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Hyperspectral Image Classification via Exploring
Spectral-Spatial Information of Saliency Profiles

Qikai Lu

Abstract—Morphological features have shown promising perfor-
mances for hyperspectral image (HSIs) classification, as they can
efficiently extract the multilevel spatial information of HSIs. How-
ever, the objects in the scenes are always with different sizes and
shapes, making it difficult to excavate spatial information of impor-
tant structures completely by the existing morphological methods.
To address this problem, we propose a novel two-stage framework
based on morphology and superpixel. Specifically, we propose self-
dual saliency profiles (SPs) based on a saliency measure considering
the grayscale contrast within objects and edge information. SPs
are hierarchical features that characterize spatial information for
salient objects whose saliency index is the significant local maxima.
The SPs are constructed based on a two-step algorithm. First,
all salient objects of different shapes in the scene are preserved,
and the undesired spatial details are discarded by attribute filters
based on the saliency measure. Second, the morphological feature is
generated based on the organization structure of salient objects in
the scene, which provides hierarchical spatial features of the image.
Then, the superpixel segmentation is performed on each of the ex-
tracted SPs on the basis of the spatial information of salient objects.
And, two types of superpixel-based features are extracted from SPs
to exploit the information in SPs. The extracted innersuperpixel
and intersuperpixel features are fused with spectral information
to produce the classification map. The experiments conducted on
three HSIs show that, the proposed approach significantly outper-
forms the other state-of-the-art methods.

Index Terms—Hyperspectral images (HSIs), mathematical
morphology, morphological saliency profiles (SPs), spatial-spectral
classification, superpixel.

1. INTRODUCTION

HE hyperspectral sensors can collect and process hundreds
T of adjacent narrow-band spectral information from the
visible spectrum to the infrared spectrum. Thanks to the detailed
spectral information, different kinds of objects on the surface of
the earth can be easily distinguished [1]. Hence, hyperspectral
images (HSIs) have been widely applied in different areas, such
as geological science [2], military applications [3], precision
agriculture [4], and ecological science [S]-[7]. Among these
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tasks, supervised classification is used to distinguish the different
materials of interest, which plays a vital role in HSIs analysis.

With the improvement of the spatial resolution of HSIs,
more structural and contextual information can be obtained
from images [8]. Meanwhile, classification approaches using
both spectral and spatial information have attracted increasing
attention. Researchers have proposed different methods to model
the contextual information from HSIs, such as Markov random
fields [9], 3-D Gabor feature extraction [10], edge-preserving
filtering [11], sparse representation model [12], hybrid-graph
learning method [13], [14], morphological feature-based method
[15], [16], and deep learning-based method [17]-[19]. Among
these methods, morphological features show satisfactory classi-
fication performance.

Morphological profiles (MPs) [20] were first introduced for
the segmentation and classification of high-resolution remote
sensing images. MPs are generated by repeatedly using mor-
phological filters by reconstruction on the basis of a sequence
of structuring elements (SE) with different sizes. These mor-
phological transformations remove trivial details and preserve
regions containing useful spatial information. For instance,
darker and brighter regions that are smaller than SE are re-
moved in the image by closing and opening with reconstruction,
respectively. However, the regions that are larger than the SE
are preserved by the morphological transformation. Therefore,
the spatial information of the area defined by SE can be ex-
tracted by performing the morphological transformation. Then,
extended MPs (EMPs) are proposed to extract morphological
profiles from HSIs [21]. First, the dimensionality reduction (DR)
method is applied to reduce the dimension of features while
preserving the important information of the image, such as prin-
cipal component analysis (PCA) [22], local geometric structure
Fisher analysis (LGSFA) [23], and hypergraph methods [24].
Then, the morphological transformations are performed on the
extracted components. Specifically, MPs were used to analyze
areas damaged by the earthquakes in Bam on a high-resolution
image captured by Quickbird [25]. MPs were investigated in
[26] by interpreting MP as a fuzzy measurement to characterize
the size and contrast of the structures, and then the decision is
made based on the possibility distribution modeled by using the
expert’s knowledge. The derivative of the morphological profile
(DMP) that measures the slope of two successive opening-
closing morphological profiles as the structural feature was
utilized to generate the candidate segment in the hierarchical
segmentation [27]. A banded-PSO optimization approach based
on fractional-order Darwinian particle swarm optimization [28]
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was proposed in [29], which can select the optimal bands of
MPs for the classification task. It can be found that the methods
based on MPs showed satisfactory classification results since
the morphological feature is adept at characterizing multiscale
structural information of objects in the scene. However, the
shape of SE is fixed in the traditional morphological filter, which
makes it difficult for MPs to adaptively model objects of different
shapes. On the other hand, SEs only characterize the scale or
shape information of the objects, which are inappropriate to
extract gray-level information of the regions [30].

