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Multisized Object Detection Using Spaceborne
Optical Imagery

Muhammad Haroon

Abstract—This article addresses the highly challenging problem
of vehicle detection from high-resolution remote sensing imagery by
introducing a novel medium size annotated dataset named satellite
imagery multivehicles dataset (SIMD) along with an adapted single
pass deep multiscale object detection framework with the aim to de-
tect multisized/type objects for catering above-ground perspective
of vehicles. The dataset images are acquired from multiple locations
in the EU/US regions available in the public Google Earth satellite
imagery. Specifically, it comprises S000 images of resolution 1024 x
768 and collectively contains 45 096 objects in 15 different classes of
vehicles including cars, trucks, buses, long vehicles, various types of
aircrafts, and boats. In the proposed architecture, we demonstrate
the relevant modifications needed to translate the state-of-the-art
object detection frameworks to solve the object detection problem
from remote sensing imagery. The proposed architecture has been
evaluated on SIMD and a public dataset VEDAI. The comparative
analysis has been performed with existing off-the-shelf single-shot
object detection models including YOLO and YOLT yielding su-
perior performance measured with standard evaluation strategies.
To ignite further research in this domain, the introduced SIMD
dataset and the corresponding architecture is publicly available at
this link: http://vision.seecs.edu.pk/simd.

Index Terms—Aerial surveillance, aircraft detection, deep
neural networks, satellite imagery, vehicle detection, YOLO.

I. INTRODUCTION

OVABLE object detection in aerial or satellite imagery
Mis of great practical interest owing to its variety of
applications in numerous fields including traffic monitoring,
airport surveillance, parking lot analysis, search and rescue
(SAR), determining transportation infrastructure, etc. However,
the problem is highly challenging since such remote sensing
images are acquired from high altitudes causing atmospheric
distortions, illumination and viewpoint variations, partial occlu-
sions, and clutter (especially in urban environments). Moreover,
objects when viewed from an elevated platform (satellite, drone
etc.) present a difficult to understand prospect and arbitrary
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Fig. 1.
shown at a signal crossing at City Center, Paris, France. It can be seen that objects
are very small and occupy very less resolution in complete image.

Example from our dataset showing small vehicles in congested traffic

orientation, which subsequently leads to suboptimal perfor-
mance of machine (deep) learning models trained over datasets
containing terrestrial object images. For example, a complex
scene of a traffic intersection in Paris, France, is shown in Fig. 1
where one may wish to detect all types of vehicles from this
image. The movable objects and vehicles present in this view
are of varying sizes including small, medium, and large objects.
These objects have wide variety in terms of object closeness
and vacillating directions in comparison to normal ground based
vertical images. Due to these variations in size, direction, object
closeness, self-occlusion, and variety of multiobjects in a single
satellite image, a traditional neural network trained on available
datasets of ground-based images has limited potential to solve
aerial perspective based object detection task.

Conventionally, the task of object detection relied on
appearance-based handcrafted features encapsulating geometric
and structural attributes pertaining to information related to
color, texture, shape, etc. Later, these features are fed to a typical
machine learning classifier such as support vector machine
and random forests to detect the item of interest. Even though
such techniques perform fairly well but are often constrained
owing to the lack of representational abilities of handcrafted
features. With recent state-of-the-art progression in neural net-
work architectures, the deep-learning-based approaches provide
much improved generalization power by encompassing several
hidden layers to automatically learn high-level abstract image
features relevant to the task at hand. Among different deep neural
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Fig. 2. Large-size airplanes, medium-size buses and small-size vehicles, all
present in one satellite image taken at Charles de Gaulle Airport, Paris.

network-based architectures, the convolutional neural networks
(CNNs) is the most prominent and state-of-the-art technique
in processing images for vision related tasks. Lately, several
notable deep learning based object detection architectures have
been proposed.

For instance, Region-based CNNs (R-CNNs [1]) and its
variants Fast R-CNN [2], Faster R-CNN [3], SSD [4], Retina
Net [5], and YOLO [6] along with its extensions are some of
the worth mentioning architectures that have achieved signifi-
cant improvements on the large-scale benchmark ImageNet and
COCO datasets. However, these object detection models cannot
be directly applied to detect objects in aerial images owing
to different viewing characteristics of aerial images. E.g., the
objects of interest have monotonic appearance, i.e., the roads,
flat parking, vehicle tops, and building roofs have no or very
little texture (see Fig. 1). Moreover, in the context of movable
object (vehicles) detection, there are different instances with
varying sizes, i.e., varying proportion of size for different types
of vehicles may be present in same image. As an example,
Fig. 2, taken from Charles de Gaulle Airport in Paris, shows
multisized vehicles present in one sample of satellite image.
The relative size of vans and buses parked nearby a large sized
aircraft is much smaller. Such complexities of size variations
along with no (or homogeneous) texture information makes
it highly challenging to learn distinctive features able to dis-
criminate one object from another. Thus, to cope with these
problems and enable effective feature learning, in addition to
multiscale object detectors, diverse and large-scale annotated
satellite/aerial datasets are essential which at present remains
the major bottleneck of research in this domain.

A few datasets such as VEDAI [7], COWC [8], DOTA [9],
NWPU-VHRI10 [10], and DLR-3K [11] have been introduced
using RGB images to enable detection of vehicles in satel-
lite/aerial imagery. Although these datasets do have vehicle
classes but are limited to only basic types of vehicles such as
cars and other small vehicles. To solve for a variety of practical
real-world applications, one must deal with more variations in
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vehicle classes/types in addition to challenges involving view-
point variations and complex background owing to occlusions
and clutter. Within this context, the motivation of this article is
two-fold.

1) As a primary contribution, this article introduces satellite
imagery multivehicles dataset (SIMD), which is a novel
annotated dataset designed to address the task of mul-
tisized and multiclass/type vehicle detection in remote
sensing images. Specifically, a large-scale dataset for ve-
hicles detection with annotations in three commonly used
formats has been presented which consists of 5000 satellite
images of around 45 000 vehicular objects categorized in
15 dedicated classes. Such diversity of vehicle appear-
ances will allow to make further progress in the field of
automatic scene analysis, scene surveillance, and target
detection.

