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HABNet: Machine Learning, Remote Sensing-Based
Detection of Harmful Algal Blooms

Paul R. Hill

Abstract—This article describes the application of machine
learning techniques to develop state-of-the-art detection and pre-
diction system for spatiotemporal events found within remote
sensing data; specifically, harmful algal bloom (HAB) events. We
propose HAB detection system based on a ground truth historical
record of HAB events, a novel spatiotemporal datacube repre-
sentation of each event (from MODIS and GEBCO bathymetry
data), and a variety of machine learning architectures utilizing the
state-of-the-art spatial and temporal analysis methods based on
convolutional neural networks, long short-term memory compo-
nents together with random forest, and support vector machine
classification methods. This work has focused specifically on the
case study of the detection of Karenia brevis algae (K. brevis) HAB
events within the coastal waters of Florida (over 2850 events from
2003 to 2018; an order of magnitude larger than any previous ma-
chine learning detection study into HAB events). The development
of multimodal spatiotemporal datacube data structures and asso-
ciated novel machine learning methods give a unique architecture
for the automatic detection of environmental events. Specifically,
when applied to the detection of HAB events, it gives a maximum
detection accuracy of 91% and a Kappa coefficient of 0.81 for the
Florida data considered. A HAB forecast system was also developed
where a temporal subset of each datacube was used to predict the
presence of a HAB in the future. This system was not significantly
less accurate than the detection system being able to predict with
86 % accuracy up to 8 d in the future.

Index Terms—Convolutional neural networks (CNNs), deep
learning, harmful algal blooms (HABs), long short-term memory
(LSTMs), random forest (RF), support vector machine (SVM).

1. INTRODUCTION

LGAL blooms are defined as high concentrations of phy-
A toplankton (algae) (for example, >50000 cells/L [5]).
Harmful algal blooms (HABs) are problematic algal blooms
causing toxicity and associated environmental impacts. Often
termed “Red Tides,” HABs have been a significant worldwide
research topic over three decades [1]-[7].
They continue to be of major concern, not only due to their
considerable environmental and societal impact but also a recent
significant increase in frequency reported around the world [2].
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HABs can cause severe environmental and human health
problems together with associated economic impacts [8]. Envi-
ronmental impacts include mass fish stock and marine wildlife
kills [2]. Human impacts include toxic reactions to affected
seafood and, in extreme cases, fatalities [9]. Economic impacts
include adverse effects on beach and coastal tourism-based
activities together with impacts on coastal-based industries (e.g.,
fishing) [10]-[12]. Within the United States alone, HABs cause
an estimated annual economic loss of at least $82 million [13].

Many factors have been cited as causes of HABs but are
generally caused by favorable environmental conditions, includ-
ing increasing nutrient levels [14], light availability [15], water
column stratification, and/or changes in water temperature [16].

Conventionally, the measuring of algae concentrations has
relied on direct water sampling for lab-based cell taxonomy.
These manual methods of detection and analysis are extremely
labor-intensive and are limited spatially and temporally [17].
Conversely, remote sensing-based detection methods have ex-
cellent coverage in time and space and offer analysis systems
that are not labor intensive. However, remote sensing-based de-
tection methods often rely on estimated remote sensing products
such as chlorophyll (Chl-a) that themselves may be unreliable
estimates and not a direct measurement (and therefore not pre-
cisely accurate) of cell concentrations.

HABs have a spatiotemporal footprint that ranges from weeks
to months and from a few square kilometers to thousands of
square kilometers [2], [18]. It is implicit that these HABs are
spatially and temporally dependent, and for the most effective
detection and prediction, a combined spatial and temporal anal-
ysis is required.

A. Background and Contributions

HAB monitoring and forecasting using remote sensing data
was first proposed by Steidiner and Haddad in 1981 [1], utiliz-
ing data from the Coastal Zone Color Scanner sensor onboard
Nimbus-7, operational during the 1970s and 1980s.

This work subsequently led to a large number of remote sens-
ing detection, monitoring, and forecasting systems developed
for more recent sensors and satellites such as MODIS-Aqua,
MODIS-Terra, SeaWiFS, MERIS, and, more recently, Sentinel-
3 [2]. The methods used for detection, monitoring, and forecast-
ing of HAB events have included reflectance band-ratio-based
detection, reflectance classification (using anomaly detection),
satellite product based detection (using thresholds), and spectral
band differences.
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The most successful and important methods for HAB de-
tection have used spectrally derived products such as Chl-a
(chlorophyll concentration estimate) as phytoplankton increases
the backscattered light within pigment absorption spectral fre-
quencies. An excellent review of these historical and current
methods, sensors, and satellites is given by Blondeau-Patissier
etal [2].

There is currently no nationwide or international HAB fore-
casting system for HABs. However, there are specific areas
covered by HAB forecasting systems such as NOAA’s HAB
forecasting systems [HAB Operational Forecast System (HAB-
OFS)] for the Florida region [19]. However, this system only
forecasts up to 4 d and focuses mainly on the human impact
of HABs (respiratory effects). The HAB Observing System
(HABSOS) is a detailed observation system of HABs within the
Gulf of Mexico which has also been developed by NOAA [20].
HAB-OFS and HABSOS provide forecasts to stakeholders such
as local resource and environmental managers, the seafood
industry, and those managing tourism activities.

