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Abstract—EXxisting sparsity-based hyperspectral image (HSI)
target detection methods have two key problems. 1) The back-
ground dictionary is locally constructed by the pixels between the
inner and outer windows, surrounding and enclosing the central
test pixel. The dual-window strategy is intricate and might result in
impure background dictionary deteriorating the detection perfor-
mance. 2) For an unbalanced binary classification problem, the tar-
get dictionary atoms are generally inadequate compared with the
background dictionary, which might yield unstable performance.
For the issues, this article proposes a novel structurally incoherent
background and target dictionaries (SIBTD) learning model for
HSI target detection. Specifically, with the concept that the ob-
served HSI data is composed of low-rank background, sparsely
distributed targets, and dense Gaussian noise, the background and
target dictionaries can be jointly derived from the observed HSI
data. Additionally, the introduction of structural incoherence can
enhances the discrimination between the target and background
dictionaries. Thus, the developed model can not only lead to a
pure and unified background dictionary but also augment the
target dictionary for improved detection performance. Besides, an
efficient optimization algorithm is devised to solve SIBTD model,
and the performance of SIBTD is verified on three benchmark HSI
datasets in comparison with several state-of-the-art detectors.
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1. INTRODUCTION

NLIKE the conventional RGB image, which is com-
U posed of only three spectral bands, hyperspectral imaging
sensors can sense reflected light in hundreds or even more
than a thousand bands, and thus a 3-D data structure called
hyperspectral image (HSI) can be obtained with two spatial
dimensions and one spectral dimension [1], [2]. Thus, HSI
can provide almost continuous spectral curves of the materials
on the ground surface. Since different surface material can be
characterized by different deterministic spectrums, the abundant
spectral information in HSI makes it have great potential for
target detection [3], [5]. As the name implies, target detection
techniques aim to separate pixels with specific characteristic
from its surrounding background pixels, which has been widely
applied in both civil and military applications, such as detecting
rare minerals, land mines, and man-made objects. When the
target prior knowledge is unavailable, target detection becomes
anomaly detection aiming at discriminating abnormal materials
from a normal background [6], [7].

Obviously, target detection can be considered as a binary
classification problem wherein the test pixels are required to be
labeled as target or background. In fact, a high-quality target
detector can calculate and output the response values corre-
sponding to the input test pixels and encourage the response
differences between the target and background pixels as much
as possible [8]-[10]. Over past decades, a lot of target detection
approaches have been developed, which can be roughly clas-
sified into two types: Probabilistic model and subspace model.
Probabilistic models propose to model the background and target
components in HSI with certain distribution, e.g., multivariate
normal distribution [11]. Classical probabilistic models include
spectral matched filter (SMF) [12] and adaptive coherence esti-
mator (ACE) [13]. For example, the SMF model first estimates
the background covariance matrix and then adopts the gener-
alized likelihood ratio test to perform detection with a single
target spectrum. Alternatively, subspace models assume that the
background or target pixels lie in a low-dimensional subspace
with different distribution. Typical subspace-based models are
orthogonal subspace projection (OSP) [14] and sparsity-based
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detectors [15], [16]. The OSP assumes that the target has some
components orthogonal to the background subspace and can
be detected by maximizing the signal-to-noise (SNR) ratio in
the subspace orthogonal to the background subspace. In recent
years, sparse representation (SR) has been emerging as an
efficient methodology and has been successfully applied for
many computer vision applications [38]-[50]. With SR theory,
the sparse representation-based target detector (SRD) has been
developed, which first represents a test pixel using the union
of the background and target dictionaries via sparsity-inducing
algorithms, such as the orthogonal matching pursuit [17], and
the test pixel is classified by comparing the residuals between
the input test pixel with the two test pixels respectively re-
constructed by the target and background dictionaries. In the
sparsity-based detectors, no explicit assumption on the statistical
distribution characteristics, such as Gaussian distribution, about
the background and target distribution is needed. Besides, the
independence between the training samples is unnecessary, and
thus better model generalization ability can be expected [15],
[16], [24], [25]. However, owing to imaging technology, the high
spectral resolution is always obtained at the expense of spatial
resolution for compromise. Limited by low spatial resolution,
the HSI usually contains both pure and mixed pixels. A pure
pixel contains only one single material, whereas a mixed pixel
or subpixel might cover multiple materials, and its spectral signa-
ture represents the aggregate of different materials in the corre-
sponding spatial location. Therefore, a pixel of HSI is possibly a
combination of different materials’ spectra, and target detection
is converted into the problem of determining whether the target
is present or absent in test pixel. Hence, the problem can be
considered from the perspective of binary hypothesis model, i.e.,
target absent hypothesis and target present hypothesis. Based on
the binary hypothesis, the sparse representation-based binary
hypothesis detector (SRBBHD) has been suggested wherein the
test pixel is modeled by the background dictionary under the
null hypothesis or by the background and target union dictionary
under the alternative hypothesis [18]. Thus, the difference prior
knowledge between the target and background dictionaries can
be fully utilized.

