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Abstract—The small size of labeled samples has always been
one of the great challenges in hyperspectral image (HSI) classifi-
cation. Recently, cross-scene transfer learning has been developed
to solve this problem by utilizing auxiliary samples of a relevant
scene. However, the disparity between hyperspectral datasets ac-
quired by different sensors is a tricky problem which is hard
to overcome. In this article, we put forward a cross-scene deep
transfer learning method with spectral feature adaptation for HSI
classification, which transfers the effective contents from source
scene to target scene. The proposed framework contains two parts.
First, the distribution differences of spectral dimension between
source domain and target domain are reduced through a joint
probability distribution adaptation approach. Then, a multiscale
spectral-spatial unified network with two-branch architecture and
a multiscale bank is designed to extract discriminating features
of HSI adequately. Finally, classification of the target image is
achieved by applying a model-based deep transfer learning strat-
egy. Experiments conducted on several real hyperspectral datasets
demonstrate that the proposed approach can explicitly narrow the
disparity between HSIs captured by different sensors and yield
ideal classification results of the target HSI.

Index Terms—Cross-scene deep transfer learning, hyperspectral
image (HSI) classification, multiscale spectral-spatial unified
network (MSSN), spectral feature adaptation (SFA).

I. INTRODUCTION

HYPERSPECTRAL imagery can provide a wealth of in-
formation about an imaged scene due to the combination

of spatial and spectral information [1]. As an important appli-
cation among numerous domains, hyperspectral image (HSI)
classification has been attracted extensive attentions for years.
However, the size of labeled samples is usually small, which
becomes a challenge of HSI classification. In order to tackle
this problem, cross-scene transfer learning strategy is developed,
which classifies the target image with only few labeled samples
by introducing auxiliary information acquired from a relevant
scene.
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The most straightforward way for cross-scene transfer learn-
ing is to train a classifier to classify the target image by utilizing
labeled samples of the source image directly. However, the
classification results can be seriously deteriorated as the distri-
bution disparity between images is completely neglected. In fact,
spectrums of the same ground object can vary in distributions
considerably due to many affecting factors during the imaging
process [2]. Therefore, the significant issue of cross-scene trans-
fer learning is to reduce the distribution differences between
source and target datasets, i.e., the domain adaptation problem.

Inspired by the typical methods in machine learning, several
domain adaptation approaches have been proposed for HSI
classification [3]–[7]. Based on the rotation-based ensemble and
the transfer component analysis [8], Xia et al. [9] generated a
transfer learning model for HSI classification. In [10], a dictio-
nary learning based feature-level domain adaptation technique
is proposed to overcome the spectral shift phenomenon that
appears in different hyperspectral image (HSIs). Shen et al.
[11] developed a feature adaptation and augmentation method
for cross-scene knowledge transfer, which learned a common
subspace by introducing two different projection matrices to
extract the transferable knowledge from the source HSI to the
target HSI. Recent years, deep learning model was introduced
to transfer learning and gained great progress [12]. The deep
networks can availably exploit high-level nonlinear feature rep-
resentation of images compared with the traditional shallow
models [13]–[16]. Based on this concept, Yang et al. [17]
proposed a deep transfer learning model, which is able to extract
hierarchical spectral-spatial features of HSI and achieve decent
classification accuracy for the target scene with scarce available
samples via a transfer-learning-based training strategy.

Although the classification results obtained by above methods
are encouraging, they are limited to the cross-scene tasks where
source and target datasets are imaged by same hyperspectral
sensor. In order to bridge the gap of images captured by dif-
ferent sensors, arduous efforts have been made. Kemker and
Kanan [18] introduced the self-taught learning strategy to HSI
classification, during which a large number of samples from
various hyperspectral datasets are input to a stacked convo-
lutional auto-encoder to learn fairly similar features, and the
obtained encoder can be utilized to classify the target scene
through a fine-tuning process [19]. However, this model failed
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to fully consider the distribution disparity triggered by spectral
shift between different hyperspectral sensors. In [20], Lin et al.
presented a deep transfer learning method for HSI classifica-
tion, which effectively established a correlation of the trained
top-level network between the source domain and the target
domain. The framework can be applicable for HSIs acquired
from different sensors, yet it is only available to the binary
classification task. In [21], a dual dictionary nonnegative matrix
factorization algorithm was proposed. By learning individual
domain-specific dictionaries for each image and utilizing graph
regularization strategy, the two datasets are bridged in a unified
feature space.

