∀i′α, i′s}
are counted, as shown in Table X. Here, N1

node, N2
node,

N3
node, N4

index, N5
index, and Ntotal, respectively, denote the

number of nodes in the first-order BT, the number of
nodes in the second-order BT, the number of nodes in the
third-order BT, the number of index numbers for the rota-
tion angles recorded in {S(i,j,iθ)

4 |(i, j, iθ, i′α, i′s) ∈ SR, ∀i′α, i′s},
the number of index numbers for the scales recorded in
{S(i,j,iθ)

4 |(i, j, iθ, i′α, i′s) ∈ SR, ∀i′α, i′s}, and the total number of
required storage cells. Since each node in the multiorder BT
records the corresponding key, each node requires a storage
cell (without considering the data structure). Note that both
the element of 4D-HCS and the node in the multiorder BT are
considered as floating point variables for implementation on the
computer. In our article, the size of the storage cell is defined
as the size of a storage space for a floating point value (i.e., 4
B). Therefore, the total number of required storage cells can be
calculated by Ntotal = Nnode

1 + Nnode
2 + Nnode

3 + Nindex
4 +

Nindex
5, as shown in Table X.

The R-table used in GHT records all the reference vectors
and corresponding index numbers of the gradient angles as
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TABLE XI
STORAGE REQUIREMENTS FOR THE R-TABLE

TABLE XII
STORAGE REQUIREMENT FOR GHT AND TGHT UNDER DIFFERENT OBJECT

DETECTION TASKS (UNITS: MILLION STORAGE CELLS)

entries. Therefore, the main storage requirement of the R-table
includes the number of entries and the number of reference
vectors. Table XI shows detailed storage requirements of the
R-table for different template images. Here,Ne, Nrp, and Ntotal,
respectively, denote the number of entries for the R-table, the
number of reference vectors, and the total number of required
storage cells. Note that each entry of the R-table consumes a
storage cell to record the corresponding index number of the
gradient angle, and each reference vector requires two storage
cells. Therefore, the total number of required storage cells for
the R-table is calculated by Ntotal = Ne + 2×Nrp, as shown
in Table XI.

Next, compare the storage requirements of 4D-HCS and
2D-HCS, which relate to the size of the RSI. An example RSI
[see Fig. 11(a)] of size 1039× 649 was used to calculate the
storage requirement of 4D-HCS and 2D-HCS. According to the
parameter setting, the number of intervals for the rotation angle
domain in 4D-HCS was equal to 30, and the number of intervals
for the scale domain in 4D-HCS was equal to 10. Therefore,
the number of storage cells for 4D −HCS ∈ R1039×649×30×10

was nearly 202 million as calculated by 1039× 649× 30× 10.
For 2D −HCS ∈ R1039×649, the number of storage cells was
nearly 0.67 million as calculated by 1039× 649.

Through the abovementioned analysis, the comparison of
the main storage requirements of TGHT (i.e., the storage cells
required by the multiorder BT and 2D-HCS) and GHT (i.e.,
the storage cells required by the R-table and 4D-HCS) are
summarized in Table XII.

As seen from Table XII, the main storage requirement for
TGHT is much smaller than that of GHT. For RSIs with larger
size, 4D-HCS requires much more storage cells than 2D-HCS.
Therefore, the storage requirement of GHT is much larger than
that of TGHT. Fig. 9 displays a detailed comparison of main
storage requirements of TGHT and GHT for RSIs with different
sizes. It is observed that as the RSI size increases, the advantage
of TGHT in terms of storage requirement becomes increasingly
obvious.

2) Evaluate Time Consumption of TGHT: The performance
of TGHT is evaluated in terms of time consumption compared to
the conventional GHT. To ensure a fair comparison, both GHT
and TGHT are implemented with C++ programming language

Fig. 9. The number of storage cells required by TGHT and GHT under RSI
with different sizes for airplane detection.

Fig. 10. The comparison of time consumption for GHT and TGHT.

under the same conditions (including the same RSI, the same
template image, and the same edge detection operator). Fig. 10
shows the time consumption for TGHT and GHT under different
object detection tasks and different thresholds of fuzzy voting
(i.e., δ).

Three RSIs [see Fig. 11(c), (e), and (i)] were selected for
airplane detection, oil tank detection, and ship detection, re-
spectively. From Fig. 10, the different object detection tasks
resulted in different time consumptions. Since the RSI with
ships [see Fig. 11(i)] contains the fewest CPs, the corresponding
time consumption is lowest. Note that the fuzzy voting strategy
will bring more votes. From Fig. 10, as δ increases, the time
consumption of both TGHT and GHT increases. In addition,
GHT may bring repeat votes when applying the fuzzy voting
strategy, whereas TGHT avoids repeat votes by using the binary
TR-R-table. Therefore, the total number of votes for TGHT
will be smaller than that of GHT when δ > 0 (i.e., the fuzzy
voting strategy is used). Furthermore, as seen in Fig. 10, the
time consumption of TGHT is lower than for GHT when δ > 0.
For δ = 0, the time consumption of TGHT is larger than that of
GHT. Thus, the difference in time consumption between TGHT
and GHT is small, indicating that TGHT hardly increases the
time consumption by using tensor operations.