In recent years, morphological attribute profiles (APs) were
proposed to characterize the objects with different kinds of
attributes related to geometrical properties and gray-scale in-
formation, rather than the scale of the regions [31]. APs are
constructed by continuously performing morphological attribute
filters (AFs) with different thresholds, which form a multiscale
representation of the spatial information in the image. AFs are
connected operators that are region-based filters since they only
merge the connected components under certain conditions [32].
The connected components are the regions where the grayscale
of pixels is constant. The extensive or antiextensive attribute
filters are performed on a min-tree and max-tree, respectively,
which are hierarchical tree representations composed of con-
nected components. Then, the nodes which are ineligible for cer-
tain conditions are removed. Finally, the pruned tree is translated
as an image that is filtered output [33]. The advantage of AFs
is that the edges in the image are preserved during the filtering
process since these filters only merge connected components that
exist in the input image [34]. The most used attributes for AFs
are area, volume, standard deviation, convex-hull area, and the
moment of inertia. These attributes can describe objects in the
image not only from the perspective of scale but also from the
perspective of other measures such as geometrical, grayscale,
and textural. As a generalization of the APs, extended multiat-
tribute profiles (EMAPs) are developed to extract morphological
features from HSIs by computing APs on the first few com-
ponents of HSIs [35]. A detailed review of the morphological
attribute profile and its associated methods can be found in [36].
Besides, extinction profiles (EPs) are proposed to improve the
classification accuracy and simplification ability of APs [16].
EPs are extrema-oriented features, which are constructed by per-
forming a set of extinction filters (EFs) [37]. EFs are connected
filters based on extinction value that measures the persistence of
extrema [38]. Hence, EFs can preserve the most stable extrema
regions and discard other unimportant regions, which make EPs
have better simplification capability for recognition than APs.
Also, EPs have been investigated for fusing with spectral features
to perform classification via deep CNN [39] and a low-rank
technique [40].

However, the aforementioned methods cannot completely
characterize structural information of the image, since objects
in the scene are always with complex variations in shapes
and sizes. To capture the complex spatial information of
objects, we propose a novel classification approach to extract
multilevel spatial information of salient objects from HSIs with
a new self-dual morphological feature called morphological
saliency profiles (SPs). First, an attribute deduced from the
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energy function for image segmentation is adopted to compute
the saliency index of the node on the tree of shapes (ToS)
[41]. ToS is a representation of an image that organizes the
connected components whose holes are filled in using a
hierarchical tree structure. Then, salient shapes can be selected
by a nonincreasing filter based on the attribute. Subsequently,
SPs are constructed by repeatedly filtering all leaf nodes of
ToS. To exploit the abundant spatial information of SPs, we
use the simple linear iterative clustering (SLIC) method to
cluster homogeneous pixels of each SP into the superpixels.
Subsequently, the innersuperpixel and intersuperpixel features
of the SPs are extracted by performing the mean filter and the
weighted average filter on superpixels. Finally, multiple kernel
learning method is employed to fuse the original spectral feature
and the innersuperpixel and intersuperpixel features of the SPs.

The contributions of this article are listed as follows.

1) We propose novel self-dual morphological saliency pro-
files on the basis of the saliency index of the node on
ToS, which preserves the critical structures for objects and
discards less important details of the local context.

2) We develop an adaptive feature construction method that
generates morphological features based on the organiza-
tion structure of salient objects in the scene. This method
can provide a complete and continuous characterization
of spatial information at different scales.

3) We extract the innersuperpixel and intersuperpixel fea-
tures of SPs to represent the spatial information of HSIs.
And, a method that can adaptively determine the number
of superpixels in each SP is developed to generate the
superpixel segmentation maps.

The rest of the article is organized as follows. The proposed
method is described in Section II, including the construction
of saliency profiles, the innersuperpixel and intersuperpixel
feature extraction based on superpixel segmentation, and image
classification using multiple kernel learning (MKL). Section III
presents experiments conducted on three real datasets and ana-
lyzes the experimental results. Section IV concludes the article.

II. PROPOSED METHOD

As shown in Fig. 1, the proposed classification method in-
cludes four steps. First, morphological SPs are extracted from
the principal components that contain 99% information of HSIs.
The second step is shapes-adaptive superpixel maps generation,
which performs SLIC method on each SP feature according to
the contextual information of SP. Subsequently, the innersuper-
pixel and intersuperpixel features are computed by applying the
mean filter and weighted average filter on superpixels. Finally,
the MKL method is adopted to integrate the original spectral
feature and innersuperpixel and intersuperpixel features.

A. Saliency Profiles Extraction

The self-dual morphological transformation relies on the ToS,
which can be regarded as hierarchical representations of the
image. ToS is constructed by merging two simple tree repre-
sentations (the max-tree and the min-tree) into a single tree.
Let f : Q@ — (E, <) denote a discrete grey image, where
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Fig. 1. Flowchart of the proposed framework.
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Fig. 2. (a) Image f. (b) Min-Tree. (c) Max-Tree. (d) Tree of shapes.

Q) is the domain of the image f, and E is an ordered set of
grayscales. For any given threshold of grayscale A € E, two
binary images x,(f) = {p € Q[f(p) > 2} and x*(f) = {p €
Q|f(p) < A} can be obtained by thresholding the image. These
two binary images are called upper-level sets and lower level
sets. The nodes of the max- and min-tree are, respectively,
the connected components of y; and x*, which are defined as
CC(x;) and CC(x*). A set of CC(x) can be obtained with
multilevel thresholding of the image. Thus, these connected
components as nodes are organized into a tree structure by
the inclusion relation between the connected components. As
illustrated in Fig. 2, there is an original image which consists
of eight flat zones with four gray-level values. The leaf nodes
of the max-tree and the min-tree correspond to the regional
maxima and the regional minima, respectively. However, the
minima and maxima regions cannot be processed at the same
time. ToS (or inclusion tree) can be regarded as a combination
of min- and max-tree [46], which is a self-dual data structure
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U "
a

Composite kernel
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:
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and allows filter the dark and bright regions simultaneously.
The node of the ToS defined by sat(CC()) is the saturation of
the connected component, which are composed of C'C(x) and
the holes of C'C/(y). Since a total relation has been defined, any
two nodes of the ToS are either disjoint or nested. Therefore,
ToS is constructed according to the inclusion relation between
the shapes [see Fig. 2(d)]. The leaves of ToS correspond to the
extrema regions, which means that the dark and bright structures
can be simplified simultaneously.