In this article, we propose a framework composed of a spectral
feature adaptation (SFA) process and a deep transfer learning
model for HSI classification. In the first part, the distribution
disparity of co-occurrence classes in HSI cross-scene transfer
learning is mainly focused. For the spectral vectors obtained by
different hyperspectral sensors, a novel domain adaption method
is proposed to project the original samples into a new feature
space where the spectral differences of marginal distribution and
conditional distribution between the source scene and the target
scene can be significantly reduced. In the second part, a cross-
scene training strategy based on a deep model that incorporates
the multiscale strategy into a two branch convolutional neural
network (CNN) [22] is generated to transfer effective knowledge
for the target domain. During the training process, bottom layers
of the pretrained network is transferred to the target image di-
rectly while the parameters of top layer are initialized randomly.
With a fine-tuning operation, the final network is obtained.
Contributions of this article can be summarized as follows.

1) A domain adaptation method based on the probability dis-
tribution of statistics is introduced to spectral dimension of
HSI to effectively reduce the distribution distance between
the source image and target image captured by different
sensors, thus the effectiveness of knowledge transfer can
be ensured.

2) A multiscale spectral-spatial unified network (MSSN)
model with cross-scene training strategy is designed for
HSI classification. The network consists of a two-branch
architecture and a multiscale bank, which extract mul-
tiscale spatial features and exploit spectral information
simultaneously.

The rest part of this article is organized as follows. In
Section II, previous works on domain adaptation and spectral-
spatial classification for HSI are briefly reviewed. Then, the
framework of the proposed method is detailed in Section III.
In Section IV, experimental datasets, analysis and discussion
of the experiment results are presented. Finally, summaries and
conclusions of our work are drawn in Section V.

II. RELATED WORK

A. Domain Adaptation

Domain adaptation is the most attended research subject in
transfer learning field [23]–[25], which aims at overcoming the
cross-domain disparity between the source domain and target
domain.

Take X as the input space, and Y as the output space for clear
mathematical expression. The traditional supervised learning
method aims at learning a model H from the labeled samples
to predict the unlabeled samples of domain DS . As for domain
adaptation in transfer learning, the main goal is to learn a proper
projectionH from the source domainDS to make predictions on
the samples of the target domain DT as accurately as possible.
Depending on the sample size of target domain, the adaptation
problems can be grouped into three situations depending on the
sample size of target domain.

1) The labeled samples are sufficient in target domain.
2) The sample size of target domain is small.
3) There are no labeled samples in the target domain.
In this article, we focus on the case that the target HSI contains

very limited labeled samples.

B. Spectral-Spatial Classification for HSI

With the combination of spatial and spectral information,
spectral-spatial classification methods have been proved to
achieve better accuracy than traditional pixel-level algorithms
[26]–[29]. For example, Huo and Tang [27] introduced the Gabor
filter to learn spatial information of HSI and combine it with
the spectral feature to achieve a better classification result, and
Jia et al. [30] proposed a spectral-spatial Gabor surface feature
fusion approach by generating a group of predefined 2-D Gabor
filters to extract spectral-spatial features of HSI. Considering
the shading component of hyperspectral data is uncorrelated
with the material of the imaged object, an intrinsic image
decomposition approach is presented in [31] to separate the
reflectance part from hyperspectral data. In the latest studies,
Wang et al. [32] generated a locality and structure-regularized
low-rank representation model which combines the spectral and
spatial features into a unified distance metric and achieves decent
classification accuracies without any complex classifiers, and
Zhou et al. [33] employed the extracted spectral-spatial features
as the input of the proposed compact and discriminative stacked
autoencoder due to the effectiveness and simplicity.