Within this article, state-of-the-art supervised machine learn-
ing systems are proposed for HAB detection and prediction
within the region of the Gulf of Mexico and also in an alternative
case study within the Arabian Gulf.

We conjecture that large-scale spatial patterns play an ex-
tremely significant role in the effective detection and prediction
of HABs. We have therefore utilized machine learning tools that
not only effectively characterize spatial patterns but combine
them with time series analysis machine learning tools such as
LSTMs.

B. Article Organization

The rest of this article is organized as follows. Section II gives
an overview of the problem and applicable machine learning
systems. Section III gives an overview of the proposed HAB
detection and prediction methods. Section IV describes the
“datacube” data structure and the creation of a large number
of datacubes from the ground truth database. Section V then
describes the preprocessing of the datacubes in order to make
them ready to be ingested into the machine learning system.
Then Section VI describes and illustrates the created machine
learning structure, and Section VII illustrates how important
each modality/feature is for the classification. The classification
results are given and discussed within Section VIII. An alter-
native case study (HABs in the Arabian Gulf) is investigated in
Section IX. Finally, a conclusion is given in Section X.

II. REVIEW OF HAB DETECTION METHODS

Previous remote sensing-based HAB detection methods have,
in the majority of cases, used spatially isolated and single satel-
lite sensor data samples. Many methods have been developed
for HAB detection utilizing a wide range of satellite sensors and
bands.

Many common methods of HAB detection are currently based
on chlorophyll concentration products as Chl-ais, in many cases,
a very accurate proxy of local algal activity. Phytoplankton is
the primary water constituent [21], [22]; thus, Chl-a can often be
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accurately estimated using the water-leaving reflectance using
relationships (such as remote sensing band ratios) for data from
sensors such as SeaWiFS, MERIS, and MODIS [23], [24]. The
accuracy of estimating Chl-a by remote sensing sensors has
aimed to be within +35% in deep waters [2]. However, this
accuracy has not always been found to have been met by simply
using band-ratio algorithms (e.g., [25]).

These simplistic methods in many cases suffer from a large
quantity of false positive detections. The most effective updates
to these methods further consider measures of carbon dissolved
organic matter utilizing backscattering data from SeaWiFS and
MODIS [26], [27].

HAB detection using these products often use a chlorophyll
anomaly measure that characterizes the difference between to-
day’s Chl-a and a background (often monthly or bi-monthly)
average concentration [3], [4], [28]. This method is also known
as background subtraction [28].

Another method of reducing the false positives associated
with Chl-a HAB detection is the backscattering ratio algo-
rithm [26], [27]. This algorithm utilizes a thresholded ratio
formed from Rrs(555) and Chl-a.

Other optical methods have also been used, such as the spec-
tral shape (SS) algorithm [29]. This system was proposed to
discriminate K. brevis from other blooms creating high Chl-a
values. Alternative methods have used both MODIS derived
fluorescence line height products and locally tuned algorithms
to accommodate common inaccuracies in Chl-a estimation in
shallow coastal regions [27].

There are only a limited number of machine learning based
HAB detection/prediction systems reported in the literature.
Support vector machines (SVMs) have been proposed for this
application by Song et al. [7] and Li et al. [30]. Spatiotemporal
analysis using machine learning methods have also been pro-
posed by Gokaraju et al. [5], [6]. Other nonmachine learning
methods have been proposed for HAB monitoring, detection,
and prediction (e.g., [12] and those described within [2]). Ma-
chine learning techniques have also been combined with GIS
methods to produce interactive predictions [31].

Our work describes the definition of a unique datacube data
structure for supervised machine learning of spatiotemporal
events; specifically, HAB events together with a novel machine
learning architecture to provide optimal HAB event classifica-
tion and prediction performance.

A. Applicable Machine Learning Methods

Due to improved neural network models and methods com-
bined with improvements in computational power and the avail-
ability of extremely large ground truth datasets, image clas-
sification performance has recently shown dramatic improve-
ments [32]. Deep convolutional neural networks (CNNs) are
now commonly used, simple to understand, and highly effec-
tive neural networks for image classification and characteriza-
tion [33]-[36].

Recurrent neural networks (RNNs) [37] have been used for
state-of-the-art classification and characterization of tempo-
rally based signals. LSTMs (long short-term memory) are the
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dominant RNN form able to characterize and model both long-
and short-term dependencies in temporal information [38], [39].
LSTM methods have given excellent results in many temporal
characterization problems. However, more recently, alternative
methods based on the concept of “Attention” have given better
results in many cases [40].

HAB detection requires both spatial and temporal classifi-
cations. Previous spatiotemporal characterization methods such
as video sequence classification [41] and multiview classifica-
tion [42] have used and combined CNN and LSTM architectures.
HAB event characterization is different from these methods as
the input imaging data is multimodal (in our case, it has 12
dimensions). We propose a novel architecture that modifies these
previous machine learning models and methods to take into
account the multimodal inputs.

Given that the temporal range investigated within the dat-
acubes (see below) is small, we have also investigated flattening
the time series sequences and utilized simple high performance
non-network classifiers as a last stage: Random forests (RF) [43];
SVMs [44]; and nontemporal, fully connected networks [multi-
layer perceptrons (MLPs)].