The generation of SPs is based on an attribute A, de-
duced from regularization parameter v of the piecewise-constant
Mumford—-Shah function. The attribute A, characterizes the
importance of shape, and the regularization parameter v is set
to a large value to delete this shape during the minimization
of the energy function. The piecewise-constant Mumford—Shah
function [43]is a simplified version of the Mumford—Shah model
proposed by Mumford and Shah [44], which is based on energy
minimization. Let a pair (OR, f) denote a partition map of the
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(a)
Fig. 3.

input image f : 2 — R, where f is the average value of each
region Q\OR, and O R is the set of pixels belong to the boundaries
of regions. A partition map of an image f is computed by the
function which is given by

EUﬁR)—/ZmLEfF@ﬂy+WMRH )

where |O{R}| is the total number of pixels belong to the edges
O{ R}, and the regularization parameter v is a positive number
that controls the degree of simplification. When the regulariza-
tion parameter v is lower, the partition map is finer.

For a given v, whether a shape 7 can be removed is determined
by the energy function AE- in (2)

o SR SRy S (AR
! Ry | R, | ‘R’Tp

— v |07

)
where 7, is the parent node of 7, and S(f, R ) is the sum value
of pixel belonging to R.

) 2 S2(f,R~
Assume that v,,;, satisfies AE, = g \(IJ;ITT) + \(IJ; \p) o
T TP
S2 ,Rf,_ .
‘(}f? |17) _ Vmin‘aT| = 0. When v is smaller than Vmins the
™

sign of AE; will be positive, which means this shape should be
preserved. The function E( f, OR) decrease as the regularization
parameter v increases. Hence, v, is the critical value that
determines whether a shape can be deleted. Let attribute A, (7)
denote the critical value of the shape 7, which is defined as

SZ (f7 RT) 52 (f7 R'rp) SZ (f’ R;—p

AO=\TRT Y TR

) /107].

3
To compute A, of each shape 7, all nodes of the ToS are
sorted in ascending order of the average values of the gradient’s
magnitude along the edge of the shape Ay . As Fig. 3 shows, the
attribute A, (B) of node B is computed according to (3). Subse-
quently, the underlying node B is removed, and the parenthood
relationship of its parent node and child nodes is updated. In
this example, the removal of B implies its child nodes D and £
become the child of node A. Besides, the pixels that belonged to
B are incorporated into its parent node A. Then, the removability
of its parent node and child nodes will be changed since the
local relationship between nodes have altered as the node B
was removed.
This attribute function A, measures the importance of the
shapes. The data fidelity term [/, (R (fi — f)2dzdy tends to

(b) (©)

(a) Example of removing the shape B and update the parenthood relationship. (b) ToS before removing B. (c) ToS after removing B.

remove low contrast details, and the regularization term |0{R}|
tends to suppress the shapes with complex boundaries. In prac-
tice, the meaningful objects in remote sensing images usually
have smooth and high contrast edges. Thus, the attribute function
A, measures the saliency of shapes in accordance with homo-
geneity and boundaries of regions. An example of the attributes
Ay and A, computed on the first principal component extracted
from the hyperspectral data is illustrated in Fig. 4. By observing
the curve of attribute value from the leaf (left start point of
the curve) to the root node of the ToS (right finishing point
of the curve), it can be found that the meaningful objects such
as building and playground correspond to the significant local
maxima on the curve of A, . The first significant local maxima
corresponding to the building can be regarded as the foreground,
and the second one can be regarded as the background of this
building. The information at different scales is complementary
to each other so that multiscale information can enhance the
classification performance. This example also shows that the
average value of the gradient’s magnitude Ay roughly reflects
the saliency of the shapes, which provides a rational sequence
for computing the value of A,,.

To retain the salient shapes, we predefine a scalar h,, to select
the shapes corresponding to the significant local maxima on the
curve of A, If A, (1) — A, (1) > hyand A, (7) — A, (1) >
h,, for all 7. € children(7), the shape 7 can be regarded as a
salient shape. Otherwise, the shape 7 is regarded as unimportant
shape. First, a new tree T is set as 7o = J. Then, SPy is
reconstructed from the tree 7'y whose all unimportant shapes are
removed from T'y. Let us define LF(T') represents a self-dual
operator of removing all leaf nodes of tree 7. Specifically, SP;
is reconstructed from the tree T, = LF(T;_1) where i varies
from 1 to h — 1 and A is the height of ToS Ty. The complete SPs
are defined by

SP={RC (Ty),...,RC(LF T;-1)),...,RC(LF (Th-2)}

“)
where RC'(T') represents the reconstruction operator that recon-
structs an image from a tree. For the hyperspectral data, SPs are
computed on the first ¢ PCs that should contain at least 99% of

the total variance of the original HSIs.

B. Construction of Shapes-Adaptive Superpixels

In this research, superpixel segmentation is adopted to exploit
the spatial information within SPs. As a well-known superpixel
segmentation method, SLIC is employed owing to its satisfac-
tory performance in boundary adherence and speed [45]. The
required parameter of this method is the number of initial cluster
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Example of the A, of a branch on the HSIs image. (a) University of Pavia image. (b) Curve of Ay of a branch of the ToS. (c) Curve of A, and two

salient shapes corresponding to two remarkable local maxima value on the curve of A, .