Nevertheless, an important question for SRD and its variants
is the constructions of the background and target dictionaries.
Typically, the background dictionary can be constructed via
some background samples, e.g., trees, road, buildings, and vege-
tation. However, a universal background dictionary constructed
by all the background pixels requires high computational costs
and makes the problem even more unbalanced. Therefore, the
background dictionary is usually generated locally for each test
pixel via a dual concentric window, which can separate the
local area around each test pixel into two regions, a small inner
window region (IWR) centered within a larger outer window
region (OWR) [19]. On the other hand, target dictionary is
generally constructed by some priori spectral libraries that con-
tain the targets of interest. Target pixels are, however, usually
insufficient, which results in the problem that the target training
samples and background training samples are not equivalent in
data volume.
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Consequently, a more elaborately designed dictionary would
be desirable instead of using the raw samples as the dictionary
due to the large distribution difference between background and
target components as well as the sparsity of the targets [20],
[21]. Thus, directly learning compact and discriminative target
and background dictionaries from data is more flexible and
data-driven [22], [23]. By considering the data characteristics
and prior knowledge of HSI, the background dictionary should
have the property of low rankness, while the target compo-
nents are sparsely distributed in spatial. Based on the above
considerations, the HSI data is regarded as being made up of a
low-rank background HSI, a sparse target HSI, and a Gaussian
noise component HSI. As shown in Fig. 1, this article proposes
to directly learn background and target dictionaries from the
observed HSI data via sparsity and low-rank constraints, and a
novel structurally incoherent background and target dictionaries
(SIBTD) learning model is developed for HSI target detection.
In summary, the main contributions and novelties of this article
can be summarized as follows.

1) SIBTD can learn target and background dictionaries from
observed HSI data via low-rank and sparsity constraints.
Specifically, the background component is modeled using
aunion of multiple subspaces, leading to a pure and unified
background dictionary. Equally important is that a target
compensation dictionary can be simultaneously obtained
and further concatenated with the known target spectrum
for an augmented target dictionary.

2) The obtained background and target compensation dic-
tionaries are encouraged to be as independent as possible
for enhanced discriminative ability. Besides, an efficient
iteration-based optimization algorithm is carefully de-
vised to solve the SIBTD model such that a promising
solution can be guaranteed.

3) HSI target detection is performed by combining the de-
veloped SIBTD model with the classwise collaborative
representation model, and the experimental results on
three HSI datasets show that the proposed target detection
method can yield promising performance.

The reminder of this article is structured as follows. The re-
lated works are briefly reviewed in Section II. Section III presents
the proposed SIBTD model and its optimization procedure. The
experimental results and discussions are given in Section IV.
Section V concludes this article.

II. RELATED WORK
A. SRD and SRBBH

Suppose an HSI dataset is with the size of & x w x b, where h
and w are the height and width of the image scene, respectively,
and b is the number of spectral bands. The observed 3-D HSI
can be rearranged into a 2-D matrix by sequentially ordering the
pixels. Thus, the HSI dataset can be obtained in matrix form as
X € RP*¢ with = h x w. By assuming that pixels belonging to
the same category approximately lie in a low-dimensional sub-
space spanned by the training samples, SRD employs training
samples from both the target and background classes to linearly
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Fig. 1.

Illustration for the proposed structurally incoherent background and target dictionaries learning model for HSI target detection. Part 1: SIBTD model.

(a) Observed HSI dataset X is decomposed to get the low-rank background component B, the sparsely distributed target component T, and the noise component E.
B and T are further simultaneously decomposed to pursue a pure and unified background dictionary D and a target compensation dictionary D¢ as shown in
(b) and (c). As (d) and (e) show, D¢ and Dp are learnt with the supervision of known target spectrum S, and D is concatenated with S for final augmented and
discrimination enhanced target dictionary D, i.e., D = [S, Dpc¢]. Part 2: Classwise representation learning for target detection. The test pixel is respectively
represented by the target dictionary and background dictionary derived from the developed SIBTD model via collaborative representation technology. The final
target detection decision is made by comparing the representation residuals calculated on the target dictionary and background dictionary.

model the class-unknown test pixels. In SRD, a test pixel in
an HSI is first represented as a sparse linear combination of
a number of samples from the target and background union
dictionary, and then the detection decision is made by checking
which dictionary can yield the smallest representation residual
[15]. To be specific, a test pixel « can be represented in terms
of the target and background dictionary pixels as follows:

z~ (cpaidpi1+cpaodpa+ - +cpny,dB Ny)
+ (eradry + cerodro+ -+ cr Npdr Ny )

~ Dgcg + Drer = De. (D)

The union dictionary D € R0*(NB+N7) i5 composed of the
background dictionary Dg € R0*V# with Np atoms and the
target dictionary D € R*N7 with Ny atoms. cg and et
are SR vectors whose entries correspond to the weights of the
samples in Dy and D for representing test pixel . An SR with
only a few nonzero entries is proved to be efficient in revealing
the membership of the test pixel. Thus, the following /y-norm
minimization problem has been formulated for a discriminative
sparse solution

2

min ||z — Dcl|, s.t.|[c||, < K.
c

During the optimization process, the pixels from the back-
ground and target dictionaries compete against the others to gain
their share in representing the test pixel. The residuals recovered
from the two subspaces spanned by the target and background
dictionaries are calculated as follows:

Rp (x) = ||z — Dges|, 3)
“)

The discriminative information derived from the represen-
tation residuals on the two subdictionaries can be utilized for

Ry (z) = ||z — Drerl,.

detecting targets. Specifically, the detection decision can be
made by comparing the above two residuals

D(x) =Rp(x) — Rr(x). 5)

If the above difference value is larger than a certain threshold,
the pixel can be identified as target, or background otherwise.
However, SRD calculates a uni-structure representation on the
union dictionary and ignores the difference prior knowledge
between the target and background dictionaries. SRBBHD is
proposed to alleviate this problem based on the binary hypothe-
ses [18]. Specifically, a given test pixel can be modeled via the
following binary hypothesis:

Hy: « = Dgep + e (Targetabsent) 6)
H;: £=Dgcg+Drer + e = Dc + e (Targetpresent) .
(7

The above representation vectors on the background and
target dictionaries can be respectively calculated by solving the
following optimization problems:

rrclinHw—DBcB||2 s.t.|lesllg < K (8)
B
mcinH:c—DcH2 s.t. ey < K. )

The competition between two hypotheses is revealed by the
competition between the above two representation residuals

D (z) = [lz — Dgeg|l, — [lz — Déll,. (10)

Similarly, if the difference value is larger than certain thresh-
old, the test pixel can be claimed as a target, or background other-
wise. Nevertheless, a key problem for many sparsity-based target
detection methods is the constructions of target and background
dictionaries [2], [26], [27]. Generally, the target dictionary can
be formed via the target training pixels that are selected from the
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Fig. 2. Dual-window strategy for background dictionary construction in
sparsity-based detectors. (a) Expected pure background dictionary. However,
during the sliding process of dual window, some target pixels might inevitably
fall into the dual window, especially when targets are densely and evenly
distributed in the scene, as shown in (b), which will lead to an impure background
dictionary for the test pixel, and result in deteriorated performance.

global image scene, and the priori information is usually given
by the target spectrum obtained from a target spectral library.
As for background dictionary, a universal dictionary constructed
by all the training samples needs high computational costs and
makes the problem even more unbalanced. Therefore, a locally
adaptive method is employed for the background pixel selection.
In detail, the background dictionary is generated locally for each
test pixel through a dual concentric window that separates the
local area around each test pixel into two regions: A small inner
window centered within a larger outer window. The IWR is
used to exclude the pixels of interest to be tested, while the
OWR is employed to model the local background around the
test pixel. Since there is no specific method for setting the sizes
of the detection windows, the window sizes are set manually
[19]. The size of IWR should be set larger than or equal to the
size of all the possible targets of interests in HSI to avoid the
target pixels from appearing in background dictionary as shown
in Fig. 2(a). However, as shown in Fig. 2(b), the target pixel
might appear in the background dictionary, which will lead to
an impure background dictionary. Thus, a universal and compact
background dictionary would be preferred and urgently needed.

B. Robust Principal Component Analysis and Low-Rank
Representation Models

Suppose a dataset X = [z, xo, ..., x,] € R®*™ contains n
training data points with dimensionality b, conventional prin-
cipal component analysis (PCA) learns a low-rank projection
V € RY*" by solving the following problem:

min[|X - VV'X| st VIV =1, (1)

The solution to the above optimization problem can be ef-
ficiently obtained by singular value decomposition, which is
computationally stable. Due to the advantages of computational
stability and efficiency, PCA has been one of the most widely
applied tools for error correction [28]. However, in real scenario,
the application and performance of PCA are limited due to lack
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of robustness to gross corruptions. To overcome the drawback,
recent years have witnessed a surge of robust principal compo-
nent analysis (RPCA) methods. Candes et al. [29] established a
RPCA model which has been emerging as a powerful tool for
many applications. The model is mathematically formulated as
follows:

%11§E1||D||*+A||EH1s.t.X:D+E (12)
where A > 0 is a parameter and || - ||, denotes the nuclear
norm, i.e., a convex approximation for rank function. RPCA
can well handle the gross corruptions with large magnitude and
sparsely distributed noise E using sparsity-induced norm || - ||;.
However, RPCA implicitly assumes that the underlying data
structure is a single low-rank subspace, which is inapplicable
when the data is drawn from a union of multiple subspaces. To
cope with the data with complex structure, Liu et al. [30] suggest
a more general rank minimization model defined as follows:

%ﬁEHC’H*—i—)\HEHm stX=DC+FE (13)
where D is a dictionary that can linearly span the data space
with multiple subspaces and C is the low-rank representation
matrix of X on D. RPCA can be seen as a special case of LRR
by setting D = I. Benefiting from the well modeling for data
structure and noise, LRR can well handle the data drawn from
a union of multiple subspaces.

III. PROPOSED STRUCTURALLY INCOHERENT BACKGROUND
AND TARGET DICTIONARIES LEARNING-BASED
HYPERSPECTRAL TARGET DETECTION

This section will present the proposed SIBTD learning model
for hyperspectral target detection. The model formulation and
the optimization procedure will be introduced in detail.