III. PROPOSED HAB DETECTION SYSTEM

The proposed HAB detection system uses a supervised ma-
chine learning method. Supervised machine learning requires a
detailed ground truth dataset, i.e., labeled positive and negative
HAB events defined in time and location together with charac-
terizing remote sensing data.

We have obtained some very large HAB event datasets from
Florida Fish and Wildlife Conservation Commission (FWC)
[45], the Phytoplankton Monitoring Network [46], and the
Harmful Algal Event Database [47].

We have selected the data from the FWC as the dataset is
extremely large (of both positive and negative HAB events)
together with spanning the dates between 2001 and 2018.

We have chosen a subset of the FWC data from 2003 to June
2018 as it can be effectively characterized by the flight times and
data availability of MODIS-Aqua and MODIS-Terra satellites
and sensors. More recent and up-to-date satellite sensors such
as Sentinel-3 have only recently become active and therefore do
not have a large amount of historical sensor data covering the
date range within the ground truth.

Only K. brevis algae events were extracted from this dataset
in order to provide a tractable solution (K. brevis is considered
to be the most serious cause of HAB events within the Gulf of
Mexico region [2], [5], [48]).

In order to further reduce the size of the dataset, a HAB
event was considered to have occurred when the event count
algae abundance in cells/L is in excess of 50 000. Samples
with cells/L between 0 and 50 000 were discounted from the
dataset (i.e., neither positive nor negative). This threshold is
chosen as it was the threshold used in the previous work by
Gokaraju et al. [5]. The selection of K. brevis events and the
50 000 threshold led to the number of positive events being
1755 (between 2003 and 2018). One thousand one hundred and
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Fig. 1. Selection of HAB events near Florida (2003-2018). Circle radius

reflects the log of the algae count (cells/L) of K. brevis HAB event as indicated
by the legend.

fourteen negative events were selected from the entire dataset
where the algae count in cells/L were 0. It was assumed that
the sampling positions and times for the positive and negative
events were equivalent (i.e., there was no discrimination possible
between the times and places sampled and found to be either
positive or negative). Fig. 1 shows the spatial distribution of a
selection of these positive events with the circle size reflecting
the cells/L count. The positive datapoints have the following
statistics (cells/L): Max = 1.62E+8, min = 5.03E+04, median
= 2.38E+05, and mean = 1.11E+06.

IV. DATACUBES FOR HAB DETECTION

The most effective characterization of HAB events for HAB
event detection needs a “datacube” of remote sensing data that
surrounds each HAB event in time and space.

Previous datacube protocols, methods, and code bases have
been defined and implemented (e.g., [49]). However, these dat-
acubes are unable to give the required structure and/or access
to remote sensing data surrounding spatially and temporally
localized events.

We have therefore developed a novel datacube definition as
illustrated in Fig. 2. Each datacube associates a range of modal-
ities within a spatial and temporal neighborhood of each data
point with the positive and negative HAB ground truth database,
i.e., there is a spatiotemporal window defined (in meters and
days) surrounding the central ground truth location (in latitude,
longitude, and date).

Extraction of remote sensing data is enabled using NASA’s
Common Metadata Repository (CMR) search facility [50].
OB.DAAC L2 satellite file granule names are obtained, given
a target latitude, longitude, and date of a HAB event. These
granules, in NetCDF format, are downloaded and the datacube
components are extracted within the spatial and temporal neigh-
borhood of each HAB event. Datacube generation is summarized
in Algorithm 1.
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Fig. 2. Structure of a datacube used in this article.

Algorithm 1: Creation of ML Datacube.
Input :Groundtruth File

for V¥ HAB events in Groundtruth File do
Extract HAB event Lat, Lon, Date Window
for V List of Modalities do
Generate list of granules using NASA CMR search
(within 10 days previously of HAB event date)
for ¥ NetCDF Granules in Date Range do
wget NetCDF Granule
Extract modality data in spatial window
Place cropped data in output Datacube
end

end
Output Datacube

end )

A. Selected Modalities

The datacube architecture and the subsequent machine learn-
ing processes should be flexible in supporting a wide range of
input modalities. However, to make the system tractable and
utilize data that is available across the whole temporal range
of the ground truth, only selected sensor data from MODIS-
Aqua and MODIS-Terra has been used. Although using both of
these satellite sensors provides improved temporal resolution,
redundancy of information has led to only Chl-a being used
from MODIS-Terra (due to a redundancy of information and
the degradation of the Terra sensor over time relative to the
Aqua sensor). Higher level (higher than level-2) products were
not considered as they lacked the temporal and spatial resolution
required for effective HAB detection and prediction. The level-2
products utilized are illustrated in Table I.