However, extracting features on one scale may not meet
the requirement of classification task since different ground
objects are of different scales. Therefore, several multiscale
spectral-spatial classification methods have been generated to
use the spatial information more sufficiently in recent years. For
example, the 3-D wavelet transform [34] and the 3-D Gabor
filter [35] designed for multiscale spatial feature extraction have
both achieved decent classification results. Furthermore, Dundar
and Ince [36] applied the multiscale superpixels to obtain local
information from different region scales so that the small and
large local regions are formed to acquire spatial information
well, and Li et al. [37] proposed a multiscale spectral-spatial
classification method by decomposing the dimension-reduced
image into several Gaussian pyramids to extract the multiscale
features. The multiscale strategy in these methods certainly
improved the classification accuracy, yet they are reliant on
manual interventions, and the extracted low-level features are
not adequate to describe the characteristics of different ground
objects discriminately.
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Fig. 1. Framework of the proposed method.

In this article, we generate a deep CNN model, which is well
suited for hyperspectral data to automatically learn the multi-
scale spectral-spatial features sufficiently, for our cross-scene
transfer learning framework.

III. PROPOSED FRAMEWORK

The distribution disparity between HSIs captured by different
sensors has been a tough problem which severely limited the
effectiveness of knowledge transfer in HSI classification task.
In this article, we present a novel cross-scene transfer learn-
ing method by jointly applying a distribution adaptation for
spectral dimension and an MSSN-based deep learning model.
The overall flowchart of the proposed approach is shown in
Fig. 1. During the SFA process, a proper projection for spectral
vectors is learned to explicitly reduce the distribution distance of
co-occurrence categories between the source and target datasets.
As for the deep transfer learning part, a two branch CNN archi-
tecture with a multiscale bank is designed to extract spectral and
spatial features simultaneously, and the final classifier network
for target HSI is obtained by a cross-scene training approach.
Details of our method are described in the following subsections.

A. Spectral Feature Adaptation

Spectral vectors acquired by different hyperspectral sensors
have different data distributions, which brings great challenges
to cross-scene transfer learning. Therefore, the significant task
is to exploit internal associations between the source and target
domains and reduce the distribution disparity efficiently, which
is summarized as the domain adaptation problem.

In domain adaptation, marginal probability distribution and
conditional probability distribution are two important data fea-
tures need to be matched between different domains [38]. Taking
D as an example that consists of a sample setX = {x1, . . . , xn}
and the corresponding label set Y = {y1, . . . , yn}, the marginal
probability of X is described as P (X), while the conditional
probability is formulated byP (y|x). Due to the different acquisi-
tion conditions, the underlying probability distributions of target
domain are generally different than that of the source domain.
Based on this, in this article, we present SFA for cross-scene

transfer learning by introducing a joint probability distribution
adaptation model [39].

Take Ds and Dt as two pixel-sets of the source HSI and target
HSI, whereDs is composed of a sample setXs = {x1, . . . , xnx

}
and the corresponding label set Ys = {y1, . . . , ynx

}, and Dt

is a sample set Xt = {x1, . . . , xnt
} with a large amount of

unlabeled samples. Assuming that the samples in both source
and target domains are classified in C categories, the goal of
the adaptation is to seek a proper projection H for xs ∈ Xs and
xt ∈ Xt. With the projection, spectral vectors are transformed to
a new feature space where the marginal distribution distance and
the conditional distribution distance between the two domains
are explicitly reduced. Considering the labeled samples of target
domain are limited to fully describe the probability distributions,
unlabeled samples are also introduced during SFA. The adapta-
tion process is detailed as follows.

1) Marginal Distribution Adaptation (MDA): The MDA is to
reduce the difference betweenP (HTxs) andP (HTxt), and the
key of which is to choose a fine function to measure the distance.
Due to the effective measure of the differences in probability
distributions, the maximum mean discrepancy (MMD), defined
as the mean distance between source domain and target domain
in the infinite-dimensional kernel space, is adopted [40]. The
expression is as follows:

DMDA(Ds, Dt) =

∥
∥
∥
∥
∥

1

n

n∑

i=1

HTxsi −
1

m

m∑

i=1

HTxti

∥
∥
∥
∥
∥

2

. (1)

Considering the complex solving procedure, this function can
be transformed to a kernel learning problem [41] and become

DMDA(Ds, Dt) = tr(HTXM0X
TH) (2)

where X is the combined dataset of Xs and Xt, and M0 =
[(M0)ij ] is a matrix computed as follows:

(M0)ij =

⎧

⎪⎪⎨

⎪⎪⎩

1/n2
s, xi, xj ∈ Ds

1/n2
t , xi, xj ∈ Dt

−1/nsnt, otherwise

(3)
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where n and m represent the number of samples in the source
domain and target domain, respectively. With the kernel strategy,
function (1) can be simplified and convenient to solve.