2) Secondarily, the article benchmark the performance of
some baseline algorithms and show their performance on
the proposed dataset for the sake of comparison. More-
over, we have also presented results of an adapted single
pass deep multiscale object detection framework to detect
small, medium, and large size objects. The proposed ar-
chitecture is thoroughly compared with the existing deep
learning object detectors and achieved superior perfor-
mance. The proposed model source code, configurations
and dataset along with annotations is open to further
research and shall be made available on Git Hub! upon
publication.

It is worth mentioning that the imagery acquired for dataset
generation is primarily acquired from Google Earth platform
which provides high-resolution RGB images. The inspiration
of using RGB images (in contrast to other satellite imaging
modalities such as multispectral/hyperspectral/radar) is because
they provide more flexibility in terms of cross platform ca-
pability. With this, it is meant that the RGB dataset prepared
using satellite images can still be used with an airborne platform
having no spectral sensor. For the same reason, almost all the
relevant existing vehicle detection datasets including DOTA,
VEDAI, NWPU-VHR, DLR 3 K, and RSD-GOD exploit RGB
high-resolution imagery only. Furthermore, another aspect of
using RGB high-resolution imagery only is the fact that the
primary users of any vehicle detection system are the law
enforcement agencies which could use such a system for the
purpose of automated traffic management and control, forensics,
crime prevention, statistical analysis, etc. In this context, the
use of Google Earth platform allows the flexibility to download
high-resolution RGB images with predefined viewpoint and
altitude making them suitable to acquire drone-like imagery and
thus the annotations of the images can be used in a relatively
more cross-platform independent manner.

II. RELATED WORK

There are two aspects of existing studies done on vehicle
detection in aerial imagery. First is the availability of correctly

![Online]. Available: Dataset GitHub: https:/github.com/ihians/simd
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annotated dataset of necessary objects as research in neural
networks is highly dependent on it. Second is the transformation
of existing or introduction of new fine-tuned neural network
that could work on object detection in aerial domain. Following
sections contain information about existing works in these both
aspects.

A. Available Datasets

Object detection in aerial domain is relatively new in com-
parison to ground-based object detection, therefore, availability
of large scale dataset such as MS COCO or ImageNet is sparse.
However, many small scale dataset has been introduced which
gives initial benchmarks for object detection in aerial domain.
We introduced only few here to establish the concept of need of
a new dataset.

DLR-3 K dataset introduced by Liu et al. [11] from German
Aerospace Center (DLR) contains 20 high-resolution (5616 X
3744) images taken from 1000 m AGL using an airborne plat-
form. This dataset contains only two vehicle classes, i.e., large
vehicles for trucks and buses and small vehicles for cars and
vans. A much popular Cars Overhead With Context (COWC) [8]
dataset contains aerial images of vehicles taken at six different
locations gives a kick start to small models. It also contains only
two classes, i.e., cars and noncars with 32 716 instances and
is ideal for binary classifiers targeting to perform car counting
operations on a given aerial image.

Razakarivony and Jurie [7] introduced a small scale dataset
VEDAI containing 11 dedicated vehicle classes and provides a
basic level startup dataset with 512 and 1024 resolution images
(RGB and infrared). The article is inclined toward automatic
target recognition (ATR) tasks from an aerial perspective. Due
to its well annotation and manageable size, VEDAI is widely
cited across literature. Robicquet ef al. [12] from Stanford Uni-
versity released a dataset of drone videos recorded in university
campuses to depict human behavior. It contains a set of annotated
videos in various classes out of which only three belong to
the vehicles class including cars, golf carts, and buses. Carlet
and Abayowa [13] introduced a hybrid dataset which contained
UAV streams videos and images from static camera placed on a
building facing a parking lot. The article presented experimental
results from a later version of Redmon ez al. [6]. Cheng ez al. [10]
introduced NWPU VHR-10 which contains 800 images in 10
classes of different nature out of which three classes belong to
the vehicles (airplane, ship, vehicles) category. Liu et al. [14]
introduced a dataset of ships containing 1070 images from
Google Earth. Zhuang et al. [15] introduced a latest dataset
which contains aerial imagery data of five classes that includes
airport, helicopter, oil tank, plane, and warship.

DOTA introduced by Xia et al. [9] is one of the largest
available dataset as per our knowledge which contains 188 282
instances in 2800 images of about 4000 pixels resolution. It
has oriented bounding boxes annotation format which can help
localizing objects after direction adjustment. However, DOTA
covers only five generic vehicles types which include small
vehicles, large vehicles, ships, planes, and helicopters. Yang
et al. [16] introduced another data set /TCVD which was taken
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from an aeroplane flying over The Netherlands. The dataset
contains 228 images of high resolution (5616 x 3744) contain-
ing 29 088 instances of general vehicles. Very few researchers
focused on Infrared dataset generation, one such example is of
Liu et al. [17] who generated custom dataset using FLIR TAU2
camera on board a UAV. Robinson and Zhang [18] proposed
a CNN for wide area surveillance on their customized infrared
dataset at PV Labs.

Existing abovementioned datasets comprises either very less
number of vehicle classes or contains less number of instances,
both the cases are inefficient for training of a robust classifier.
Our dataset addresses this issue by introducing 15 dedicated
vehicle classes with 45 K instances in normal resolution im-
ages. This contribution would definitely help in designing new
networks as well as to evaluate existing architectures.

B. CNN Models for Aerial Object Detection

Initial spade work on object detection from aerial platform
was presented by Joshua ez al. [19]. The proposed algorithm (fast
detection) eliminates background using Haris Corner detection
and then applied random forest classifier to detect man made
objects and vehicles using target clustering. Object detection
using hand crafted features suffer in generalizing as discussed by
Ren et al. [3] therefore, Liu and Mattyus [11] presented first time
use of sliding window in two-stage detector with experimental
results on cropped images of 48 x 48 and 48 x 28 resolution.
Mundhenk et al. [8] also presented a neural network called
ResCeption with Inception styled layers to count cars in one
pass. Object-based image classification by construction of object
adjacent graph has been introduced for satellite images [20].