Although there is possible redundancy between the chosen
bands and products such as Chl-a, the inclusion of these bands
was intended to provide fine-grain classification and discrimi-
nation for the use of this key available data. All these modalities
have been used by previous spatiotemporal HAB detection meth-
ods [5], [6]. Bathymetry obviously did not vary over time, but
the same modality format was used as shown where the image
samples were resampled/interpolated to be co-located as the
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TABLE I
LiST OF UTILIZED MODALITIES

Modality = Description
1 Bathymetry (GEBCO quantised from 500m grid [51])
2 MODISA Bimonthly Chl-a (Estimated
Chlorophyll concentration)
3 MODISA Chl-a (Estimated Chlorophyll concentration)
4 MODISA Rrs(412)
5 MODISA Rrs(443)
6 MODISA Rrs(488)
7 MODISA Rrs(531)
8 MODISA Rrs(555)
9 MODISA PAR (Daily Mean Photosynthetically
Available Radiation)
10 MODISA SST (Sea surface Temperature)
11 MODIST Chl-a (Estimated Chlorophyll concentration)
12 MODISA Background Anomaly (3-2)

images of the other modalities. Bathymetry was chosen as it has
been noted that estimated chlorophyll concentrations are often
inaccurate in shallow water. Including bathymetry should allow
the machine learning algorithm to characterize such variations.
A list of the utilized modalities is shown in Table I.

V. PREPROCESSING OF DATACUBES

In order to utilize the high-performance characterization per-
formance of pretrained image-based CNNs, the sparse input data
of the datacubes were reprojected to a spatially consistent UTM
raster image (using the standard WGS84 Ellipsoid).

The spatial representation of the input raster formats within
the level-2 MODIS based products are not spatially consis-
tent and therefore not useful for effective machine learning
characterization, detection, and prediction. This was due to the
capture methods and artifacts such as the “bowtie” effect where
horizontal or vertical lines can be repeated in the input 2-D raster
arrays. The input datapoints were therefore reprojected to locally
spatially consistent UTM reprojection.

The projected datapoints were resampled onto a spatiotem-
poral grid where each grid element was of extent (1 km x
1 km x 1 d) using triangulation-based linear interpolation
(the default method of the MATLAB griddata function). The
default triangulation linear interpolation method uses a convex
hull for interpolation. The use of a convex hull generates inac-
curate resampled values where it would be better that they were
discounted. Holes and disjoint regions are further discounted
using the MATLAB alphashape function with a threshold of
0.2. Discounted samples were set to zero for input to the neural
network (see below).

Given a temporal-spatial span of 100 km and 10 d, the
output size of each resampled modality datacube is of dimension
(100 x 100 x 10): (width x height x days). This structure is
illustrated in Fig. 2.

A. Dealing With Sparse Data

Due to the dependence on sea surface reflectance on the
majority of the chosen modalities, a large amount of the data
is missing due to cloud cover. This is problematic in effectively
characterizing any of the HAB events where there is little data.
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In order to most effectively characterize events in the ground
truth database, datacubes containing less than a threshold of data
are discarded from the training/testing process. As the estimated
chlorophyll concentration (Chl-a) is the most important modality
within the chosen set, it is used to indicate unacceptable sparsity
within dataset events. The threshold chosen was: If more than
half of the datapoints within the Chl-a modality (averaged over
the entire temporal range) are missing, the datacube is discarded
from training. The threshold was varied in various experiments,
but classification performance was significant for values near a
half (of datapoints).

Furthermore, missing datapoints are usually indicated as NaN
values in the original OB.DAAC L2 granules. When resampling
(and the use of alphashape) the original data, grid points
that are not able to be resampled are set to zero. The use of
unique flags such as zero representing nondata is common within
machine learning systems (e.g., [52]). As these zero values will
not be correlated with either class (HAB or non-HAB), they will
not affect the characterization and classification of the machine
learning system. There have been a few CNN methods proposed
specifically for coping with sparse data [53], [54]. However,
more recent works have indicated that CNNs are able to learn
from sparse representations directly without explicitly changing
the network structure and design [52].

VI. MACHINE LEARNING STRUCTURE

To fully exploit the spatial and temporal discrimination in-
formation contained within all the modalities of each data-
point, a novel machine learning structure has been designed
and implemented within this work. The application within this
article requires both spatial and temporal characterization and
classification. CNNs and LSTMs have often been combined to
provide such characterization in applications such as video se-
quence classification [41], [42]. However, our application has the
added complexity of multimodal 2-D inputs from each quantized
time step within a temporal sequence. We, therefore, propose
the novel machine learning structure illustrated within Fig. 3.
This figure shows that a single feature vector is extracted from
each single image modality at each time step. This is achieved
through a form of transfer learning. It has been recognized that
utilizing pretrained layer weights of existing CNNs can provide
an effective characterization of visual features in new domains
where (as is the case in this application) there is a limited amount
of training data and computational resources. For each evaluated
CNN, the final classification layer is removed and a flattened
subset of the penultimate was used as a feature extractor (see
Fig. 5). These feature vectors are then concatenated for all
modalities. This concatenated feature vector is then the input
to a sequenced LSTM across all of the quantized time range (in
our case for example, 10 d). A single classification output of the
LSTM is used as a binary classifier € {HAB,No HAB}.