A. Model Formulation

The two formulations in SRBBH can be rewritten in a more
general additive model, i.e.,

x = Dgcg + Drer + e. (14)

If cr =~ 0, the target is absent, and the target is probably
present when ct # 0. The matrix form corresponding to the
above formula is

X = DgCg + D1cCrc + E. (15)

The above formula shows that the observed HSI dataset X €
RP*™ can be represented by the background dictionary Dy €
RO*1& and the target dictionary D € RP*"7, Conversely, Dg
and Dt can be decomposed and learned from X. To this end,
some regularizations and constraints are required. In HSI, a key
observation is that the background component contains some
different materials with multiple spectra such that the back-
ground samples should be drawn from several low-dimensional
subspaces. Thus, alow-rank-based background learning formula
is suggested with a low-rank background dictionary Dy and a
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background representation matrix Cg as

i k(D D¢, C E|?
pop M0, Tan (DB) + ¢ (Drc, Crc) + 7| El/%

st. X =DgCg + DpcCrc + E. (16)

Instead of learning target dictionary D, the above model
aims to learn a target compensation dictionary D¢ € Rb*"7e
with npe atoms, and Dpc € RP*™7C has the same size
with the known target spectrum S. The number of atoms
in background dictionary can be set as np =7 X nrc
with 7> 1 for simplicity. Consider that rank(DpCg) <
min{rank(Dg), rank(Cg)}, and a slack version can be ex-
pressed as ||DCsgl|« < min{||Dz|«, ||Cs||+}. Thus, a low-
rank background dictionary D will promote the background
component B = DgCg to be of low rank. Dense Gaussian
noise in data is modeled by ||E||%. The term ¢(Drc, Crc)
refers to some regularizations for the target compensation dic-
tionary D¢ and the corresponding representation matrix Crc.
Besides, the total image area of all the targets should be spatially
small relative to the whole image. Due to the properties of
matrix multiplication, right multiplication with a column sparse
matrix will lead to a sparse matrix by column. Therefore, a
regularization term for the column sparsity is added to model
Crc as Z?Zl S 1TC (Cre)? = Crell21, Which is utilized as
a surrogate for ||Crcll2,0 to obtain a column-sparse solution.
Thus, the proposed SIBTD learning model is finally mathemat-
ically formulated as follows:

i D Cgll? C E|?
by, Dl + o Callf + Bl Crcllan + /B

+nlIS"De |} + ZIDrc - S|

st. X =DgCp +DpcCrc+E 17

where || D¢ — S||% can encourage the similarity between target
compensation dictionary D¢ and the known target spectrum
S measured by Frobenius norm. ||Cg||% can make the solution
for Cp more stable and avoid overfitting. The term ||STDg||2,
promotes the independence between background dictionary Dy
with S. Note the property that [|[STDgl|% < ||S||%|Dsl|%,
and minimizing ||STDg||% can be achieved by minimizing
|S%Dg||%. Model (17) can be relaxed into the following one:

D5l + alCall + BlICrc

min l2.1
Dg,D1c,Crc,Cr;

%
+9|BlE + o/ [DsllE + 3 Dro - S|%

s.it. X = DBCB + DTCCTC + E (18)

where 1’ = 7||S||% is a constant during model optimization.
In summary, the above model can simultaneously separate the
low-rank background, sparse target, and dense noise compo-
nents from the observed HSI data. The obtained background
component is further decomposed to pursue a pure and unified
background dictionary Dy. Besides, the obtained target com-
ponent is separated to get the target compensation dictionary
D¢ with the supervision of known target spectrum S. Dy
can be concatenated with S for an augmented and discrimina-
tion enhanced target dictionary Dt as Dt = [Drc, S]. Thus,
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the problem of insufficient target samples can be alleviated.
Optionally, one can first augment the known target spectrum,
obtaining an augmented known target spectrum Sa.,, several
times than the original known target spectrum in data volume.
Then, the obtained augmented known target spectrum S 5,z can
be input into (18) instead of S for dictionaries learning.

B. Model Optimization

To solve the proposed model (18), an auxiliary variable J is
first introduced, and the optimization problem can be converted
into the following equivalent one:

. 2 2
ou o B I3+ allCal: + BICrcliaa + 7 EIE

2
+7'[Dsl7 + 5 [Drc - S|I%

st. X=DgCg+ DpcCrc+E, Dg=1J
(19)

which can be solved based on the Augmented Lagrange Multi-
plier scheme [31]. The augmented Lagrangian function for the
above problem is formulated as follows:

L(Dg,J,Drc,Crc,C,E, Y 1,Y3) = ||J||. + o||Cg|%
+ B Crcllas +EI} +/|Ds|} + £Drc - S|}
+tr (Y{ (X = DpCp — D1cCrc — E))
+tr (YT (D - 3)) + % (|X — DpChp

~Dr1cCrc — E|% + |Ds — J[|7) 20)

where Y, and Y5 are the Lagrange multipliers and p > 0 is
a penalty parameter. The variables Dg,J, Dy, Crc,Cp, E
are updated alternately by minimizing the loss function with the
other variables fixed. The updating procedure is as follows.