Later, when Ren et al. [3] introduced region boxes (anchors)
in Faster R-CNN, it reduced complexity and provided significant
improvement in time complexity. Researchers then focused on
single pass object detection such as Joseph et al. [6] introduced
their model named You Only Look Once (YOLO) which use
customized anchor boxes and it was widely accepted as fast
and accurate model. Sakla et al. [21] presented a parametric
configuration of Faster R-CNN in their article using VEDAI [7]
dataset for performing end to end object detection. The authors
adjusted training parameters to detect small objects from aerial
imagery which were insufficient with default values. Carlet and
Abayowa [13] and Xia et al. [9], both used enhanced version
of YOLO [6] with default layers configuration to train CNNs
their respective datasets. Liu ef al. [22] also worked on object
detection from infrared imagery in a similar way in their article.
Tayara and Chong [23] used pyramid styled CNN built on
multiple backbone networks including VGG-16, Resnet-50, and
Resnet-101 stacked with feature maps for the purpose of object
detection. Similar to this idea, Tayara et al. [24] presented a
vehicle counting techniques from aerial imagery using fully con-
volutional regression network to regress vehicle spatial density
map across all the image and then performed downsampling
using VGG-16 network concatenated with skip connections
to achieve the object localization. Similarly, Tang et al. [25]
proposed a feed forward CNN (Oriented SSD) for oriented
bounding box detection using VGG-16 as the backbone network.
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To enable robust feature extraction, Wu et al. [26] proposed
a novel object detection framework (ORSIm detector) which
incorporates diverse spatial-frequency features extraction and
learning, fast pyramid matching, and boosting strategy to obtain
high-level and semantically meaningful features. Similarly, Wu
et al. [27] also exploited the idea of feature boosting and em-
ployed it to aggregate channel features for discriminative feature
representation useful to perform efficient geospatial object de-
tection. Koga et al. [28] used the concept of hard example mining
to train CNNs for improved object detection. Similarly, Tianyu
et al. [29] also used hard negative example mining to employ
hyper region proposal network in extracting vehicles with higher
recall rate. Audebert et al. [30] used SegNet with semantic
segmentation to generate segmented objects from imagery. This
method provides results in segmented form instead of bounding
box. Shao et al. [31] also used segmentation coupled with FCN
to extract multilabel classes from satellite imagery.

Object tracking in satellite videos has been demonstrated
in a recent study [32] by using a simple regression network.
Yang et al. [33] built motion heat-map coupled with visual
background extractor based motion detection, targeting urban
planning from airborne videos. Extracting features using linear
SVM from input image segments followed by a pass of sliding
rectangular window to remove false positives is proposed by
Ammour et al. [34]. A surveillance detection system [35] has
been proposed for various fire detection, and SAR operation by
using thermal information retrieved from infrared images human
versus large fire patches.

Terrail er al. [36] proposed a modified pipeline of Faster
RCNN with oriented and nonoriented detection showing ex-
perimental results on VEDAI dataset. Sommer et al. [37] also
extended Faster RCNN model by applying deconvolutional
module that upsampled low-dimensional features and combined
them with features from shallow layers. Instance segmentation
coupled with object detection has been introduced by Zamir
et al. [38] for accurate object localization of dense scenes. Ding
et al. [39] used a transformed Region of Interest (Rol) model by
combining horizontal and oriented Rol with experimental results
on DOTA. Zhuang et al. [15] proposed a single shot framework
with multiscale fusion of coarse features. Li et al. [40] proposed
a scale invariant CNN architecture which works on parallel
multibranch with different receptive fields. Li et al. [41] also
proposed a method for rotate-able detection. Chen et al. [42]
proposed a hybrid deep neural network with multiple blocks
of variable receptive field sizes or max-pooling field sizes, to
enable extraction of variable-scale features to detect particu-
larly smaller vehicles. Similarly, Zhang et al. [43] proposed
multiscale feature pyramid network to fuse low resolution and
weak features with high resolution features for robust object
detection. Yang et al. [44] also presented a novel multicategory
rotation detector for small, cluttered, and rotated objects which
fuses multilayer attention based feature extraction network with
effective anchor sampling to improve the sensitivity to smaller
objects. Recently, Chen et al. [45] proposed a novel two-stage
object spatial density building net (SDBN) where in first phase
candidate regions are generated that are later refined in the
later stage with meticulous heauristics. The accurate geometrical
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Fig. 3. Country wise collected images and annotated instances.

parameters of all objects are computed using the spatial density
maps similar to [24] and achieved state-of-the-art performance
in four different target maneuvering target datasets.

All this literature work focused either on generic vehicles
detection (vehicle/nonvehicle) or counting of vehicles mostly for
applications in traffic analysis. Whereas very few had entirely
focused on detecting the type of vehicle in complex satellite
imagery scene at multiscale level. Our work addresses this
deficiency in a novel way by proposing an end-to-end solution
covering from dataset availability to the network architecture
design.

III. DATASET DESCRIPTION
A. Data Collection

A number of constraints are to be studied while collecting
data such as lightening conditions, appropriate elevation, and
area to be captured with presence of ample number of vehicles,
etc. Downloading satellite imagery without these consideration
may lead to data that is not useful for the task in hand. For
example, many images present in VEDAI [7] are without any
object present in them. All images available in our dataset are of
same resolution (1024 x 768) in RGB format with an elevation
of almost 500 to 1000 feet above ground level (AGL). Compute
power required to process very high-resolution (VHR) images is
many fold in comparison to less-resolution images. Therefore,
instead of selecting very less images with high resolution as
done in DLR3K [11] and ITCVD [16], we choose to select more
images with low resolution as done in VEDAI [7] and NWPU-
VHRI10 [10]. The purpose of this methodology is to fasten the
neural network model training and validation by using the less
compute power. We envisaged to covert out dataset in array
form and be made available as an API for fast prototyping and
experiments. MNIST Hand Writing dataset is an example of
array dataset which is available in Keras [46].