The index of the considered time sequence is denoted as
t where Vt €{1,2,...,T} where, in this case, 7' = 10. The
modality index is denoted as m where Vm €{1,2,..., M}
where, in this case, M = 12. There are therefore 120 input
images (12 modalities per each of the 10 time steps) per HAB
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Fig.3.  Structure of HABNet machine learning system for datacube classifica-
tion: CNN spatial characterization followed by either temporal classification by
LSTM or nontemporal classification using multilayer perceptron, support vector
machines, or random forest time series classification.
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days into the future. short 4 ¢ g) sequences vary the number of days trained
but do not predict into the future. This illustrates how the number of days in the
training set affects classification.

event (each image denoted as x; ,,). The concatenated outputs
z; of the CNNss are therefore created as follows:

2zt = {¢(w41), ¢ d(xear)} (1

("Et’g)7 ey
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TABLE II
LIST OF CONSIDERED TEMPORAL CLASSIFIERS

Temporal Description

Classifier

RF Random Forest: Standard python (sklearn) implementation of RF with grid search of best parameters using validation set

SVM Support Vector Machines: Standard python (sklearn) implementation of SVM with grid search of best parameters using validation set

MLPO Multi-Layer Perceptron: Two dense layers each with 256 nodes. Each layer combined with batch normalisation

MLP1 Multi-Layer Perceptron: Two dense layers each with 256 nodes. Each layer combined with dropout (0.5)

MLP2 Multi-Layer Perceptron: Two dense layers each with 256 nodes. L2 normalisation

LSTMO LSTM based network: One LSTM layer and one dense layer each with 512 nodes each. Each layer combined with batch normalisation
and dropout (0.5).

LSTM1 LSTM based network: One LSTM layer and one dense layer each with 128 nodes. Each layer combined with dropout (0.5).

LSTM2 LSTM based network: One LSTM layer and one dense layer each with 512 nodes both returning sequences. Each layer combined with
batch normalisation.

LSTM3 LSTM based network: Two LSTM layers and one dense layer each with 256 nodes both returning sequences.
This is flattened and then fed to fully connected layer (128 nodes). There is dropout (0.5) and batch normalisation between each layer.

LSTM4 Attention based model: An attention layer [40] is combined with an LSTM layer. Dropout and batch normalisation between each layer.

EXEX9GOT INdINO QT pausne|4

7056

Output
Bottleneck
Features

Unused last
1D layer

Fig. 5. NASNet-Mobile extraction of translationally invariant bottleneck fea-
tures. The last NASNet layer has feature length 1056 and has the spatial
dimensions of 7 x 7. The central region selected (to be flattened) is the central
3 x 3 regions (as illustrated).

where ¢(+) is the operation of the CNN that outputs flattened
output as illustrated in Fig. 2.

For nontemporally based classification, the concatenated out-
puts z; are themselves concatenated into a single vector z,;;. The
LSTM temporal classification models take as input all of the
concatenated outputs z; to generate the classification y where
y € {HAB, No HAB}

- 2r}) @)

where ¥(-) is the LSTM temporal classification operation that
outputs the HAB/No HAB classification.

Conversely, for the nontemporally based classifiers (RF,
SVM, and MLPs), the classifiers take the fully concatenated
vector zy as input to generate y

y = ¥ (zan) 3

where t(-) is the nontemporal classification operation (RF,
SVM, and MLPs) that outputs the HAB/No HAB classification.

A large number of components were tested within the archi-
tecture depicted in Fig. 3. A variety of LSTM structures were
also tested alongside simple alternatives including MLPs and RF
classifiers. Initial tests showed that NASNet:Mobile produced
the best results for the spatial CNN stage. Table III shows the

y=U({z,29,..

TABLE III
CLASSIFICATION ACCURACY RESULTS: FLORIDA

Features Temporal Accuracy F1 Kappa (K)
(Selected from Classifier Mean+SD  Mean+SD  Mean+SD
NASNet:Mobile)

{1to 12} LSTMO 0.89+0.02  0.86+0.03  0.77+0.05
{1,2,39,11} LSTMO 0.88+0.04  0.84+0.04  0.74+0.08
{1,2,39,11} LSTM1 0.89+0.03  0.86+0.04  0.78+0.06
{1,2,39,11} LSTM2 0.88+0.04  0.84+0.05  0.74+0.08
{1,239,11} LSTM3 0.91+0.02  0.88+0.03  0.81+0.05
{1,2,39,11} LSTM4 0.91+0.03  0.88+0.05  0.80+0.05
{1,2,3,9,11} RF 0.87+0.04  0.82+0.06  0.72+0.08
{1,2,39,11} SVM 0.90+0.03  0.88+0.04  0.80+0.06
{1,2,39,11} MLPO 0.89+0.02  0.86+0.02  0.77+0.04
{1,2,3,9,11} MLP1 073021  046+0.75  0.37+0.61
{1,2,39,11} MLP2 0.89+0.03  0.86+0.04  0.77+0.06

classification results using a NASNet:Mobile CNN and a variety
of temporal classification methods.

Regularization using L; and Lo norm conditions did not
improve the results and therefore was not used. Standard ADAM
optimization was used with a (decaying) learning rate of 107°.

A. List of Considered Temporal Classifiers

Table II shows a list of the considered temporal classi-
fiers (i.e., the classifiers to take the bottleneck features gen-
erated by the CNNs and generate binary classifications (i.e.,
{HAB,No HAB}). All of the LSTM-based methods take the
concatenated bottleneck outputs as a time series (z1..10),
whereas the remaining methods take the totally concatenated
bottleneck features (z).