Step 1 (Updating J): Fix the other variables and solve the
following problem:

1 1 Y
w171+ 3 (19— (Do + 22) 13 ) Ui (2 V7
21

where (U, %, V") = SVD(Dg + ¥2) and S.[] is the soft
thresholding (shrinkage) operator defined as follows [31]:

z—eg, ifz>c¢
z+e, ifz<—¢
0, otherwise

.17 = (22)

Step 2 (Updating C'g): Fix the other variables and solve the
following problem:

. Y
argmin aCp% + K (||DBCB — (X—DTCCTC —-E+ 1) |%)
Cs 2 1
(23)
Letting the derivation of the objective function w.r.t Cp to be
0, the following equation can be obtained:

Y
2aCp + uDEDpCp =D (X —DrcCrc—E+ — .

7
(24)
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The solution for Cg is obtained as follows:

_ Y
Cp = p(20I+uD{Dg) 1DTB” (X—DTCCTC —E+ ;)

(25)
Step 3 (Updating C'r¢): Fix the other variables and solve the
following problem:

mlnﬁCTch—i— (HX DpCp— DTCCTC_E"_MHF)'

(26)
Let R=X-DgCg — E + %, and the problem is trans-
formed to the following form:

mln/BCTCQ 1+ 5 (HDTCCTC —-Rl7). (27)

The above I ;-norm plus Frobenius norm combined mini-
mization problem can also be solved using ALM scheme. First,
an auxiliary variable L is introduced to the make the problem
easy to be optimized

len Bl Lll21 + (||DTCCTC —R|%)s.t. Cre =

(28)
The augmented Lagrange function is

L(Crc, L, Z) = B||L|21 + 3 (HDTCCTc—RHF)
HCrc

2

VA
T (|cTc Lt
i

TC

||%) (29)

where Z is the Lagrange multiplier, and p1c... > 0is the penalty
parameter. The subproblems for L and C¢ are solved alterna-

tively in the following way.
zZ
I7 ) (30)
HCrc ) r

Updating L
which can be solved using the following lemma [32].

Lemma 1. Given a matrix Q, if WW* is the optimal solution
for the following problem:

min
L

1Ll + & (| (cTc N

TC

1 2
i = — 31
mybnf\|w||2,1+2||w Q% (31)
then the i-column of W* is
H[Q] il2—¢ .
h 0, otherwise
Updating Cr¢
.M 2 HCrc z 2
~ (IDTcCrc—R||%)+ Crc—L+ .
in % (IDrcCro-RIE) + 2% (|Cro-L+ -2 |3)
(33)

By setting the deviation of the above objective function w.r.t
Crc to be 0, the following equation can be obtained:

Z
DA (D1cCrc — R) + pic,e (CTC -L+ ) =0.
HCrc
(34)
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Algorithm 1: Solving the Subproblem (28) for Cp¢.
Illpllti X, DB, DTC, CB, Hmax—Crc = 108,
PCrc = 1.15, HCre = 1073, ECrc = 1076,
Initialize: Z = L = 0.
While not converged do
1. Update L and C¢ as in (30) and (35).
2. Update the Lagrange multipliers as
Z:=7+ pcyc(Cre — L).
3. Update the penalty parameter as
HCrc = min(pCTc HCrcs Hmax—Crc )
4. Check the convergence condition Ct¢ — Lo < €cpe-
End while
Output: Cyc.

The solution for the above problem is

-1 Z
CTC = (D’jl:CDTC + /"LCTI> (D%CR + MZT L — Iu) .

(35)
The detailed procedure for solving Cr¢ is summarized in
Algorithm 1.
Step 4 (Updating Dp): Fix the other variables and solve the
following problem:

HDBCB+(DTCCTC X+E— Yl HF

min & +1'| D
Do 2 +||DB+(7— I

(36)

LetM:DTCcTC—XJrE—%,N: %—J, and the

simplified formula is

M
min 5 (|DeCp + M7 + [Dp + N|7) + /| Da |7
(37)
Let the deviation of the above objective function w.r.t Dy be
0, and the solution can be gotten as follows:

-1

Dg = — (uMCE + uN) (uCpCY + pI + 21'T) (38)

Step 6 (Updating D¢ ): Fix the other variables and solve the
following problem:

2
P Q2 M DycCre — (X—
win 3 Dro =Sl +3 (HDBCB —E+Xy| )
(39)
Lettingqg = X — DgCp — E + % we have
© (DTC — S) +u (DTCcTcC%:C — qC%C) =0. 40)

The solution can be accordingly obtained as in the following
equation:

-1
Drc = (pqCic +¢8) (¢1+pCrcCic) - (@D
Step 6 (Updating E): Solve following model with others fixed:
2

F).

(42)

. Y
mEln’Y”EH%JF% (HE (XDBCBDTCCT0+M1)
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Algorithm 2: Solving the SIBTD Model (19).

Input: X, S, fimax = 10%, p=1.2,e = 107%, 1 = 0.9, a,
By, 1, @, and 7.

Initialize: Initialize Dy and D¢ using RPCA and
K-means, Cg = Cr¢c=E=Y; =Y, =0.