2) Conditional Distribution Adaptation (CDA): In order to
further narrow the gap between source domain and target do-
main, the unification of conditional distributions is also con-
sidered. However, it is tricky to minimize the distance between
P (ys|HTxs) and P (yt|HTxt), since the two distributions can
be hardly obtained due to the uncertain classification model.
To overcome this difficulty, we introduce the sufficient statistic
concept, which is commonly used in studying statistical prob-
lems, is introduced here. According to theory, some other sample
statistics can be selected to approximate the distribution when
there are too many unknown attributes in the large sample set
and the samples are of good quantity. Based on this, the involved
conditional distribution P (y|x) of sample set X can be approx-
imately instead by class-conditional distribution P (x|y). Thus,
P (ys|HTxs) andP (yt|HTxt) can be replaced byP (HTxs|ys)
and P (HTxt|yt) respectively. Moreover, considering the pos-
terior probabilities are incalculable since most samples in the
target domain are unlabeled, the pseudo-labeling strategy is
applied. By simply using the labeled samples to train a classifier,
the unlabeled ones are preclassified. Similar to the case of MDA,
MMD distance is utilized to measure the conditional distribution
differences

DCDA(Ds, Dt)

=
C∑

c=1

∥
∥
∥
∥
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∥
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2

(4)

where ns(c) is the number of the samples of class c in the source
domain, while nt(c) is of the target domain. Similar to MDA,
the kernel method is applied here to simplify

DCDA(Ds, Dt) =
C∑

c=1

tr(HTXMcX
TH) (5)

where matrix Mc = [(Mc)ij ] is computed by

(Mc)ij =

⎧
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(c)
s , xj ∈ D

(c)
t

xi ∈ D
(c)
t , xj ∈ D

(c)
s

0, otherwise

.

(6)
3) Optimization of the Adaptation Model: Since the adap-

tation goal is to reduce the distances of marginal distribution
and conditional distribution between source and target datasets
simultaneously, the mathematical model can be established by
integrating (2) and (5) into a new function as follows:

min

∑C
c=0 tr(H

TXMcX
TH) + λ ‖H‖2F

HTXAXTH
(7)

where the regularization term λ‖H‖2F is added to make the func-
tion robust, and the denominator HTXAXTH is to maintain
the variance of the dataset. Note that this function represents the
MMD distance of MDA and CDA when c = 0 and c = 1, . . . , C,
respectively, thus the two distributions is incorporated. For solv-
ing purpose, function (7) can be further optimized as follows:

min
C∑

c=0

tr(HTXMcX
TH) + λ ‖H‖2F

s.t. HTXAXTH = I. (8)

So far, the optimal function can be solved through the La-
grange multiplier algorithm, and the obtained result is expressed
as

(

X
C∑

c=0

McX
T + λI

)

A = XAXTHΦ (9)

where Φ = diag(φ1, . . . , φk) is the Lagrange multiplier. Note
that the pseudo-labeling strategy applied to the CDA might lead
to a comparatively low accuracy for classification at first, yet this
can be improved during the solution process. Specifically, the
prediction results obtained by the previous iteration are utilized
as the new pseudolabels for the current iteration, and thus the
accuracy of pseudo-labels increases steadily with each iteration.

B. Multiscale Spectral-Spatial Network (MSSN)

In order to better exploit efficient spectral-spatial features
of HSI, the MSSN is designed. As indicated in the graphical
illustration in Fig. 2, the network is a two-branch CNN with a
multiscale bank. Detail descriptions of MSSN are explained in
the following sections.

1) Two-Branch Architecture: As shown in Fig. 2, two
branches of the network are designed for spectral and spatial
feature extraction separately. For the pixel xn of hyperspectral
dataset, the spectral branch takes the adapted spectral feature
specn = HTxn of the corresponding pixel as input data. After l
layers of convolutional and max-pooling operations, the output
of the spectral branch is represented as F l(specn), which can be
regarded as the extracted spectral features. Since the input specn
is 1-D signal, the convolutional and pooling operations corre-
spond to 1-D computation. As for the spatial branch, considering
the high dimensionality characteristic of HSI, principal compo-
nent analysis (PCA) is performed on the spectral dimension, and
the spatial neighboring patch spatn ∈ Rr×r of the first principal
component is utilized as the input data source of the branch. After
l layers of convolutional and max-pooling operations, the output
spatial features F l(spatn) can be obtained. It is clearly that all
convolutional and pooling operations in spatial branch belong
to 2-D computations.