B. Translationally Variant Features

Commonly, bottleneck features are extracted from one of the
flat final 1-D layers of a CNN. However, these features are
translation invariant due to the max pooling, i.e., they do not
discriminate between objects and features found in different
spatial positions. This is not what is required in this work as
the HAB has been identified as occurring specifically in the
spatial center of the input image. In order to make the most
use of the abstractions found in the lower layer of a CNN, the
central spatial region of the penultimate layer is flattened to form
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Fig. 6. Feature importances (from random forest analysis [59]): Modality ver-
sus time from events. Modality described in Table I. This shows that modalities
{1,2,3,9, 11} give the most significant contribution to HAB detection.

translationally variant features. By using these flattened features
without max pooling the spatial arrangement of CNN outputs is
characterized.

C. Choice of CNN and Bottleneck Features

Many different CNN models were tested including a variety of
Inception [55], VGG [56], and NASNet [57] architectures. The
choice for all the subsequent experiments was NASNet:Mobile
as it gave the best results and had a smaller architecture than
most other models. Large flattened central regions will lead
to excessively large bottleneck features. For the architectures
described below, the choice of region size was 3 X 3. As the
last layer of the NASNet-Mobile model has a size feature size
of 1056, all of the temporal models input bottleneck features of
size 1056 x 3 x 3 = 9504. This is illustrated in Fig. 5.

VII. FEATURE CLASSIFICATION IMPORTANCE

To evaluate the classification importance of the features given
in Table I, feature vector (input into the last temporal classifier)
importance is estimated using an RF classifier [43] and its associ-
ated capability at estimating feature importances [58]. Due to the
very large feature vector length of the CNN bottleneck features,
the most effective way to determine modality importance is to
extract bottleneck feature importances for the entire bottleneck
feature vector and average the importances for each combination
of modality and day. Figs. 6 and 7 show the averaged importances
for each modality and day. The modality index shows those
modalities labeled in Table I and the day indicates the number
of days in the past (from the HAB event). These figures illustrate
the slight decrease in feature importance the further into the past
the features are. Additionally, it is apparent that the most impor-
tant features are those indexed {1,2,3,9,11}. This indicates
that the individual remote sensing reflectance (Rrs) {4,5,6,7,8},
sea surface temperature (SST) {10}, and background anomaly
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Fig. 7. Feature importances (from random forest analysis [59]): Modality
versus time from event. Modality described in Table I. This shows that there
is slight decrease in feature importance (for all features) over time.

TABLE IV
CLASSIFICATION ACCURACY RESULTS: FLORIDA RESULTS FOR VARYING
TEMPORAL RANGES (RANGES SHOWN IN FIG. 4)

Temporal Accuracy F1 Kappa (K)
Range Mean+SD  Mean+SD  Mean+SD
AII(LSTM3)  0.91+0.02  0.88+0.03  0.81+0.05
preds 0.90+0.02  0.87+0.02  0.79+0.04
prede 0.90+0.01  0.87+0.01  0.79+0.02
preds 0.89+0.03  0.86+0.04  0.76+0.07
pred, 0.88+0.02  0.85+0.03  0.74+0.05
shorty 0.87+0.01  0.84+0.03  0.73+0.04
shorty 0.88+0.05  0.85+0.06  0.75+0.10
shorte 0.89+0.02  0.86+0.04  0.76+0.05
shortg 0.90+0.01  0.87+0.03  0.79+0.03

{12} features are relatively unimportant (in terms of
classification).!

VIII. RESULTS

The most effective way to evaluate the performance of a
classifier is using nested cross validation [60]. Nested cross
validation utilizes two nested cross validation stages. The outer
cross validation iteratively splits the whole dataset (2869 dat-
apoints) into five folds in our case (each fold having separate
training and testing subsets). For each of the outer folds, the
outer training set is further split into training and validation sets.
The inner validation set is used to validate and optimize model
and parameter choice. The results shown in Tables III-V show
the average and standard deviation across all five outer folds.

The best results were obtained using the LSTM3 model
combined with a NASNet:Mobile CNN (mean accuracy 91%
and Kappa coefficient 0.81). Although not comparable in terms
of dataset location, time, and size, these results are relative
improvements to correct classification rates of 83% [4] and 75%
[3] for standard chlorophyll anomaly detection methods. These
compared methods both used extremely small datasets compared

IThese “unimportant modalities” are therefore omitted in a subset of sub-
sequent experiments in order to reduce the concatenated feature length and
therefore the computational load and memory requirements.
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TABLE V
CLASSIFICATION USING CONVENTIONAL THRESHOLDS: SS(488) DEFINED AS 4,
Bprario DEFINED AS 5 AND CHLA_ANOM IS DEFINED AS FEATURE 12 IN
TABLE I (1.E., FEATURE 3-FEATURE 2 IN THE SAME TABLE)

Method Accuracy F1 Kappa (K)
$5(488) <0.0 0.59 0.13  0.00
BpRratio <1.0 0.61 044 0.15
BpRratio <2.0 0.55 053 013
Chla_Anom >1.0 0.58 029 004
Chla_Anom >10.0 0.62 023 0.08
Chla_Anom >100.0  0.61 0.10 0.03

to our work. Furthermore, the results show that the reduction
in the number of features does not significantly decrease the
performance of the classifiers. Additionally, these results show
that considering the outputs of the bottleneck features as a
time series and analyzing them with an appropriate time series
analysis tool such as an LSTM or attention-based network does
not give significant improvements in performance compared
to nontime series classification tools such as SVMs. This is
considered because time series of length 10 (temporal data
points) are difficult to evaluate using such temporal analysis
tools.