Yot d
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Fig.5. Example of superpixel Y; and its adjacent superpixels Y3 1,..., Y% s.
centers k, which is approximately equal to the desired amount of
superpixels. How to choose the optimal number of superpixels
is a critical problem. At present, most methods [46], [47] choose
the number of initial clusters manually, which is challenging to
cope with complex image scenes and always time-consuming. In
our framework, an adaptive method is adopted to set k automati-
cally according to the number of shapes, as the number of shapes
is related to the complexity of the image scene. As shown in
Fig. 1, the shapes-adaptive superpixel map is computed on each
SP. The number of shapes of ToS can reflect the complexity of
the image. For each morphological feature S P; reconstructed
from the tree T°;, the number of superpixels k; is calculated as
follows:

Si
So

where kg is the number of superpixels for the first feature S P,
and S; is the number of shapes of T;. The parameter kg is
set according to the size of the image. Then, the number of
superpixels k; for different morphological features SP; can
automatically adjust with the ratio between .S; and Sj.

ki = kg X )

C. Innersuperpixel and Intersuperpixel Features Extraction

In Fig. 5, a superpixel is composited of a set of adjacent
pixels defined by y;*, m =1, 2, ..., M, where M is the
total number of pixels in the superpixel. For each superpixel,

the innersuperpixel and intersuperpixel features of the SPs can
be acquired by performing the mean filter and the weighted mean
filter.

Mean SPs Feature SP™°": The innersuperpixel feature
within each superpixel is computed by performing a mean filter
on the superpixel. Let 7; denotes the average value of all pixels
belonging to one superpixel (y;*, m =1, 2, ..., M). For each
superpixel in a SP, the average value is computed and assigned
to the pixels belonging to it.

Weighted Mean SPs Feature S P*¢#ht: Since the adjacent re-
gions always share the relevant spatial information, the weighted
mean method is performed on the adjacent superpixels (i.e.,Y »,
n =1, 2, ..., N) of the superpixel Y;, where IV is the number
of its adjacent superpixels. An example of superpixel Y; and its
adjacent superpixels are represented in Fig. 5. The intersuper-
pixel feature is obtained by performing a weighted mean filter
on the basis of the adjacent superpixels, which are defined as
follows:

N
weight -
Yy 8 = Z Wt.n X Yt,n (6)
n=1

exp(—(Te—Trn)” /5)
, a1 exp(—(T ) /s)
rounding adjacent superpixel, and s is a predefined scalar, and

Y. 1s the average value of all pixels belonging to the adja-
cent superpixels Y; . The larger the dissimilarity between Y;
and Y} ,,, the lower the weight w, ,,. Thus, the intersuperpixel
feature can capture the information of the neighborhood of the
superpixels.

where wy ,, =

is the weight of the sur-

D. Classification by MKL Algorithm

In our work, the multiple kernel learning (MKL) method
is adopted to integrate the spectral and spatial features, since
it can weigh the features adaptively according to their impor-
tance for classification. The basic idea of the multiple kernel
learning is to determine the base kernels and the corresponding
weights. By optimizing the weight of each basis kernel, the
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TABLE I
NUMBERS OF SAMPLES IN DIFFERENT CLASSES IN THE THREE TEST IMAGES

Indian Pines University of Pavia Pavia Center

Class Name Number Class Name Number Class Name Number
1 Corn-notill 1428 1 Asphalt 6631 1 Water 824
2 Corn-mintill 830 2 Meadows 18649 2 Trees 820
3 Grass-pasture 483 3 Gravel 2099 3 Asphalt 816
4 Grass-trees 730 4 Trees 3064 4 Bricks 808
5 Hay-windrowed 478 5 Sheets 1345 5 Bitumen 808
6 Soybean-notill 972 6 Bare Soil 5029 6 Tiles 1260
7 Soybean-mintill 2455 7 Bitumen 1330 7 Shadows 476
8 Soybean-clean 593 8 Bricks 3682 8 Meadows 824
9 Woods 1265 9 Shadows 947 9 Bare Soil 820
10 Bldg-Grass-Trees 386

Total 9620 Total 42776 Total 7456

orn-notill
orn-mintill
Grass-pasture Asphalt
Grass-trees —]
'—Iay-\vindrowed Meadows
Soybean-notill Gravel

Trees
Sheets
Bare Soil
Bitumen
Bricks
Shadows

Soybean-mintill
Soybean-clean
Woods
Bldg-Grass-Trees
(b)

Fig. 6. (a) False-color image of Indian Pines. (b) Its reference data.

useful information inherited in the different features can be better ~ Fig.7.  (a) False-color image of the University of Pavia. (b) Its reference data.
exploited for image classification [48], [49]. Specifically, three
RBF kernels are employed as the base kernels of MKL to model
the discriminative information of three different features, which
is expressed as follows:

J(sPec (yfpec7 y;pec) = exp (_Hyz‘pec _ y;pec||2/20_2) (7)

Kmean (yzmean7 y;nean) = exp (7Hyzmean - yylean||2/20_2)
(3)

’ /20’2)

(9) Fig. 8.  (a) False-color image of Pavia Center. (b) Its reference data.