D. Comparison With Other Representative Methods

1) Comparison With Well-Known Contour Extraction Meth-
ods: To highlight the superiority of TGHT in terms of detection
performance, 30 RSIs with three types of objects were applied to
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Fig. 11. Representative detection results for TGHT: (a–d) detection results of
airplane, (e–h) detection results of oil tank, (i–l) detection results of ship.

compare TGHT with representative contour extraction methods
(i.e., IGHT, RGA, and GHT). Fig. 11 shows part of the detection
results obtained by TGHT. In detail, TGHT and competitors with
a template image of an airplane were tested on RSIs containing
airplanes, oil tanks, and ships.

For the contour extraction methods, the threshold of the
number of votes (i.e., Vth) determined the number of detected
objects and the number of FAs. To evaluate the performance of
different contour extraction methods, Vth for all methods were
regulated to obtain different numbers of detected objects and

Fig. 12. PR curve of TGHT and contour extraction based methods: (a) PR
curve for airplane detection, (b) PR curve for ship detection, (c) PR curve for
oil tank detection.

FAs. Fig. 12 shows the generated precision–recall (PR) curves
[32], [33].

As shown in Fig. 12, IGHT has the worst detection results be-
cause the pairwise-point-based feature is susceptible to interfer-
ence, resulting in false pairwise-points weakening the detection
results. Since the circular structure of the oil tank was distinctive
in RSIs, almost all the methods (except IGHT) obtained excel-
lent detection results. For airplane and ship detection, TGHT
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Fig. 13. PR curve of TGHT and deep-learning-based methods.

obtained slightly better detection results than GHT and RGA
because TGHT can obtain a more accurate number of votes
for objects. The MR-criterion-based strategy (V th

MR = 0.05) and
MS-criterion-based strategy (V th

MS = 0.4) were effective in fur-
ther improving the detection results. The best detection results
were obtained when using both MR and MS criteria based strate-
gies. In particular, for airplane detection, the precision and recall
for TGHT with two FA removal strategies simultaneously
reached 0.95 and 0.84, respectively. For ship detection, they
reached 0.83 and 0.86, respectively. For airplane detection, they
reached 0.95 and 0.97, respectively. These results indicate that
TGHT can obtain excellent detection results for different object
detection tasks in different scenes.

2) Comparison With State-of-the-Art Deep Learning
Methods: To further verify the performance of TGHT, three
state-of-the-art deep-learning-based object detection methods,
i.e., HSF-Net [35], Fast R-CNN [36], and Faster R-CNN [37],
were selected to evaluate TGHT in terms of PR curves using
the publicly available NWPU-2 dataset. HSF-Net was built
recently to achieve multiscale ship detection in RSIs, and
Fast R-CNN and Faster R-CNN are treated as representative
deep-learning-based object detection methods that have
obtained excellent object detection results in natural images
and RSIs.

Considering the detected objects in the NWPU-2 dataset are
ships, the region growing based sea–land segmentation method
[25] was introduced as a preprocessing step of the proposed
TGHT method. To obtain the PR curve, the parameter Vth

of TGHT was tuned to generate different detection results.
Through a comparison of PR curves (see Fig. 13) between TGHT
and three state-of-the-art deep-learning-based methods obtained
from [35] and the average precision (AP) (see Table XIII), we see
that TGHT outperformed Fast R-CNN and Faster R-CNN and
obtained comparable detection results to HSF-Net (i.e., HSF-Net
obtained a higher precision, and the proposed TGHT obtained
a higher recall). The proposed TGHT method obtained the best
AP among all the methods. Note that the deep-learning-based
methods use a large number of training samples (i.e., 322 ships).
In comparison, the proposed TGHT only uses a single sample
to generate the TR-R-table to detect objects. Thus, the proposed

TABLE XIII
AP (%) OF DIFFERENT METHODS

TGHT is effective for object detection in RSIs, especially for
cases where training samples are not sufficient.

VI. CONCLUSION

To improve performance of existing contour extraction tech-
nologies in terms of detection results and storage load, the
TGHT is proposed to detect effectively objects with different
orientations and sizes in RSIs. The main contributions of TGHT
can be concluded as three aspects.

1) Compared to existing contour extraction methods utilizing
a 4D-HCS or complex invariant features to detect objects
with unknown orientations and sizes in RSI, TGHT uses a
novel tensor space voting mechanism to accumulate votes
by avoiding using either a large Hough counting space
(4D-HCS) or complex invariant features of other GHT
extensions.

2) Compared to existing FAs removal methods analyzing the
characteristic of FAs qualitatively, TGHT provides analyt-
ical expression to reveal the cause of FAs quantitatively,
and then removes these FAs by using effective strategies.

3) Compared to existing contraction methods that do not ob-
tain the accurate votes for potential object caused by fuzzy
voting and coordinate quantification strategies, the TGHT
utilizes the tensor space contour representation and voting
mechanism to obtain accurate votes for potential objects,
which ensures the effective object detection results.

Furthermore, a remarkable fact is that the tensors used in
TGHT consume small storage load by using the multiorder-BT-
based searching method. As a result, the TGHT significantly
reduces the storage requirement compared with GHT by us-
ing small time consumption. The limitation of TGHT is the
deformed and incomplete object contour that will easily lead
the missing alarms. The future work is to investigate tensor-
decomposition-based robust contour representation to improve
the detection results in RSIs with complex scenes.
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