A. Conventional Comparative Methods

Comparable methods of HAB detection include SS, thresh-
olded backscattering ratio [26], [27], and thresholded Chl-a
anomaly [3], [4], [28]. These three methods are used to compare
the performance with our developed methods.

The SS gives a measure of the SS centered on a specific band.
Itis based on a simple measure combining the Rrs of neighboring
reflectance bands

SS(A) = nLw(r) — nLw(i ™)

— (nLw(AT) — nLw(r7)) x <H> “)

where nLw is water leaving radiance at wavelength in nanome-
ters (nLw is linearly related band reflectances: Rrs). Equation
(4) is a second derivative measure centered on wavelength X.
The results in Table V for SS are for MODISA [SS(488)] as
used by Stumpf and Werdell [61] and close to SS(490) used for
SeaWifs sources by Tomlinson et al. [27] for K. brevis in the
Florida region.

Another method of reducing the false positives associated
with Chl-a HAB detection is the backscattering ratio algo-
rithm [26], [27]. This algorithm utilizes a thresholded ratio
formed from Rrs(555) and Chl-a. For SeaWiFS bands, the
backscatter ratio is given as

b (555)
bbp(555)Morel

where by, (555) = —0.00182 + 2.058 x Rrs(555)[62], [63] and
by (555 )Morel = 0.3 x Chl — a®62 x (0.002 + 0.02 x (0.5 —
0.25 x log;,(Chl — a))) [64].

Detection of HABs utilizes this ratio together with a conven-
tional threshold of 1.0 [62] and a threshold of 2.0 for non K.
brevis based HAB detection [27]. Table V shows the results on

bpratio = (5 )
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the entire dataset of 2869 datapoints. These values are very low
compared to our developed method.

Although difficult to compare directly, Gokaraju et al. [5],
[6] have developed limited spatiotemporal methods of HAB
detection using SVMs and neural networks. These pieces of
work both use ground truth in Florida but only a very small
dataset (less than 30 datapoints for MODIS-based estimation).
The best kappa classification for the MODIS-A data was 0.65.

B. Results Metrics

We define true positives, false positives, true negatives, and
false negatives as TP, FP, TN, and FN, respectively. We also
define precision = TP/(TP + FP) and recall = TP/(TP + FN).
We use the (global, not user) Accuracy and F1 metrics as the
performance metrics in the following tables, defined as

TP 4+ TN

Accuracy = (6)
TP + FN + TN + FP

2 x precision x recall

F1

)

precision + recall

C. Results: Discussion

All of the results for the developed methods for HAB clas-
sification shown in Table III gave significantly better results
than the conventional methods shown in Table V. It is assumed
that adopting a two-stage machine learning-based approach is
able to much more effectively characterize spatial and tempo-
ral discriminating information for HAB classification relative
to these conventional methods. Further observations from the
results include the following.

1) Larger spatial areas included in the output of the CNN
bottleneck features improve results (i.e., going from 1 x 1
to 3 x 3 improves results.)

2) The selection of a smaller number of the most important
features does not decrease results (i.e., going from all
features {1...12} to {1, 2, 3, 9, 11} does not decrease
classification performance results).

3) Temporally based networks such as LSTMs do not provide
significantly better results than “flat” solutions such as
MLPs or SVMs. This was assumed because time series
with only ten datapoints are not long enough for LSTMs
to effectively characterize temporal variations over such a
short amount of time.

IX. ALTERNATIVE CASE STUDY: HABS IN THE ARABIAN GULF

As an alternative case study region, the Arabian Gulf was
chosen at it has significantly different environmental factors
and the availability of ground truth data. HABs occur regularly
within the Arabian Gulf with serious outbreaks having happened
most years over the last few decades [65]-[68].

Over 38 types of algal taxa have been identified in the Arabian
Gulf[69]. A very serious outbreak in 2008 affected over 1200 km
of coastline while destroying thousands of tons of fish and ma-
rine life. Such serious HAB events can do considerable damage
to local aquaculture and can potentially shutdown vital local
desalination plants (a major source of local potable water [70]).
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Fig. 8.  Selection of positive HAB events recorded in the Arabian Gulf off the
coast of the UAE between 2003 and 2018.

A number of local research projects into HAB monitoring
and prediction have been undergone in the last ten years [69],
[71]. These methods have focused on remote sensing data such
as MODIS-A and MERIS. However, these works have not
generated quantitative results in the detection and/or prediction
of a database of HAB events within the Gulf. They instead have
used HAB indicators focused on optical measures such as the
modified fluorescence line height and enhanced RedGreenBlue
measures together with flow models such as HYCOM [72].