E I Water
B Trees
Meadows
I Bricks
>N Il Bare soil
b Asphalt
Bitumen
I Tile
Shadows

weight
Yi -

weight

Yj

(b)

weight [, weight  weight)
K™® (yi Y )—eXp<—‘

where ¢/5P°¢, M€ and “e8ht are the spectral feature, the mean
SPs feature, and the weighted mean SP s feature, respectively. [I. EXPERIMENT STUDY
Then, the composite kernel is obtained by combining the above
three kernels through the weighted average method as follows:

[ comp (yi7 yj) — /,LSpeCKSpeC (yfpec’ yjs_pec)

A. Data Description

1) Indian Pines: The Indian Pines data was acquired
by the Airborne Visible/Infrared Imaging Spectrometer

4 gmean grmean (ymean ymean) (AVIRIS) sensor. This sensor provides 224 spectral bands,
v and the wavelength of the spectrum ranges from 0.4 to
+ ﬂweight JWeight (yweight yweight) (10) 2.5 pm. In this data, the number of spectral channels is
2 1) . .
reduced to 200 by removing the water absorption bands.
where £5P°¢, ™" and £ V¢18"t are the weights of three base This image contains 145 x 145 pixels, which was taken
kernels, respectively, and jSPe¢ 4 pmean 4 weight — | The in the Indian Pines test site in northwestern Indiana. The
weighted composite kernel K°°™P (y;,y;) is used to replace false-color image and the corresponding ground truth

the single kernel in SVM to generate the classification map. map of the Indian Pines dataset are shown in Fig. 6.
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CLASSIFICATION RESULTS ACHIEVED BY DEFERENT METHODS ON THE INDIAN PINES IMAGE

SVM EMP EMAP EEP ESP SC-MK SF-SP-SVM  SF-SP-MK
Dimensions 200 425 425 750 330 600 860 860
Corn-notill 66.99 70.29 76.79 79.30 92.54 81.00 93.95 97.26
Corn-mintill 67.59 70.92 78.60 79.28 94.88 87.78 91.36 98.10
Grass-pasture 91.48 90.81 91.34 92.24 97.71 95.61 97.83 98.31
Grass-trees 93.71 94.81 96.65 97.40 99.94 97.32 99.38 99.76
Hay-windrowed 99.44 99.39 99.65 99.51 100.00 99.98 99.44 100.00
Soybean-notill 74.32 69.92 82.66 84.39 94.08 85.80 89.34 95.93
Soybean-mintill 55.89 60.64 72.67 74.02 91.86 77.09 91.77 96.07
Soybean-clean 72.69 67.66 74.99 79.96 93.08 88.03 93.96 98.01
Woods 84.32 85.88 92.91 93.79 99.10 94.04 98.30 99.83
Bldg-Grass-Trees 73.27 79.58 92.77 94.88 98.87 94.67 98.36 99.55
OA 72.41 74.20 82.33 83.88 95.00 86.50 94.28 97.72
AA 77.97 78.99 85.90 87.48 96.20 90.13 95.37 98.28
K 68.38 70.40 79.63 81.42 94.19 84.40 93.34 97.34
TABLE III
CLASSIFICATION RESULTS ACHIEVED BY DEFERENT METHODS ON THE UNIVERSITY OF PAVIA IMAGE
SVM EMP EMAP EEP ESP SC-MK SF-SP-SVM  SF-SP-MK
Di i 103 51 51 126 81 309 265 265
Asphalt 93.76 98.17 93.46 94.48 97.42 95.37 97.97 99.56
Meadows 94.48 98.47 90.88 95.79 98.24 95.62 99.04 99.59
Gravel 67.72 73.85 89.47 97.40 98.35 97.76 99.13 99.32
Trees 81.87 96.86 97.07 98.79 92.78 96.34 98.33 97.02
Sheets 95.78 98.89 99.20 99.52 99.92 99.96 99.84 99.99
Bare Soil 62.66 85.03 95.68 96.65 100.00 97.78 99.74 100.00
Bitumen 60.36 94.66 97.38 97.62 100.00 99.95 99.93 100.00
Bricks 81.19 92.51 85.97 97.16 98.10 94.84 98.75 99.11
Shadows 99.53 99.69 100.00 98.13 99.92 99.99 99.99 98.99
OA 84.24 94.43 92.44 96.76 98.07 96.28 98.96 99.41
AA 79.72 92.76 94.35 97.53 98.30 97.51 99.19 99.29
K 82.52 93.01 90.12 95.68 97.43 95.11 98.62 99.21
TABLE IV
CLASSIFICATION RESULTS ACHIEVED BY DEFERENT METHODS ON THE PAVIA CENTER IMAGE
Class SVM EMP EMAP EEP ESP SC-MK SF-SP-SVM _ SF-SP-MK
Dimensions 102 51 51 126 71 306 244 244
Water 99.65 99.87 99.95 99.67 99.36 99.68 99.45 99.64
Trees 90.38 92.12 90.61 89.74 88.04 91.95 90.61 91.05
Asphalt 91.65 90.02 91.10 91.57 94.08 94.48 92.38 92.01
Bricks 88.79 96.15 99.09 99.34 99.77 97.09 99.75 99.78
Bitumen 90.71 92.05 98.29 98.55 99.28 95.82 99.08 99.32
Tiles 94.89 96.76 96.53 97.40 99.32 95.28 98.69 98.76
Shadows 85.61 92.40 92.56 96.44 99.02 90.83 98.43 98.43
Meadows 96.73 98.39 98.92 98.91 97.72 98.33 98.93 99.11
Bare Soil 99.98 98.93 99.13 98.80 95.06 99.70 98.64 98.63
OA 96.60 97.85 98.31 98.41 98.38 97.87 98.58 98.74
AA 93.16 95.19 96.24 96.71 96.92 9591 97.33 97.41
K 95.20 96.96 97.61 97.74 97.71 96.98 97.99 98.22

Table I presents the number of labeled samples for this
image.