2) Multiscale Bank: Deep neural networks can learn multi-
ple hierarchical nonlinear representation, which means that the
extracted features in different convolution layer are correspond-
ing to different scale characteristics. Specifically, the extracted
features are usually some edges and textures during the first
convolution layer, while the features obtained at the higher layer
are likely to be the parts of the ground object. This concept
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Fig. 2. Detailed architecture of MSSN.

has been applied to optimally exploit diverse local structures of
HSI in [42], whereas multiscale convolutional filter bank is used
as an initial component of the CNN pipeline to provide higher
classification accuracy.

Based on the elaboration above, a strategy that effectively
combine the multiscale spectral and spatial features simultane-
ously is introduced to the spectral-spatial unified network. The
multiscale bank is shown in the green dashed box in Fig. 2, where
a fully-connected (FC) layer is added to each convolutional layer
in both branches with the same size, and the outputs of these FC
layers are merged into a new FC layer. Take the lth FC layer as
an example, the corresponding output can be formulated as

F l
n = f

[

W l(spel + spal) + bl
]

(10)

where f(∗) is the activation function, W l is the weight matrix
and bl is the bias term. spel and spal represent the flattened
outputs of the lth max-pooling layer in spectral and spatial
branches, respectively. The obtained F l can be considered as
the spectral-spatial feature extracted by the lth convolution layer.
Finally, all outputs of the FC layers in the multiscale bank are
merged to be a feature vector in a concatenate way

Fmulti = concat(F 1, . . . , FL) (11)

where L is the number of the total FC layers of the multiscale
bank. As the output of the proposed bank, Fmulti is input to
two FC layers to achieve the final multiscale feature Ffinal,
and a soft-max regression layer is adopted to accomplish the
classification task. Denote {specn, spatn} as the input data,
and Ffinal(n)as the corresponding feature learned by MSSN,
the normalized probability that the input data belongs to ith

category is calculated by

pi (n) =
eWiFfinal(n)

∑C
c=1 e

WcFfinal(n)
, i = 1, . . . , C (12)

where Wc, c = 1, . . . , C is the cth row of the soft-max layer. For
a labeled dataset contains N training samples, the loss function
of the soft-max regression layer can be formulated as

J = − 1

N

N∑

n=1

C∑

c=1

1 {c = yn} log pc (n) (13)

where yn is the class label of the nth sample of the dataset, and
1{∗} is an indicative function. The adaptive moment estimation
(Adam) [43] is applied to optimize the loss function.

C. MSSN-Based Cross-Scene Deep Transfer Learning

In order to transfer the efficient contents from source domain
to target domain, we train the MSSN with a cross-scene strategy
that inspired by the transfer learning method reported in [44]. It
is shown in the paper that the bottom layers of the deep network
principally extract features that are universality for different
datasets and well suited for cross-domain transfer learning. As
for the top layers, the extracted features tend to be more abstract
and carry with discriminant information of different datasets to
be classified. In addition, experiments of the paper has proved
that the classification accuracy can be enhanced effectively by
continually applying the lower layers of the network trained by
the source domain and fine-tuning the network with samples of
the target domain. Based on these facts, we develop a cross-scene
network training method for the proposed MSSN, which is
summarized as follows.
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Step 1: By inputting sufficient labeled samples of the source
HSI to MSSN, the deep network is fully trained and
thus achieves good feature extraction performance.

Step 2: The well-trained MSSN model is transferred to the
target domain, with the bottom layers are remained
the same as that of the source domain, while the
parameters of the top layers are initialized randomly.

Step 3: The labeled samples of the target HSI are input to
the network model for fine-tune operation, and thus
the adaptive MSSN for target HSI classification is
obtained.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset Descriptions and Evaluation Indexes

Four real-world HSI datasets are applied during the experi-
ments to validate the efficacy of the proposed cross-scene trans-
fer learning architecture. Details of these datasets are descripted
as follows.