In existing datasets such as NWPU VHR-10 [10] and
ITCVD [16], the imagery was captured from a single place
with multiple shots of different scenes. This created tendency of
biases in data and CNN trained on this may not perform well on
evaluation data from other locations. To overcome this problem
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vehicles in close vicinity.

our dataset has been collected from various European countries
with multiple locations of city centers and airports. More empha-
sis was put to collect data from signal crossing, highways, park-
ing lots, beaches, bus stands, workshops, lakes, airport tarmacs,
and runways. Number of images and corresponding annotated
instances from each country are shown in Fig. 3. To add diversity
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Data samples from our dataset comprising variety of instances including multiple classes. Also showing arbitrary angles and closeness of multitype

in the dataset, images have been collected in different weather
conditions such as bright sunshine, afternoons, and few icy
conditions. However, it is to be noted that class imbalance still
exists in our dataset as cars are widely used vehicle type and
are present in large quantity in overhead imagery of any city.
This problem can be resolved by implementing some antibias
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TABLE I
LIST OF OBJECT TYPES, COUNT, AND SIZE CATEGORIES OF
OUR DATASET SIMD

ID Class Name Count  Size

1 Car 20,242 Small

2 Truck 2,800  Medium
3 Van 5,732 Small

4 Long Vehicle 1,622  Large

5 Bus 1,989  Medium
6 Airliner 969  Large

7 Propeller Aircraft 209  Large

8 Trainer Aircraft 631  Medium
9 Chartered Aircraft 641  Large
10 Fighter Aircraft 63  Medium
11 Others 791  Small
12 Stair Truck 446 Small
13 Pushback Truck 228  Small
14 Helicopter 64  Small
15 Boat 8,669  Small

Total 45,096 -

function in the model for cars class. Few samples from our
dataset are shown in Fig. 4 displaying variety of objects with
annotated bounding boxes available in each image.

B. Class Selection

Existing datasets such as DOTA [9], VEDAI [7], COWC [8],
ITCVD [16], and RSD-GOD [15] lack this ability as their focus
remained on detection of static objects and these datasets include
very less number of generic vehicle classes. We have gathered
imagery as mentioned above and carefully decided the number
and type of classes. We focused on type of moveable objects
including vehicles, various types of airplanes, and boats. We
therefore select classes that are solely considered as maneuver-
ing objects.

Selection of vehicle classes is a tedious task as almost all
vehicles resemble rectangular shapes. On the contrary, neural
networks tend to extract features from shapes of objects present
in input images and train on these patterns. We select a set of
classes which are different in shape but can be categorized under
the same vehicle category. For example cars, buses, and trucks
look like rectangles, whereas airplanes and boats have different
distinct shapes. While selecting classes, a careful approach has
been adopted to select most common viewable object categories.
List of 15 classes with the number of objects and different size
categories are shown in Table I.

C. Data Annotation

Most of the current object detection models work on horizon-
tal bounding boxes such as Faster R-CNN [3] and SSD [4] for
object detection, therefore, we choose to annotate our dataset
on the same method and images has been annotated in plain
horizontal and vertical rectangles instead of oriented bounding
boxes. By using this way, there is no need to do preprocessing
work or realign orientations by the architecture prior to perform
detection task. Data annotation has been done using Microsoft
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VOTT formatting tool with rectangular bounding boxes. There
are following two reasons why horizontal rectangular annotation
has been done on our dataset.

1) Nature of Satellite Data: In most of the cases downloaded
data or streaming feed is coming from satellites which are
north aligned, however, ground structures such as buildings,
roads, airports, beaches, and road network built on Earth are
not aligned to any preset direction. Furthermore, the moveable
objects including all types of vehicles are never found in any
specific direction. Yang et al. also highlighted the same chal-
lenge by Cheng et al. [10] in their article. Due to this reason,
when localizing vehicles from satellite data, vehicles may be
found in any direction additional to any size depending upon
elevation of the aerial sensor. Oriented bounding boxes with
respect to any fixed point (i.e., top-left) will not be able to aid
detection algorithms much. Rather it may put extra processing
on the classifier to first align the image to north followed by
localizing the object. Our dataset therefore presents horizontal
aligned annotations which could directly be used for detection
work without any preprocessing.

2) Practical Applications: If we observe the flight path and
heading of any aerial platform, we could easily identify that
no explicit heading is being maintained by UAVs and drones.
Instead, they follow arbitrary paths and imagery/video data
received from these platforms does not align to any particular
direction. Hence, object detection algorithms that work on this
type of data have to follow the same rule. If we train our model on
adataset that has oriented bounding box, it will be more compute
intensive for detection. Developing real-time applications hence
require a classifier with a higher speed which is irrespective of
orientation detection.

D. Annotation Formats

The aim of our dataset is to provide an opportunity to future
researchers to focus on neural network designing instead of data
cleaning, preprocessing, and resolution adjustments. Therefore,
our dataset contains fixed resolution images of 1024 x 768 taken
from 500 feet AGL. All images in our dataset contain the same
resolution, divisible by 32 which is often required by most CNNs
and objects marked in images are of small, medium, and large
categories. We provide three standard annotation formats which
are performing object detection via following state-of-the-art
deep neural network architectures.

1) YOLO (You Only Look Once): This is the most common
and easy to understand annotation format which can be
described as (c, xi, yi, w, and h), where c is the object
class starting from 0, (xi, yi) are the center of object and
(w, h) are width and height, respectively. All these values
are percentages to the actual image.

2) CNTK Faster RCNN Format: Developed by Microsoft for
Faster RCNN, this format saves data in 02 XML files. First
for bounding box information described as (x1, y1, x2, and
y2) where xi and yi are exact coordinates in the xy domain.
Second file contains the name of the class type written in
plain, i.e., car, bus, truck, etc. Both files are saved with
each single image in the same directory.
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TABLE II
COMPARISON OF OUR DATASET WITH EXISTING DATASET CHARACTERISTICS

Dataset Classes  Vehicles Instances Images Resolution Formats  Annotation
COWC [8] 1 1 32,716 53 2000 - 19000 1 one dot
UCAS-AOD [47] 2 2 14,595 1,510 1300 x 700 1 oriented
RSD-GOD [15] 5 3 40,990 18,187 300 ~600 1 horizontal
NWPU VHR-10 [10] 10 3 3,651 800 ~1000 1 horizontal
DLR 3K [11] 10 2 14,235 20 5616 x 3744 1 oriented
VEDAI [7] 12 11 2,950 1,268 1024 x 1024 1 oriented
DOTA [9] 15 5 1,88,282 2,806 800 - 4000 1 oriented
SIMD (Proposed) 15 15 45,096 5,000 1024 x 768 3 horizontal

It is clearly shown that our introduced dataset SIMD contains maximum possible distinct vehicle classes with ample instances.