While not converged do

1. Update J, Cg, Crc, Dp, Drc and E via (21), (29),
Algorithm 1, (38), (41), and (44), respectively.

2. Update the Lagrange multipliers and penalty parameter
as in (45).

3. Check the convergence conditions 1 and 2 as follows.

X —DgCg — DpcCrc — Ex <&, ||Dg *JHOO <e€

End while

Output: Dy, Cg, D¢, Crc.

Set the derivation w.r.t E to be 0

Y
2’}/E + 1% (E — (X — DBCB — DTCCTC + ,LL1>> =0.

(43)
The solution for E can be gotten as follows:

__H
2v+p

Y
<X —DgCp — DrcCrc + /j) .4

Update the multipliers and penalty parameter as follows:

Y, =Y, + u(X - DgCp — DrcCrc — E)
Y2 = YQ +PJ(DB 7‘])
o= min (,umax7 p:u)

(45)

The SIBTD model can be efficiently solved by iteratively
running the above steps until the convergence conditions are
satisfied. Generally, the complete optimization process is out-
lined in Algorithm 2. One can choose to separate the HSI data
using RPCA, and the obtained results are clustered via K-means
algorithm to initialize Dp and Drc.

C. Target Detection Based on SIBTD

Once the optimal solutions are obtained, the final augmented
and discrimination enhanced target dictionary is gotten as D =
[Drc, S|, which can be utilized as the universal target dictionary
for target detection by combining with background dictionary
and different representation strategies. Recent works have shown
that better detection performance can be achieved by fully
exploring the difference prior knowledge between target and
background dictionaries [18], [19], [27], [33]. To this end, this
article adopts a classwise strategy for discriminative representa-
tion learning and the final target detection. Specifically, the input
test pixel is locally represented by the background dictionary,
and collaboratively represented by the target dictionary

min x — Dgeg||3 + A1 [Wes|3 (46)
B
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where the weight matrix W is a diagonal matrix, whose elements
are acquired by the following way:

[x — dg, [|2

W = (47)

[x —dg,[2

where dp, means the nth atom in the background dictionary
Dg. If x is far away from the nth atom in background dictionary,
i.e., ||x — dpy||2 is big, a larger penalty will be imposed on the
corresponding background dictionary atom dp,,, or a smaller
penalty will be assigned. This representation learning strategy
can promote a local representation which is also sparse and
discriminative. With the above definition, a closed form solution
for (46) can be gotten as follows:

cs = (DEDg + 0 WTW) . (48)

Besides, a collaborative representation ct for test pixel x is

calculated on the target dictionary
min [|x — Dyer|[3 + Azfler|3. (49)
T

The solution for (49) can be similarly gotten as follows:

er = (DEDyp +2,1) (50)
The detection evidence is then acquired as
D (z) = |z — Dgesg|l2 — [|# — Drer|2. (51

If D(x) is larger than a certain threshold, then the test pixel
x can be claimed as target and, otherwise, as background.

1IV. EXPERIMENTAL VERIFICATIONS
A. Hyperspectral Datasets

Three real HSIs collected by two different sensors were
utilized in the experiments to evaluate the performance of the
proposed target detector. The first dataset was collected by
the Hyperspectral Digital Imagery Collection Experiment (HY-
DICE) sensor [34] with a spatial resolution of 2 m and 210
spectral bands. After removing the low SNR, water absorption,
and bad bands (1-4, 76, 87, 101-111, 136-153, and 198-210),
162 bands remained. The HYDICE dataset and its ground-truth
information are shown in Fig. 3(c), which has 150 x 150 pixels,
and the vehicles were selected as the targets to detect, which has
21 pixels.

The second and third datasets are collected by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) from
San Diego [35] with a spatial resolution of 3.5 m. After removing
the low SNR, water absorption, and bad bands (1-6, 33-35, 97,
107-113, 153-166, and 221-224), 189 bands remained. The
AVIRIS I dataset and AVIRIS II dataset and their ground-truth
information are shown in Fig. 3(b) and (c), which have 60 x
60 pixels and 100 x 100 pixels, respectively. For the AVIRIS I
dataset, there are 14 airplanes covering 119 pixels for detection.
For the AVIRIS II dataset, the airplanes with 58 pixels were
selected as the targets to be detected.
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Fig. 3. HSI image scene and the ground truth. (a) HYDICE dataset. (b)
AVIRIS I dataset. (c) AVIRIS II dataset.

B. Comparing Methods and Experimental Settings

To evaluate the performance of the proposed target detec-
tor, several state-of-the-art models are selected for comparison,
including 1) the local ACE, 2) the local SMF, 3) the SRD, 4)
SRBBHD, and 5) combined sparse and collaborative representa-
tion (CSCR) for hyperspectral target detection [19]. The source
codes for the comparing methods were provided by the original
author or implemented according to the detector ideas. For all the
detectors, the same given target spectrum was used as the input
priori target spectrum. For the detectors local ACE and local
SMEF, the pixels falling into dual window are used to construct
the background covariance matrix. For SRD and SRBBH, the
pixels falling into dual window are used to construct background
dictionary and the level of sparsity is set at 4 in two AVIRIS
datasets and 10 in HYDICE dataset for STD. For the detector
CSCR, the pixels falling into dual window were used to estimate
each center pixel.