The first dataset includes two scenes: Pavia Center and Pavia
University. They were acquired during a flight over an urban
area of Pavia in Northern Italy by ROSIS sensor, which contains
spatial resolution of 1.3 m and high-resolution spectral informa-
tion in the range from 430 to 860 nm. The Pavia center data has
a spatial dimension of 1096× 490 and 102 spectral bands, while
the Pavia University consists of 103 bands of size 610 × 340.
Three-band false color images are shown in Fig. 3(a) and (b).

The second hyperspectral dataset Salinas was collected by
AVIRIS sensor, it contains 16 labeled land cover classes and
consists of 224 spectral bands over the 400–2500 nm wavelength
range. The spatial dimension of Salinas is 512 × 217 pixels, and
three-band false color image is shown in Fig. 3(c).

The third real dataset is the University of Houston campus
and the neighboring urban area, which was captured by ITRES-
CASI 1500 hyperspectral imager. It has 144 spectral channels
that cover a wavelength range of 380–1050 nm. The spatial
dimension of Houston data consists of 349 × 1905 pixels, and
the resolution is 2.5 m. Fig. 3 shows the three-band false color
image of Houston data.

The fourth dataset is Chikusei [45] captured by Headwall
Hyperspec-VNIR-C imaging sensor in 2014. The ground sam-
pling distance is 2.5 m, and the original image includes 2517 ×
2235 pixels with 128 bands that covers a spectral range of
363–1018 nm. The three-band false color image of Chikusei is
shown in Fig. 3(e). We choose a 2100 × 2200 pixel-size image
in the experiment.

To evaluate the performance of the competing methods com-
prehensively, commonly used indexes, such as overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa)
are applied to record and assess the performance of different
classification methods in our experiments. Among these metrics,
OA measures the percentage of correctly classified pixels, AA
indicates the average value of the percentage of pixels that
are classified correctly for each class, and Kappa estimates the
percentage of pixels which are classified correctly through a
series of agreements [46]. All the classification results reported
in this article are averaged values of over ten trials.

Fig. 3. False color images of the applied hyperspectral datasets. (a) Pavia
Center. (b) Pavia University. (c) Salinas. (d) University of Houston campus.
(e) Chikusei.

B. Rationality Analysis of the Proposed Model

In order to verify the rationality and effectiveness of the
proposed method, some experiments are conducted on SFA part
and MSSN part. Experimental results are specifically analyzed
as follows.

1) Analysis of SFA: Two HSIs are chosen for the adaptation
experiment: the Houston data (source domain) and University
of Pavia (target domain). Since the adaptation process is devel-
oped for class-conditional distributions, only the co-occurrence
classes of the two images are considered, including road, grass,
trees and soil. Sample sizes of different classes are given in
Table I. Fig. 4 shows the original spectral curves of the source and
target HSI. It can be obviously seen from Fig. 4(a) and (b) that
there are large differences between the original spectral curves of
co-occurrence classes of the two images, and directly utilizing
these spectral vectors will definitely trigger negative transfer
phenomenon in classification. Note that only the first 103 bands



ZHONG et al.: CROSS-SCENE DEEP TRANSFER LEARNING WITH SFA FOR HYPERSPECTRAL IMAGE CLASSIFICATION 2867

TABLE I
SAMPLE SIZE OF THE CO-OCCURRENCE CLASSES IN UNIVERSITY OF

PAVIA AND HOUSTON DATASETS

Fig. 4. (a) Original spectral curves of Houston data. (b) Original spectral
curves of University of Pavia data.

of the source image that roughly equivalent to the band range of
the target image are applied for adaptation since Houston data
covers a wider spectral range compared with University of Pavia
data.

In order to make quantitative analysis, we choose 200 samples
and 500 samples of each class randomly from the source and
target domains. During the domain adaptation process, only ten
samples of each class are assumed to be labeled in target domain,
while the rest ones are assumed to unlabeled. By simply adopting
the support vector machine (SVM) classifier, we conduct cross-
domain classification experiment on the data pair to measure the
effectiveness of the proposed SFA method. In the experiment, we
train SVM classifier with the samples of source domain and test
the classification performance by samples of target domain. Two
cases are compared, one is using the chosen original samples
directly, the other is using the transformed features obtained by
SFA. With the cross-domain classification experiment, we test
the distribution adaptation model with regularization parameter
λ of different magnitude. The results indicate that the optimal
range is [0.5, 1.0]. In this experiment, λ is selected to be 0.56
with the highest classification accuracy.