3) Tensor-flow Pascal VOC: This is an XML format which
contains a single file for each image and contains complete
image information in it. The first part contains image
information such as file, folder, image resolution, depth,
etc. The second part contains a repeating instances tag
which contains the name and coordinates of each instance
described as (xmin, xmax, ymin, ymax).

E. Characteristics of Data

As per our knowledge, we provide the largest repository of
multiple vehicles dataset except DOTA [9] in comparison to
other available datasets to extend research in the aerial do-
main. Our dataset contains 45 K instances of vehicles (only)
types whereas DOTA contains five types of general vehicle
objects mixed with other types. A comparative analysis of our
dataset with known object detection datasets in aerial imagery
is presented in Table II. It is clearly shown that our dataset
addresses various major concerns including number of classes,
annotation formats, and resolution. Following are few of the
major characteristics of our data covering most concerns.

1) Location Diversity: One of the major concerns in avail-
able datasets such as Standford UAV, DOTA, and US AFRL
dataset [9], [12], [13] is the monotonous of data objects as these
images belong to one particular city or area thus generating
almost same data multiple times. This does not suffice the
objective to train generalized models which could work in all
types of evaluations and test samples. Our dataset addresses this
problem by providing data instances from a variety of locations.
It contains images from 79 distinct locations mostly from Eu-
ropean countries (France, Spain, Italy, Germany, Switzerland,
Austria, Sweden) and the USA. To add further diversity in our
data, we choose imagery from city centers, bus stops, signal
crossings, highways, airports, beaches, and dry ports. This not
only provides a different and difficult background for our dataset,
but also includes variety in the shapes of vehicles from multiple
countries such that a neural network trained on our dataset would
be more generic and it must be less biased toward vehicle types of
a specific area. A comprehensive detail of the number of objects
taken from distinct locations with respect to countries is given
in Fig. 3.

2) Object Size: When viewed from top (around 500 feet in
our case) vehicles of varying sizes are visible. We collect our
data in such a way that it contains objects of very small size
such as of 23 pixels width as well as it also includes very large

size objects of about 1000 pixels width and height. This made
our dataset more diverse and usable to train generic models for
small-, medium-, and large-sized objects. A CNN trained on our
dataset has to face object size from 23 pixels to 1000 pixels.

3) Density of Objects: We have taken images with a dense
number of objects per image. Various existing datasets such
DLR3k [11] and VEDALI [7] have very less number of objects
mostly from 1 to 10 instances per image. Our dataset contains
instance count ranging from a single object to 100 objects per
image and that too within the range of maximum resolution
1024. This gives a challenging task of fine tuning to the learning
network.

IV. VEHICLE DETECTION NETWORK ARCHITECTURE
A. Brief Introduction to CNNs

CNN are specific types of neural networks which deal with
image recognition and classification tasks. The correct compo-
sition of various components such as input data, output classes,
loss function, and optimizer is referred to as CNN model. There
are three very basic functions which a CNN has to perform.
First is classification which is to identify the class to which a
given object belongs. This is usually achieved by probability
estimation of all classes and selecting the highest value. Second
is localization which deals with the position of objects in an im-
age. Last is the combining of output from the first two steps and
providing bounding boxes around detected objects. The most
difficult and important task among the above is classification.
This task is performed by sliding fixed size windows across
the image, extracting features from each window, calculating
probability among classes, and finally combining same and
adjacent windows to output localization and classification.

One class of frameworks is region-based networks which
works on two passes by generation of proposed regions where
objects are likely to be present followed by a CNN which
classifies the class of object and performs localization. Object
detection networks are not only to detect objects accurately,
but need to be incredibly fast for real time object detection
especially in video feeds which are recorded at least at 24 fps.
Although Faster R-CNN [3] improves speed in comparison
to existing work, it has limitations for real time applications.
SDBN [45] also used a two phase approach to enhance accuracy.
Another type of frameworks relying on unified single process
pass emerged as single pass object detection. The initial concept
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was presented by Liu ez al. in their article titled SSD: Single Shot
Multi-Box Detector [4]. Here, the detector performs localization
and classification of objects in a single pass over the complete
image which reduces time significantly. YOLO implements semi
SSD technique and performs object detection by putting a fixed
cell grid over the image and allows each grid cell to detect
objects. An enhanced version, YOLO v3 outperformed various
existing methods in accuracy and speed [48].

B. Proposed Model

We propose a network model which falls under single pass
object detection frameworks. As object detection from aerial
imagery is a challenging task, therefore, we use deep learning
to solve this problem. We used a C++ based (Darknet) im-
plementation of YOLO. We performed our network designing
and training using the same framework and demonstrated our
results considering YOLO as our base network. The proposed
network model is a fully convolutional network designed using
convolutional, max pooling, and up sample layers. The proposed
model contains 118 layers deep neural network with four levels
of detection. The proposed model takes an RGB input image
and performs multivehicle detection. The output is in the form
of bounding boxes around detected objects of any size within
the boundaries of the input image.

The existing model YOLO v3 is performing object detection
at three levels on MS COCO dataset. While balancing between
accuracy and speed, we proposed four levels detection as
per the task at hand. The proposed model performance has
been balanced to perform detection at four levels, i.e., L-0,
L-1, L2, and L-3 to cater various object sizes. The detailed
layers arrangements and description has been shown in Fig. 5.
The proposed model is evaluated on VEDAI [7] and on

*--,: {_

Objects
Stride 16

x2 Ry L-2

Up Sample I || I

Large Objects
Stride 8

Small to Large
Stride 4

Our proposed CNN architecture with details of layers arrangement, up sampling, concatenation, and detection levels. It is shown that our model detects
multiscale objects from same input image in single pass using various multilevels.

our introduced dataset SIMD. Adding more levels of detection
improved accuracy however declines speed which is shown later.

In the first part, the proposed model extracts features from the

input image using stacked convolutional layers along multiple
residual blocks just like ResNet structure. In each block of
layers, we use two convolutional layers with incremental filters
along with one residual layer. These blocks are then repeated in
multiplicities of (1, 2, 8, 8, 4) separated by one convolutional
layer each. The filters are gradually incremented from 32 filters
atinitial to 1024 filters at last block. In the second part, we made
detection at four levels by getting input features extracting at
different previous layers. For detection, our model concatenates
previous level layers with the upsampled versions of the learned
layers down the line. The detection layer at last is fully connected
and produces the class probabilities. The details of the proposed
multiscale architecture on each detection level is described here.