C. Evaluation Criteria

First, receiver operating characteristic (ROC) curves were
employed to evaluate the detection performance. ROC curves
have been widely used as a performance evaluation tool in target
detection applications [37], which demonstrates the relationship
between the target detection probability P; and the false alarm
probability P;. The definitions for F; and Py are formulated as
follows:

Ndetected
Py=——— 52
d N, (52)
Nrniss
P = (53)
77 N

where Nyetected refers to the number of detected target pixels
under a certain threshold, and N,,;.s means the number of back-
ground pixels misjudged as targets. N, represents the number of
real target pixels in the image scene, and N,;; means all pixels
in the image scene.

Limited by the dual concentric window, the marginal pixels
at the edge of the image are not processed during the detection.
As aresult, these pixels are excluded when using ROC curves to
evaluate the detection performance. The detector with the higher
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1e-4 P

Fig. 4.
dataset.

AUC performance of SIBTD with different 8 and ¢ on AVIRIS I

detection rate under the same level of false alarm rate or the same
detection rate under the lower level false alarm rate has the better
detection performance. However, ROC curves are often used to
evaluate the detection performances of more than one method,
which usually makes it difficult to judge which method performs
better as they perform almost the same. Therefore, the area under
ROC curves is employed, and the larger AUC value the detector
achieves, the better detection performance it achieves [36], [37].

D. Experimental Results and Analysis

1) Parameter and Convergence Analysis: This section will
discuss several key parameters in the proposed HSI target de-
tection method, including the «, 3, =, 1, and ¢ in target and
background dictionaries learning model as well as parameters
A1 and Ao in learning target detection-oriented representation.
The AVIRIS I dataset is utilized for example, and the parameter
analysis scheme is as follows. All the parameters are tuned in
three groups. Specifically, 8 and ¢ are first tuned with all the
other parameters fixed, and then « and 7 are tuned with the rest
parameters fixed. Parameter + is separately tuned by fixing a, 3,
7, and (. For all the experiments, AUC is utilized to evaluate the
detection performance, and the results are shown in Figs. 4-7. As
introduced in Section III, the number of background dictionary
atoms is tunable, and the ratio between the number of back-
ground dictionary atoms and the number of target dictionary
atoms is denoted as 7. The detection performance of SIBTD
under different 7 is studied and shown in Fig. 8.

From the above experimental results, a parameter setting
range with o € [1074,1], 8 € [107%,10%], v € [1,10%], n €
[1074,10], o € [10%,10%], 7 € [4,8], 21 € [107%4,1072], and
A2 € [1074,1072] were suggested. In this parameter space, a
good and stable performance can be expected. Besides, an
optimization algorithm has been carefully devised to efficiently
solve the developed SIBTD model. To show this, the conver-
gence curves for the two convergence conditions in Algorithm
2 on AVIRIS II dataset were plotted in Fig. 9, which show that
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Fig.9. Convergence curves of Algorithm 2 on AVIRIS II dataset, and an AUC
of 0.9972 was achieved in this example.

Algorithm 2 performs well in practice and can quickly converge
about 30 iterations. The experimental results also show that
the devised optimization algorithm has good converge property,
leading to promising model performance.

2) Detection Performance: This section will evaluate the de-
tection performance of SIBTD model in comparison with several
state-of-the-art detectors, i.e., ACE, SMF, STD, SRBBH, and
CSCR. For the benchmark HSI datasets, according to previous
experiments on examining the effect of dual-window size on
the detection performance, the most commonly adopted dual-
window (wj,, Wout ) combinations were searched within {(5, 13),
5, 17), (7, 13), (7, 17)} for the comparing detectors to get the
best detection performance. The AUC performances of different
detectors on different datasets are listed in Tables I-IV. From
the results, one can see that the performances of the detectors
adopting dual-window strategy for local background dictionary
construction are sensitive to the sizes of the outer window and
the inner window.

The detailed experimental results on different datasets of
the proposed SIBTD in comparison with other detectors are
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TABLE I
AUC PERFORMANCE OF DIFFERENT DETECTORS ON THE HYDICE
DATASET WITH DIFFERENT WINDOW SIZES

Detectors Wi Lo 13 17
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SME_ T oo [ 0915

ST | T onis T 0908

SRBBH 55 0wyt

S —r i
TABLE II

AUC PERFORMANCE OF DIFFERENT DETECTORS ON THE AVIRIS I
DATASET WITH DIFFERENT WINDOW SIZES

Detectors Wiy o 13 17

asa TR

S| Toeds [06305

ST |50 [0

SRBBH e o 6w

CSR_ [T ooem 0osis
TABLE III

AUC PERFORMANCE OF DIFFERENT DETECTORS ON THE AVIRIS II
DATASET WITH DIFFERENT WINDOW SIZES

Detectors - Wou 13 17
ACE T rsns oem
i b
ST 05000 [aonar
o | a0 Tores
CSCR [T Gonay T otes

provided by ROC curves and AUC values, as shown in Fig. 10.
As mentioned before, the x- and y-axes in ROC curves represent
the false alarm rate and the detection probability. The closer a
curve gets to the upper-left side, the better performance the cor-
responding method achieves. The results show that the proposed
SIBTD can achieve better AUC performance.