University of Pavia: The second HSIs were captured
by the Reflective Optics System Imaging Spectrometer
(ROSIS-03) sensor over the campus of the University of
Pavia, Italy. This hyperspectral sensor captures the image
in 115 bands with wavelengths from 430 to 860 nm. The
geometric resolution of the ROSIS-03 sensor is 1.3 m per
pixel. The size of this image is 610 x 340 x 103, where
12 channels are discarded due to noise. Fig. 7 depicts the
false-color image and the corresponding groundtruth map
of this scene. Table I shows the number of samples about
the reference classes.

Pavia Center: The third HSIs were also captured by the
ROSIS-03 sensor. The image with 1096 x 489 pixels was

taken over Pavia, northern Italy. Thirteen bands disturbed
by noise have been deleted, resulting in a image with 102
channels. The color composite image of the Pavia Center
dataset and the labeled samples are reported in Fig. 8.
Table I shows the details about the reference classes.

B. Experimental Setting

To evaluate the effectiveness of the proposed approach, we

compare it with several state-of-the-art HSIs classification meth-
ods, including the single kernel SVM [50], extended morpho-
logical profiles (EMP) [21], extended multiattribute profiles
(EMAP) [51], extended extinction profiles (EEP) [52], the
proposed extended saliency profiles (ESPs), superpixel-based
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classification using multiple kernels (SC-MK) [53], and sin-
gle kernel SVM using stacked spatial features extracted from
superpixel of SP (SF-SP-SVM). The kernel adopted in single
kernel SVM is RBF, which only considers the original spectral
bands. EMP and EMAP model the spatial information by closing
and opening with reconstruction and morphological attribute
filters, respectively. For the EEP method, extinction profiles
are constructed by repeatedly performing extinction filters on
the first few principal components of the image. Extinction
filter belongs to connected filters as the attribute filter, but it is
extrema-oriented, which preserves the branches corresponding
to the persistence of the extrema. In the ESP method, SPs ex-
tracted from different principal components are stacked and fed
into the single kernel SVM classifier. SC-MK extracts the spatial
features by the superpixel, and multikernel SVM is adopted to
fuse the spatial features and spectral features. In SF-SP-SVM
method, the spectral feature, S P™°*", and .S Pweight gre stacked
and fed into the single kernel SVM.

In our experiments, the number of principal components
for the Indian Pines, University of Pavia, and Pavia Center
images is 25, 3, and 3, respectively. ko is set to 200, 5000,
and 20000 for the tested Indian Pines, University of Pavia,
and Pavia Center images, respectively. The parameter h, is
fixed at 20 for the three tested data. To generate S pweight
the parameter s is set to 500, and the o is set to 1. In MKL,
the weights of three base kernels pP¢, p™mean, and p"eisht
are set to 0.2, 0.4, and 0.4, respectively, as reported in [53].
For the SVM method and other methods using single kernel
SVM as the classifier, the optimized parameters of SVM are
obtained by the fivefold cross-validation technique. For feature
extraction, the parameters are set to the value referred to in the
corresponding literature. For the EMAP method, two common
attributes are used to build EMAP. Five thresholds for area
attribute are [50, 100, 200, 500, 1000]. Eight thresholds of the
standard deviation attribute are [10, 20, 30, 40, 50, 60, 70, 80].
For EMP, EEP, and SC-MK, the parameters are set as the rec-
ommended values reported in [21], [52], and [53], respectively.
The dimensions of different features for the three datasets are
reported in Tables II-1V, respectively.

For all tested datasets, the number of training samples is set
to 50 per class, with the remaining samples used for testing.
The classification accuracy is the average result of 10 experi-
ments with different randomly selected training samples. The
experiment results are compared quantitatively in terms of three
evaluation metrics, including overall accuracy (OA), average
accuracy (AA), and kappa coefficient (K). Additionally, the
highest accuracies among the results given by different methods
are showed as bold entities in Table II-VI.

C. Experiment Results

The classification maps of Indian Pines data obtained by
different methods are shown in Fig. 9. It can be seen that, the
classification performance of SVM is unsatisfactory owing to
the salt-and-pepper noises. This phenomenon can be attributed
to that SVM only utilizes spectral information, which ignores
the spatial information inherited in the neighboring pixels of the
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Classification maps for the Indian Pines image. (a) SVM. (b) EMP.

image. The result of EMP is better than SVM, but the noise
still occurred in the classification map. The classification maps
of EMAP, EEP, ESP, SVM-CK, SC-MK, and SF-SP-SVM are
superior to SVM, as the spatial context information of the image
is utilized by these methods. As shown in Table II, the OA of ESP
outperforms the EMP, EMAP, and EEP with 18%, 10%, and 9%,
respectively. The saliency profile can extract spatial information
of salient structures and strongly simplify the image, which
preserves the homogeneity of objects. Specifically, SF-SP-MK
shows the best result in terms of both quantitative and qualitative
evaluation, followed by ESP and SF-SP-SVM. Moreover, the
highest class-specific accuracies of the classes are all obtained
by the proposed SF-SP-MK. The classification accuracy of
SF-SP-SVM is slightly lower than ESP, which demonstrates
that MKL can better mine the complementary information of
different features.