1) Small Vehicle Detection: Very small object detection is
being done by features extracted from the first block of
layers concatenated with layers from the second block.
After concatenation, we add a set of four more convolu-
tional layers to adjust resolutions. Densely packed small
objects are detected at this level. Small object detection is
done after up sampling the result added with two blocks of
more layers. Detection results at this level are preserved
to be used later at last level.

2) Medium Vehicles Detection: To detect medium sized ob-
jects, the model uses more convolutional layers from the
upsampled version of L-0 block of layers. This block
contains three sets of two convolutional layers each fol-
lowed by a convolutional layer with 60 filters. Then, the
resultant layer is concatenated with the extracted feature
layer followed by the same set of four convolutional layers
to adjust resolution.
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3) Large Vehicles Detection: To detect large-sized objects,
the model then uses more convolution layers from upsam-
pled versions of L-1 Block layers. This block contains
three sets of two convolutional layers each followed by
a convolutional layer with 60 filters. Then, the resultant
layer is concatenated with the extracted feature layer
followed by the same set of four convolutional layers to
adjust resolution. The previous and this block has the same
number of layers, however, input from the feature layer is
from different layers as shown in Fig. 5.

4) Last Level Detection: To further enhance accuracy we
added a last level detection for any missing object. This
level used features layer from the very first block and
concatenated it with the upsampled version of the latest
L-3 block. We added a block that contains three sets of
two convolutional layers each followed by a convolutional
layer with 60 filters. Detection is done at the last layer
which covers all missing objects from small to large.

C. Experiments and Model Fine Tuning

We experiment with various types of methods and layers
combinations to improve accuracy out of which very prominent
are listed below.

1) Regenerated Anchor Boxes: Instead of using existing nine
anchor boxes from our base network YOLO v3 [48], we in-
creased anchor boxes and regenerated 12 using K-Means with
416 height and width. These regenerated anchor boxes were
then used at four detection levels for training our model and it
improved the accuracy. We use four sets of anchors boxes, three
anchor boxes used at each detection level.

2) Learning Rate: Learning rate is one of the crucial param-
eters while training the network model. Instead of using a steep
constant learning rate, we used a step by step learning rate of
0.0001 across multiple GPUs. We adjust our network model
for improved fine tuning and enhanced model performance by
increasing learning rate by a factor of 0.0001 after every 40 K
iterations which yields better performance.

3) Training Batches: Training batches play an important role
in fine tuning of network models. We therefore did not limit our
training iterations to small numbers. In our case, 1 epoch is
completed in 250 iterations. We learned that our model is fine
tuned after 200 K iterations, however, we train proposed network
architecture for 240 K batches. The training loss in terms of mAP
for each batch is shown in Fig. 6.

4) Transfer Learning: The network model if already trained
for some classes can be used for further training. It needs
not to start learning from arbitrary weights and converge to
some reasonable weight values. We used the same technique
for training and used existing trained base models instead of
starting from scratch. For this purpose, we use weight values of
YOLO v3 trained on MS COCO dataset.

D. Training Details

We trained the proposed and base networks on NVIDIA
GeForce GTX TITAN X/1060 GPUs and evaluated the dataset
in two iterations. We used a smaller dataset introduced in [7]
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Fig. 6. Training loss and validation accuracy @mAP@0.50. X-axis shows
number of epochs and Y-axis shows decimal values for training loss and
validation accuracy. The training loss and accuracy became almost constant
after 200 epochs.

TABLE III
COMPARISON OF DIFFERENT APS WHEN EXISTING MODEL APPLIED ON OUR
CUSTOMIZED DATA SET

AP Results

ID Class Name Size YOLO v3  Proposed
1 Car Small 81.62 84.75
2 Truck Small 58.05 65.30
3 Van Small 71.10 76.33
4 Long Vehicle Medium 59.68 55.09
5 Bus Medium 47.29 58.91
6 Airliner Large 66.67 78.48
7 Propeller Aircraft — Large 78.08 84.03
8 Trainer Aircraft Medium 54.55 75.00
9 Chartered Aircraft —Large 85.78 76.81
10 Fighter Aircraft Medium 0 0.7
11 Others Small 15.01 16.24
12 Stair Truck Small 75.57 61.27
13 Pushback Truck Small 13.22 24.46
14 Helicopter Small 54.55 80.52
15  Boat Medium 78.82 75.31

There is a significant improvement in arbitrary shaped objects such as
propeller aircraft and helicopter.

for evaluations of our proposed network in comparison to base
network [48]. Similarly, we evaluated our customized dataset
with base network and our proposed network. We used standard
object detection evaluation metrics to assess performance of
both the existing and proposed model. These metrics include
precision recall curves (PRCs) which are shown in Fig. 7.

There are few experiments where we failed to achieve desired
results, however we have list down the training loss, results, and
reason of failure as of our knowledge. These experiments need
to be more explored. For example, we tried to train the model
on following already implemented CNN models in Darknet and
based on the results, we designed our network. We also tried to
add more layers than 118 in the model for further evaluation of
our concept but after a certain limit, the systems performance
started declining. All these experimental results are shown in
Table III and Table IV.
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PRCs of the proposed method and base model for following dedicated 15 vehicle types: car, van, truck, long vehicle, bus, airliner, propeller, trainer,

chartered, fighter, others, stair truck, pushback truck, helicopter, and boat, respectively.