Results of the cross-domain classification experiment are
given in Table II. Compared with the results predicted by classi-
fier that trained with original samples, the transformed spectral
features applied for cross-scene classification can improve the
accuracy by over 20% on average. To further illustrate the
adaptation performance intuitively, the first two components of
the transformed features are visualized in Fig. 5 (second row).
Since domain adaptation of spectral vectors can be regarded
as a feature transformation process essentially, we compare it
with the traditional PCA approach (displayed in the first row). It
can be clearly seen that in the new feature space transformed
by SFA, the disparity between source and target domains is

TABLE II
CLASSIFICATION ACCURACY RESULTS ON UNIVERSITY OF PAVIA OBTAINED BY

SVM CLASSIFIER

TABLE III
PARAMETERS SETTING OF MSSN

comparatively reduced, and components of different samples
from the same class are distributed in similar regions.

Although the experimental results in this subsection demon-
strate that the proposed SFA can certainly strengthens the cor-
relation between co-occurrence classes of source domain and
target domain while extracting effectively spectral features, it
is obvious that the clustering maps of grass and soil are not
satisfactory enough and the corresponding classification accu-
racies are lower than 50%. This is due to the high similarity
of original spectral curves between the two categories. Besides,
the low-level spectral features obtained by linear transformation
original spectral curves between the two categories. Besides, the
low-level spectral features obtained by linear transformation are
inadequate to accomplish accurate classification of the two cat-
egories. Therefore, we further complete the cross-scene transfer
learning model by combining SFA with the proposed MSSN,
which is analyzed in the following section.

2) Settings and Rationality Analysis of MSSN: The spectral
branch and the spatial branch of MSSN have similar architec-
tures. As depicted in Fig. 2, there are three convolutional layers
and two max-pooling layers in each branch. The parameter
setting of the two branches is given in Table III. Besides, a batch-
normalization layer is added after each convolutional operation
to avoid the vanishing gradient problem and accelerate the train-
ing process. All spatial neighboring patches input to the spatial
branch are fixed to the size of 21 × 21 during the experiments.
The number of neurons in each FC layer of the multiscale bank
is set to 1024, and the two FC layers before soft-max classifier
both contains 400 neurons. The MSSN model is implemented
using the TensorFlow open source library. During the network
training process, all convolutional kernels and weight matrix of
the FC layers are initialized through the initialize function of the
library, while the bias values are initialized as 0. The learning
rate is fixed as 0.001 and remains unchanged during the whole



2868 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 5. Visualization of the first two spectral components obtained by PCA and distribution adaptation. (a) First two components of road obtained by PCA.
(b) First two components of grass obtained by PCA. (c) First two components of tree obtained by PCA. (d) First two components of soil obtained by PCA.
(e) First two components of road obtained by feature adaptation. (f) First two components of grass obtained by feature adaptation. (g) First two components of tree
obtained by feature adaptation. (h) First two components of soil obtained by feature adaptation.

TABLE IV
CLASSIFICATION RESULTS FOR RATIONALITY ANALYSIS OF MSSN

procedure, and the batch size is set to 128. β1, β2 and ε of Adam
are all set to the default values. Maximal number of the training
iterations is 1 × 103.

In order to illustrate the significance of combining the
spectral-spatial information with the multiscale strategy, we
remove different part of the proposed MSSN to conduct a com-
parison research on the classification ability. First, the multiscale
bank and one of the two branches from MSSN are removed, re-
spectively, to testify the effectiveness of spectral-spatial feature
extraction method, which means that only spectral or spatial
features is exploited in the network. The network that simply
contains spectral branch is represented as MSSN-Spec, while
the spatial branch structured network is denoted by MSSN-Spat.
Then, the multiscale bank is removed from the MSSN to test
the validity of the multiscale bank. Since only the two-branch
architecture is left, the network is denoted as MSSN-nomul.