The classification maps and accuracies given by different
methods on the University of Pavia data are reported in Fig. 10
and Table III, respectively. Similar to the experiment results on
the Indian Pines data, SF-SP-MK achieves the highest classi-
fication accuracy on the University of Pavia data. Specifically,
ESP improves the classification accuracy of EMP, EMAP, EEP
by approximately 3%, 5%, and 1%, respectively. By comparing
the accuracies of SF-SP-SVM and SF-SP-MK methods, it can
be proved that MKL can excavate the discriminative information
hidden in different types of features. Specifically, the salt and
pepper noises can be clearly seen in the classification maps of
EMP, EMAP, EEP, and SC-MK, which are mainly occurred in
the central bare soil area and the meadow area at the bottom.
The proposed ESP and SF-SP-MK methods have significantly



LU AND HU: HSI CLASSIFICATION VIA EXPLORING SPECTRAL-SPATIAL INFORMATION OF SPS

Asphalt
Meadows
Gravel
Trees
Sheets
Bare Soil

Bitumen
% y Y Bricks
o o o Shadows
® (€3] (h)
Fig. 10. Classification maps for the University of Pavia image. (a) SVM.

(b) EMP. (c) EMAP. (d) EEP. (e) ESP. (f) SC-MK. (g) SF-SP-SVM. (h)
SF-SP-MK.

improved the classification of these areas, since the irrelevant
details are suppressed while selecting the salient shapes of ToS.

For the Pavia Center data, Table IV reports the classifica-
tion results of different methods, and Fig. 11 shows the corre-
sponding classification maps. Generally, the overall accuracies
obtained by all methods broadly are all above 96%. The best
accuracies are obtained by the SF-SP-MK, which demonstrates
the effectiveness of the innersuperpixel and intersuperpixel fea-
tures extracted from SP. Meanwhile, the SF-SP-MK achieves the
highest average accuracy since it gives satisfactory results for
all classes. In addition, the SF-SP-MK shows the improvement
with spectrally similar classes, such as Self-Blocking Bricks and
Bitumen.

Obviously, compared to the other morphological feature ex-
traction method, SPs show better classification accuracy. It can
be attributed to that, SPs can preserve salient shapes and reduce
the complexity of the image by attenuating a lot of unimportant
details, which significantly reduces the misclassification existed
in the inside and border of the area for HSIs classification.
Besides, innersuperpixel and intersuperpixel features extracted
from morphological SPs are able to suppress the salt-and-pepper
noise in the classification map. Furthermore, the SF-SP-MK
outperforms the SF-SP-SVM for all datasets, which demon-
strates that MKL provides a flexible framework to integrate the
complementary information of spectral and spatial features.

D. Demonstration of Saliency Profiles Features

Fig. 12 shows the saliency profiles computed on the first three
principal components of the University of Pavia data. It can be
seen that, S P; with smaller ¢ keeps more detail of the input data,
whereas SP; with larger 7 considerably simplifies the image
since it is closer to the root. Meanwhile, most of the shapes
on the tree have been removed, while the salient structures are
preserved. For instance, the original image has 53 653 shapes,
but SP, only retains 2259 shapes. Besides, SPs are generated
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Fig. 11.  Classification maps for the Pavia Center image. (a) SVM. (b) EMP.
(c) EMAP. (d) EEP. (e) ESP. (f) SC-MK. (g) SF-SP-SVM. (h) SF-SP-MK.

by filtering the ToS layer by layer, and hence the structures
that disappeared at the fine scale will not reappear at the coarse
scale. The experiments illustrate that the SPs can capture salient
structural information depending on the attribute function A,
and characterize specific size objects on feature maps at different
scales. Besides, the dimensionality of SPs is only determined by
the height of the tree Ty, which means it is unrequired to set
threshold values.

E. Effect of the Parameter h,, and kg

The classification result obtained with parameter h, ranging
from 10 to 200 is shown in Fig. 13. It can be found that the
classification results remain stable for the three tested data.
For instance, the difference between the maximum OA and the
minimum OA is less than 0.5% on three images, which demon-
strates that the attribute function A, are effective in selecting
salient shapes whose edges coincide with the contours of land
covers. The reason for this phenomenon is that, the attribute
A, of the salient node is always much larger than A, of its
parent node and child nodes. Therefore, the unimportant nodes
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Fig. 13.  Effects of parameter h, on different images.

including many insignificant maximum points on the curve of
A, can be removed, even with a small value of h,. Moreover,
a larger h, can also retain the most important nodes while
removing the unimportant notes. It can be observed from Fig. 13,
the classification accuracy is insensitive to the parameters h,,
ranging from 10 to 200. Moreover, with the further increase of
h,,, more nodes on the ToS are removed, and abundant structural
and detailed information will be ignored, which will lead to a
decrease in the OA values. Thus, the parameter h,, is set to be
20 for these three images.

The effects of kg on classification accuracy for the three
datasets are shown in Fig. 14. Taking the spatial characteristics
of the HSIs into consideration, the range of k¢ for the Indian
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Fig. 14.  Effects of parameter kg on different images. (a) Indian Pines image.
(b) University of Pavia image. (c) Pavia Center image.

Pines data, the University of Pavia data, and the Pavia Center
data varies from 60 to 340, 1000 to 15000, 10000 to 24000,
respectively. The step size of ko for the Indian Pines data,
the University of Pavia data, and the Pavia Center data is 20,
1000, and 1000, respectively. The curves represent the change of
overall accuracy obtained by the proposed SF-SP-MK with dif-
ferent kq. Specifically, for the University of Pavia, the proposed
SF-SP-MK method shows satisfactory performances when the
initial superpixel number varies from 4000 to 6000. The main
reason for this phenomenon is that, the pixels that belong to
different classes will be clustered into one superpixel when kg
is set to a small value, which makes the information of different
classes be introduced to the superpixel-based features. On the
other hand, serious over-segmentation impedes the extraction of
spatial features when k is too large, which would also reduce the
classification accuracy. It can be also noticed that, the variation
of the overall accuracies is lower than 1% for the three HSIs.
The main reason is that, the saliency profiles can attenuate the
redundant details in the original image, and the objects in SPsim-
ages show more homogeneous characteristics. Thus, the spatial
features that are derived from different superpixel segmentation
results change little, leading to a stable classification curve.