TABLE IV
PRECISION RESULTS OF VARIOUS EXPERIMENTS PERFORMED USING OTHER NETWORK ARCHITECTURES

Experimented Networks

Class Mini-3. YOLOv2 YOLT [49] YOLOvV3 [48] [Initial-4L.  Proposed
Car 53.04 74.07 84.51 81.62 50.82 84.75
Truck 44.32 69.45 60.64 58.05 60.76 65.30
Van 47.69 72.06 73.50 71.10 59.08 76.33
Long Vehicle 453 64.13 59.88 59.68 55.88 55.09
Bus 44.19 69.36 49.03 47.29 60.97 58.91
Airliner 1.56 77.69 73.30 66.67 77.81 78.48
Propeller Aircraft 44.78 60.35 66.66 78.08 73.00 84.03
Trainer Aircraft 60.61 68.00 50.00 54.55 58.01 75.00
Chartered Aircraft 31.42 79.70 73.74 85.78 82.55 76.81
Fighter Aircraft 22.73 0.57 091 0 12.12 0.7
Others 9.62 15.62 19.13 15.01 13.46 16.24
Stair Truck 27.2 69.97 52.17 75.57 57.44 61.27
Pushback Truck 6.66 12.07 21.49 13.22 18.61 24.46
Helicopter 76.92 23.36 17.43 54.55 76.14 80.52
Boat 45.98 55.46 88.11 78.82 61.36 75.31
mAP@0.50 37.47 54.12 52.70 56.00 54.53 60.88

The maximum AP achieved by models are shown in bold. The last column contains AP values of the proposed model.

V. EXPERIMENTAL EVALUATIONS

We evaluated the proposed network on NVIDIA GeForce
GTX TITAN X/1060 GPUs with our dataset in two itera-
tions. This shows that our model was able to detect objects
from top view when evaluated on unseen images. We used a
smaller dataset introduced in [7] for evaluations of our pro-
posed network in comparison to the base network. Similarly,
we evaluated our customized dataset with base network and
our proposed network. We used PRCs to assess performance
of both the existing and proposed model. Fig. 7 displays
the PRCs for each class of our dataset. The average running
time (seconds) is shown in Table V. The running time of our
model is far better in comparison to RICNN [10] on similar
dataset.

TABLE V
RUNNING TIME COMPARISON OF FIVE ARCHITECTURES CALCULATED ON
SAME IMAGE WITH 100 INSTANCES IN IT

Architecture Average running time(seconds)
RICNN [10] 8.77
YOLO v2 0.012268
YOLT [49] 0.015898
YOLO v3 [48] 0.023561
Initial-4L 0.026461
Proposed 0.025386

A. Network Evaluations

We took the base network and trained it on a smaller dataset
VEDALI [7] for 190 K iterations initially. The results gave us
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TABLE VI
COMPARISON OF RESULTS OF DIFFERENT DATASETS WITH EXISTING
ARCHITECTURES AND OUR PROPOSED NETWORK

Datasets mAP% F1 IoU Architecture
DLR 3K 71.40 - - YOLO [41]
VEDAI 41.34 0.58 43.71  YOLO v3 [48]
VEDAI 42.31 0.60 51.48  Proposed
UCAS-AOD 76.15 - - YOLO v2 [9]
NWPU VHR-10  72.63 - - Cheng et al. [10]
DOTA 60.51 - - YOLO v2 [9]
DOTA 68.16 - - Azimi et al. [50]
SIMD 56.00 0.77 68.14  YOLO v3 [48]
SIMD 60.88 0.74 56.09  Proposed

It is clearly shown that aerial datasets with classes more than 10 have reached mAP
under 70%.

mAP@0.50 in range of 50%—-55%, therefore, we started adding
more layers while carefully observing the accuracy. Once our
network design was finalized, it was then we introduced our
customized dataset to our proposed network. Our model gave
accuracy mAP@0.50 in range of 55%—60% maximum with half
the number of instances of our dataset. However, when trained
finally on a maximum number of instances for 240 K iterations
(960 epochs), our model accuracy jumped in the range of 60%—
65%. Table VI shows the results of various network architectures
applied on known datasets. It is clearly shown that accuracy
improved on datasets with less classes such as DLR 3K [11] and
UCAS-AOD [47]. But accuracy dropped significantly when the
same model applied to datasets with more than 10 classes such
as VEDAI [7] and DOTA [9]. The complete PRCs of each class
for proposed and base network is shown in Fig. 7.

B. Dataset Evaluations

One of the most common limitations in existing datasets
is the less number of classes. Most of the datasets have 5
to 10 classes with a limited number of instances which are
very less compared to other computer vision datasets such as
MS COCO, ImageNet, etc. These datasets also have very less
annotation formats which limits the number experiments which
could be performed. Hence, we provide our network evaluations
on VEDALI [7] which is closer to our problem. As our network
model finalized, the customized dataset gave us an accuracy
jump from 55% to 60.88%. However, the model stops further
training after 200 K iterations and remains oscillating on the
same accuracy. We also evaluated our results based on size of
objects (small, medium, large). The accuracy of YOLOv3 [48]
and our proposed architecture on two datasets, i.e., VEDAI and
our customized dataset (SIMD) is shown in Table VII. Itis shown
that our proposed architecture worked equally well on all sizes
of objects.

C. Qualitative Evaluations

Finally, we evaluated our model on unseen images from the
last part of our dataset. We take best performing learned weights
and use them for extracting qualitative evaluations with 0.25%

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE VII
ACCURACY MEASURES BASED ON SIZE OF OBJECTS BOTH FOR YOLO AND
OUR PROPOSED ARCHITECTURE ON VEDAI AND SIMD DATASETS

VEDAI SIMD
S M L S M L
Base Model 51.28 3277 71.01 5273 48.07 76.84
Proposed 46.39  38.68 80.24 5841 53.01 79.78

Small (S), medium (M), and large (L).

threshold. The few samples from detection results are shown in
Fig. 8. The detection results show the vehicles detection of all
types which includes small cars, small boats, medium trucks,
small and large aircrafts in various complex scenarios. It is
clearly shown that our learned model localizes and identifies
vehicle objects very efficiently on multiscales.

To further evaluate our model, we also use our trained model
on vehicle detection from drone imagery with image slices of
various drone videos. Last two rows of Fig. 8 contains four
images showing results of our model. It is clearly visible that
our trained model can be applied to any other aerial imagery
source including drone, airplane, etc. Hence, our trained model
is fully capable to be used in real time applications.