A. Ground Truth

A considerably smaller set of ground truth HAB events (com-
pared to that obtained for the Florida area by the FWC) have been
obtained from the Environment Agency-Abu Dhabi between
2002 and 2018 (covered by the flight times of MODIS). This
ground truth dataset contains 249 positive events from multiple
species (from generic labels such as Cyanobacteria, specific
HAB detection species such as Cochlodinium and multispecies
detections). Alongside the 249 positive events, 374 negative
events were generated that were distinct (in time and space from
the positive events) within the same Arabian gulf region (off
the coast of Abu Dhabi; see Fig. 8). These detections were not
accompanied by concentrations (in cells/L). This means that
it was implicitly assumed that they were “significant events.”
However, this does render it difficult to make this case study
analysis comparable to the Florida case above (as within the
Florida case, there was an explicit threshold of concentrations
that constituted a HAB “event”).

B. Results

As per the mechanisms described in section IV, datacubes
were extracted for all the spatial locations given by the positive
and negative events. The datacubes were composed of the same
list of modalities listed in Table I. However, (due to the same
analysis given in Section VII), the modalities used for classifi-
cation were actually a subset of those included in the datacubes
(as shown in Table VI).

The results are shown in Table VI giving classification accu-
racy, F1, and Kappa metrics for the given temporal classifiers.
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TABLE VI
CLASSIFICATION ACCURACY RESULTS: ARABIAN GULF

Features Selected  Temporal Accuracy F1 Kappa
(from Classifier ~ Mean+SD  Mean+SD  Mean+SD
NASNet:Mobile

{1,2,3,9,11} LSTMO 091+0.05  0.88+0.06  0.82+0.10
{1,2,39,11} LSTM1 0.88+£0.08  0.81+0.14  0.73+0.19
{1,2,39,11} LSTM2 0.86+£0.06  0.82+0.08  0.70+0.12
{1,2,3,9,11} LSTM3 091+0.09 0.88+0.11  0.80+0.18
{1,2,3.9,11} LSTM4 091+£0.06  0.87+0.13  0.80+0.16
{1,2,3,9,11} RF 091+0.06  0.88+0.08  0.81+0.12
{1,2,3,9,11} SVM 0.93+0.08  0.91+0.09  0.85+0.16
{1,2,3.9,11} MLPO 091+£0.07  0.88+0.11  0.81x0.16
{1,2,3,9,11} MLPI1 0.71+£0.23  031+0.77  0.27+0.66
{1,2,39,11} MLP2 0.90+£0.09  0.85+0.16  0.78+0.21

As with the previous work in Florida, the temporal CNN anal-
ysis (to produce bottleneck features) was the NASNet:Mobile
CNN producing flattened 3 x 3 translationally variant features.
The temporal classification stages (LSTMO, LSTMI1, etc.) are
defined as shown in Table II.

This table shows that SVMs in this case give the best classifi-
cation results (in terms of classifier accuracy, F1, and the Kappa
coefficient).

X. CONCLUSION

HABNet is the first machine learning architecture to use
remote sensing-based datacubes defined specifically for the
classification (using machine learning methods) of temporally
and spatially isolated events such as HAB events. A very large
database of positive and negative HAB events was utilized over
the last two decades off the coast of Florida. SeaDas tools
combined with NASA’s CMR web-based enquiry method were
used to populate a ground truth database of datacubes (one per
data point in the ground truth database). Twelve modalities were
chosen including estimated sea surface temperature, chlorophyll
concentrations, reflectance bands (from MODIS sensors), and
bathymetry. A combined CNN/LSTM spatiotemporal classifi-
cation system was implemented to classify and discriminate
between HAB and non-HAB events. Using a small NASNet-
Mobile CNN with an LSTM temporal stage, a classification
accuracy and Kappa coefficient of 91% and 0.81 were achieved,
respectively. This is a significant improvement compared to
results generated from historical methods (e.g., Chl-a anomaly:
Maximum Kappa = 0.08) and other reported state-of-the-art
classification methods (spatiotemporal classification method us-
ing for a very small dataset: Maximum Kappa = 0.65). Our
results represent a significant correct classification rate (and
Kappa coefficient), given that the number of datapoints is an
order of magnitude greater than any previous study. In the
future, targeted integration of supplementary modalities and
optimization of machine learning methods and structures are
anticipated to lead improved classification rates.

Furthermore, our study shows that the datacube method is
able to effectively predict HABs up to 8 d in the future without
significant degradation of classification accuracy.

An alternative case study was investigated for multispecies
HAB ground truth events within the Arabian Gulf. Good results
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were also obtained from this study, given a maximum classi-
fication rate of 93% and a Kappa coefficient of 0.85 (using a
NASNet-Mobile CNN and an SVM temporal stage).

The LSTM3 approach gave the best performance for Gulf of
Mexico data and (only marginally) the second-best for Arabian
Gulf data. This method is therefore apparently robust to the
geographical location of the HAB.

A transfer learning method to use the present work for char-
acterization transferred to the use of more up-to-date sensors
such as Sentinel-3 would be an essential follow-up project. Fur-
thermore, a study of the effect of spatial and temporal resolution
together with temporal air (wind) and sea (wave) motion data
on classification performance would also be key for subsequent
studies.
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