FE. Comparison of the Classifiers

To further test the performance of the proposed feature, three
different classifiers including k-nearest neighbor (KNN), single
kernel SVM, and random forest (RF) are taken into account.
Table V shows the overall accuracy of classification obtained on
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TABLE V
OVERALL ACCURACIES OBTAINED WITH DIFFERENT FEATURES AND CLASSIFIERS ON THREE DATASETS

Dataset Indian Pines University of Pavia Pavia Center
assifier KNN SVM RF KNN SVM RF KNN SVM RF
Feature
Spectral 60.89 72.41 69.53 70.14 84.24 73.31 94.95 96.6 94.67
EMP 55.98 74.20 83.79 82.06 94.43 90.62 96.86 97.85 97.69
EMAP 65.2 82.33 93.33 81.99 92.44 91.07 97.38 98.31 97.80
EEP 65.61 83.88 93.71 93.14 96.76 97.12 97.14 98.41 98.40
SC-MK 72.03 86.5 79.43 81.54 96.28 85.13 95.94 97.87 95.60
ESP 89.85 95.00 95.96 95.42 98.07 98.30 96.99 98.38 98.45
SF-SP 91.26 94.28 95.10 96.20 98.96 98.15 97.41 98.58 98.30
TABLE VI
CLASSIFICATION ACCURACIES GIVEN BY DIFFERENT APPROACHES ON THREE DATASETS
Indian Pines University of Pavia Pavia Center
Feature-Classifier OA AA K OA AA K OA AA K
Spectral-SVM 72.41 77.97 68.38 84.24 79.72 82.52 96.60 93.16 95.20
SP-SVM 95.00 96.20 94.19 98.07 98.30 97.43 98.38 96.92 97.71
SF-SP-SVM 94.28 95.37 93.34 98.96 99.19 98.62 98.58 97.33 97.99
Spectral-KNN 60.89 65.43 55.33 70.14 79.48 62.50 94.95 90.53 92.89
SP-KNN 89.85 92.09 88.25 95.42 96.13 93.96 96.99 93.79 95.75
SF-SP-KNN 91.26 92.66 89.86 96.20 97.71 94.99 97.41 94.77 96.34
Spectral-RF 69.53 73.50 65.03 73.31 82.02 66.44 94.67 90.68 92.49
SP-RF 95.96 96.85 95.30 98.30 98.53 97.74 98.45 96.41 97.81
SF-SP-RF 95.10 96.03 94.30 98.15 98.40 97.54 98.30 96.89 97.60
SF-SP-MK 97.72 98.28 97.34 99.41 99.29 99.21 98.74 97.41 98.22

three datasets using KNN, SVM, and RF. Specifically, the Kiis set
as 5 for the KNN classifier, and the number of trees for RF is set
to 200. It can be observed from Table V that, both the proposed
ESP and SF-SP achieve promising results. Specifically, for the
KNN classifier, the highest accuracies are achieved with SF-SP
on the three images. For the RF classifier, the best results are
obtained with EPS, followed by SF-SP. Meanwhile, when using
SVM as the classifier, the optimal result on the Indian Pines
image is obtained with ESP, while the highest accuracy on the
other dataset is obtained with SF-SP. The result proves that
the proposed saliency profiles provide a better characterization
for the spatial information of HSIs, which can improve the
separability of different classes. Moreover, to validate the effec-
tiveness of MKL in the proposed framework, the methods using
different classifiers with different SP features are considered for
comparison. As shown in Table VI, although the classification
result given by ESP and SF-SP with the comparative classifiers
are satisfactory, SF-SP-MK still achieves the best results on all
of the datasets. It illustrates the superiority of the multikernel
approach in fusing different kinds of features, which can better
mine the complementary information of features.

IV. CONCLUSION

In this article, a hyperspectral image classification framework
by exploiting the spectral-spatial information of SPs is pro-
posed. Specifically, to mine the important object structures of
the image, we propose a novel morphological feature, namely,
saliency profiles, on the basis of the saliency index of the nodes
on ToS. Then, a method that can adaptively determine the num-
ber of superpixels is developed and performed on each of the SPs
to generate the superpixel segmentation maps. Subsequently,
the innersuperpixel and intersuperpixel features are extracted
by using the mean filter and weighted average filter. Finally,
multiple kernel SVM is adopted to fuse the original spectral

feature and innersuperpixel feature S P™°*", and intersuperpixel
feature S P eight,

The experiments conducted on three widely used hyperspec-
tral data illustrate the superiority of the proposed method. The
classification performances of the proposed method are better
than the other state-of-the-art morphological methods, and the
corresponding classification maps are more homogeneous in
terms of visual interpretation. The reason is that, the attribute A4,
measures the importance of shape based on its contour and con-
trast information, instead of the simple geometric metrics used
in the traditional morphological features. Meanwhile, the exper-
imental results obtained with different classifiers show that, the
proposed features show better separating capability than the tra-
ditional morphological features, which benefit the recognition of
objects in HSIs. Moreover, innersuperpixel and intersuperpixel
features extracted from SPs are fused with spectral information
by using MKL, which exploits the complementary information
of different features and further improves the classification
accuracy. In the future, we plan to combine the morphological
features and deep learning approaches for hyperspectral image
classification.
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