D. Ablation Study

There are few experiments where we failed to achieve desired
results, however these need to be more explored. The first
experiment was performed on YOLOv2 which has 30 layers
composition in total and detection at the last level as described
by the authors. This is the small network designed initially by
authors to work on ground-based imagery. We tried to train this
model on our dataset but it could not perform very well on small
objects. The AP values of small and complex objects are very less
than larger objects such as airlines. This model has a maximum
AP value of 74.07 that is on a higher frequent object (car). We
also tried the Mini-3 L classifier which was designed for low
computing devices such as mobiles and tablets. Mini-3 L layers
composition has detection at 3 levels but has a total of 30 layers.
We tried to train this model but it also could not perform very
well on small objects. The AP values of small and complex
objects are very less except for large objects such as trainer
aircraft.

We tried a four-level detection method which has an equal
interval of loop back layers. This model takes input from four
various levels and combines the input to later learned layers and
produces results accordingly. This method is suitable for ground-
based imagery butit could not perform well on aerial imagery. As
of our knowledge, no other author has implemented this model.
As shown in Table IV, this model achieved maximum accuracy
on the airliner which was a fixed shape object in our dataset.
We applied stand configuration of YOLO v3 [48] on DOTA [9]
dataset which produced very less @mAP 3.78%. Then, the same
model is applied on our dataset SIMD which produces mixed
values of AP. We tried a five-level detection method with equal
intervals of loop back layers. This model takes input from five
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Fig. 8. Detection results on proposed model trained on our dataset. It includes
all variety of objects from small, medium, and large. Last two rows showing
results on drone imagery.

various levels and combines this input to later learned layers
and produces results accordingly. This model could not achieve
promising results in any class in comparison to existing work.
One of the reasons that the existing model performs well on
few objects is the shape of the object. For example the shape
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of objects remains constant in a few classes across multiple
instances such as aircrafts, long vehicles, and boats. But it could
not perform well on arbitrary shaped objects where the shape
of objects varies in different regions such as various types of
cars, trucks, and medium sized aircrafts. Another reason for low
performance on aerial images was the variety of backgrounds
in images when seen from top. Each object when viewed from
top has a different background. The roads are colored normally
dark which confuse the network to decide object boundaries,
whereas tarmacs (in case of aircrafts) are light colored which
confuses make difficult for models to detect light colored air-
craft detection. It is clearly shown in AP values of Table. IV
that existing models work better in few cases but worst on all
remaining classes. Whereas our proposed model achieved AP
values more than 70% on prominent classes. Furthermore, Fig. 9
presents the comparative results which qualitatively shows that
the proposed model detects the multisized objects both in simple
and complex scenarios.

VI. DISCUSSION

We have discussed various issues and problems occurred
during the conception, designing, and implementation of the
proposed method. We have deduced these discussion points
based on our attempts and experiments which could be further
explored in research of object detection in the aerial domain.

A. Varying Multisized Objects

If we analyze the results shown in Table IV, it is clear that
existing models such as YOLOv2, Mini-3 L, and Initial-4 L
have achieved maximum AP values on objects that are larger in
size. It means that these classifiers are good at detecting large
objects but at the same time were unable to detect small objects.
To detect small objects in addition to large objects, we added
another level of detection and demonstrated one such example by
adding multilevel detection layers. It is imperative that in aerial
imagery multisized objects will be present. The size of objects
will vary as the elevation of the image or video capturing sensor
is highly fluctuating. A classifier must be able to detect very
small objects when viewed from higher elevation and also to
detect same objects from very less elevation. Hence, a classifier
must be able to detect multisized objects efficiently. Our research
presented here can be considered as an entry to this area of
research which has capacity to be further explored.

B. Preprocessing and Data Augmentation

It is shown in Table IV that our proposed network has AP
value 0.7 on Fighter aircraft which has very few instances in
our dataset. It can be deduced from here that the classifier is
unable to train itself with less number of instances. A classifier
must be fed with a balanced dataset to work effectively. The
reason for less AP values of few classes is expected due to this
class imbalance problem. The datasets already introduced and
even our own dataset contains a higher number of most frequent
objects such as cars in comparison to other classes such as fighter
aircraft and helicopters. Data augmentation and prepossessing
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Fig. 9.
as complex images. (i) YOLO v2. (ii) YOLT. (iii) YOLO v3. (iv) Proposed.

of aerial imagery, hence contains research prospects which
need to be explored to expand and formalize available images
dataset.

C. Fine-Grained Classification

One of the main reasons for less accuracy in some cases is
wrong classification in our case. A car looks similar to a van,
hence, the network mistakenly detects many cars as vans and
vice versa. Merging multiple datasets to one by increasing the
number of classes and instances may be one possible solution.
However, this may require more resources to process and train
the network.

D. Deeper Networks

We have tried to add more layers and detection levels, how-
ever the results were not encouraging. As shown in Table IV,
Initial-4 L could not work efficiently on small objects even with
more layers and levels of detection. So we suggest that adding
more layers will probably not improve accuracy of the system.
Some other mechanisms and methods may be explored. One ex-
ample of two-phase SDBN detection framework is demonstrated
in [45] where first pass generates candidate regions and second
pass verifies detects object categories. Such methods need to be
evaluated on accuracy versus speed on real-time applications.

E. Multi/Hyperspectral Imagery

Finally, it is worth mentioning that many studies rely on using
multi/hyper spectral imagery for improved feature extraction

Qualitative results are shown of four network models on same images. It is clearly shown that proposed model detects object accurately in simple as well

and have demonstrated very good results particularly to solve the
problem of land cover classification [41], [51] —[53]. Although
these techniques are aimed at segmenting out stationary objects
(such as buildings, roads, vegetation, etc.), a possible future
study could be to use them for nonstationary (i.e., moveable)
object detection.

VII. CONCLUSION

In this article, we first introduced a dataset of horizontal
annotated satellite images of handful instances around 45 096
with the name of SIMD. Second, a one way forward pass object
detection framework has been introduced which work excellent
on object detection task on aerial imagery. Our proposed archi-
tecture use features extracted at initial levels to detect objects at
for different scales to cater object sizes from small to large. Our
proposed architecture predict object types and bounding boxes
on two datasets: VEDAI [7] and SIMD. We believe that our
trained model can be used for real time surveillance applications
as demonstrated by Amanatiadis et al. [35] who proposed a
surveillance detection system for various fire detection, and SAR
operations. In future, we look forward to use our research work
in development of real-time applications such as ATR, vehicle
presence detection, traffic flow management, parcel delivery
system, and autonomous drone landing.
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