3) Analysis for the Structural Incoherence Constraint: One
key idea for the developed SIBTD model is to directly learn a
pure and unified background dictionary and a target compensa-
tion dictionary with the supervision of known target spectrum.
The background dictionary is encouraged to be as incoherent as
possible from the known target spectrum, and a target compensa-
tion dictionary is simultaneously promoted to be similar with the
known target spectrum. To intuitively show the learning perfor-
mance, a 2-D principal component subspace is derived, and the
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TABLE IV
AUC VALUES OF DIFFERENT DETECTORS ON DIFFERENT DATASETS
Detectors Datasets
HYDICE | AVIRIST | AVIRIS II
ACE 0.9531 0.7799 0.6426
SMF 0.9384 0.7881 0.7439
STD 0.9848 0.9398 0.9747
SRBBH 0.9372 0.8775 0.7805
CSCR 0.9557 0.9655 0.9951
SIBTD 0.9928 0.9819 0.9981

target dictionary and known target spectrum are projected into
this subspace for visualization using t-SNE [51]. As shown in
Fig. 11, the background and target dictionary atoms derived from
the classical dual-window strategy are mixed together without
clear boundary, which might reduce the discrimination ability
of the dictionary atoms, and thus the detection performance is
restricted. In contrast, the boundary between the background and
target dictionary atoms learned by our SIBTD model is clear,
which can intuitively verify the good discrimination ability of
the proposed dictionary construction method. From the above
extensive experimental results, several discussions can be made
as follows.

1) Classic detectors, such as ACE and SMF, assume the target
and background components following certain distribu-
tion. However, good performances were achieved on the
HYDICE dataset. However, much worse performances
were gotten when meeting AVIRIS I and AVIRIS II
datasets. This is because the data distributions assumed in
ACE and SMF cannot always hold in reality. The HSI data
can be acquired using sensors with different characteris-
tics under different imaging environments, which might
bring difficulties for ACE and SMF to achieve promising
detection performance in application.

2) As a universal methodology, spare representation has a
more relaxed assumption that the within-class samples
should reside in an identical subspace, and the samples
from the identical class tends to represent each other better.
From the perspective of theory and experiment, the SRD
methods can generally achieve better performance than
ACE and SMF. As a preceding work, STD applies SR
theory to learn a uni-structure SR on the union of target
and background dictionaries. The SR is discriminative and
can reflect the membership of the test pixel. However,
the different roles of background and target dictionaries
in representing the test pixel are not well utilized, which
might be unfavorable to the detection performance. This
drawback can be alleviated by fully exploring the dif-
ference prior knowledge as in SRBBH and CSCR. Both
of them consider the characteristic differences between
the background and target dictionaries and adopt a re-
representation strategy for test pixel representation using
target dictionary, background dictionary, or a union of
them via sparse or collaborative representation methods.
The key strategy can guide SRBBH and CSCR to achieve
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Fig. 10. ROC performances of all detectors for three datasets. (a) HYDICE. (b) AVIRIS I. (c) AVIRIS II.
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Fig. 11.  Visualization of the background and target dictionaries of different
datasets via t-SNE [51]. The first row is obtained by dual-window strategy, and
the second row is learned by the proposed SIBTD model. (a) HYDICE dataset.
(b) AVIRIS I dataset. (¢c) AVIRIS II dataset.

better performance. However, as the experimental re-
sults show, the dual-window method used for background
and target dictionaries will lead to unstable detection
performance.

3) For the limitations of existing HSI target detection meth-
ods, this article proposes to learn and construct the back-
ground and target dictionaries from the observed raw HSI
data using sparse and low-rank theory. Experimental re-
sults show that the developed detector can yield promising
detection performance. The benefits can be attributed to
the three features of the proposed SIBTD model. First, a
low-rank background component and sparely distributed
target component can be decomposed from the raw HSI
data supervised by the known target spectrum. The back-
ground dictionary derived from SIBTD is compact with
the atom number tunable. Second, the well modeling of
noise can lead to a pure background and target dictionary
pair. Third, as shown by the numerical results and the

visualization experiments, the introduction of incoherent
constraint can help to enhance the discrimination and
separability of the background and target dictionaries.

V. CONCLUSION

One key problem for HSI target detection is how to accurately
characterize the background and target components. This article
focuses on the target and background dictionaries construction
problem in sparsity-based HSI target detection methods. As
a supervised method, SIBTD can construct a compact and
discriminative background and target dictionary pair with the
supervision of known target spectrum. Besides, the devised
optimization algorithm shows good convergence property and
can efficiently solve the SIBTD model. The benefits and advan-
tageous detection performance are verified on three benchmark
HSI datasets in comparing with several state-of-the-art methods.
Further work will consider improving the transfer ability of
SIBTD, i.e., the background and target dictionaries learned in
one application scenario can be used in other different but related
application scenarios.
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