Two datasets (University of Pavia and Salinas) are used for
classification during the experiment, and 50 labeled samples of
each class are randomly selected for network training. Clas-
sification results of the two images are given in Table IV. It
can be clearly seen that the proposed MSSN outperforms other
cases in both datasets, which demonstrates the dominant position
of multiscale spectral-spatial feature extraction. Furthermore,

the MSSN-nomul achieves higher classification accuracy than
MSSN-spec and MSSN-spat, which proves the superiority of
the two-branch architecture.

C. Experimental Results

In this section, cross-scene transfer learning experiments are
carried out on different data pairs, and the classification results
of different methods are reported and discussed.

Three data pairs are tested during the experiments: the first
is the Center of Pavia data (source domain) and the University
of Pavia data (target domain), captured by same hyperspectral
sensor. The second and the third are scenes acquired from
different imagers, the data pairs are Salinas data (source domain)
and University of Pavia data (target domain), and Houston data
(source domain) and University of Pavia data (target domain).

1) Experiment 1: Center of Pavia Data and University of
Pavia Data: In the first experiment, we conduct cross-scene
transfer learning on the Center of Pavia (source domain) and
University of Pavia (target domain). Co-occurrence categories
and the corresponding sample sizes of the data pair are given in
Table V. Since the two images are acquired by ROSIS sensor
during a flight campaign, they share a strong correlation in
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Fig. 6. Line charts of classification accuracies on University of Pavia dataset. (a) Overall accuracies. (b) Average accuracies. (c) Kappa coefficients.

TABLE V
SAMPLE SIZE OF THE CO-OCCURRENCE CLASSES IN CENTER OF PAVIA AND

UNIVERSITY OF PAVIA

both spectral and spatial dimensions. Therefore, the proposed
transfer learning model is applied without the SFA process in
this experiment. For the settings of network training, the bottom
two layers of the pre-trained model are transferred, while the
parameters of the third layer are initialized randomly.

In order to fully test the performance of the proposed MSSN
model, we randomly choose 100, 250, and 500 samples of
each class from the source dataset for network pre-training,
and the corresponding fine-tune samples of the target domain
are randomly chosen with the number of {10, 25, 50, 75}. We
compare the proposed cross-scene transfer learning method with
the case that only the samples of target domain are used for
network training.

The classification results are given in Table VI. It can be
observed that the classification accuracy of the target dataset
can be effectively improved by applying our cross-scene transfer
learning method, especially when the samples size of the target
domain are relatively small. For instance, the transfer learning
strategy brings increase of 1.79%, 1.83%, and 3.45% accuracy
compared with the case that only ten labeled samples of the
target domain are involved during the network training process.

Furthermore, we draw polylines to illustrate how the number
of training samples influence the classification accuracy in Fig. 6.
It is worth-while to note that the gaps between these polylines
gradually close as the size of fine-tuning samples getting larger,
which actually confirms the fact that transfer learning strategy is
better suited to the case when labeled samples of target domain
are scarce.

2) Experiment 2: Houston data and University of Pavia
Data: The second experiment is conducted on Houston data
(source domain) and University of Pavia data (target domain),

which are campus scenarios of two different cities. The spectral
distributions of the two datasets are quite different since they
were captured by different hyperspectral sensors, and the spatial
resolution of the source image is lower than that of the target
image. Common classes and the corresponding sample sizes of
the data pair are already given in Table I.

Considering the different wavelength ranges, we chose the
first 103 bands from the source image to make sure that the
two datasets are of the same spectral dimension. Since our
method is presented for the case where labeled samples of the
target image are limited, we randomly chose {10, 25, 50, 75}
labeled samples of each class from University of Pavia. Besides,
200 labeled samples are randomly chosen from Houston data
to ensure the effectiveness of transferred knowledge and the
sufficiency of network pretraining. During domain adaptation
part, regularization parameter λ is set to be 0.56 according to
the previous analysis. As for the cross-scene network training
process, the first and second layers of the pre-trained MSSN are
transferred to the target image, while the top convolutional layer
is randomly initialized before fine-tuning.

In order to better illustrate the performance of the proposed
method, three strategies are compared during the experiment:
the traditional SVM, the MSSN trained by original labeled
samples of the target domain (MSSN), and MSSN trained by
spectral feature adapted labeled samples of the target domain
(SFA-MSSNtar).

The obtained classification accuracies are given in Table VII,
and it can be noted that the results yielded by the four methods are
in a progressive relation. The MSSN achieves higher accuracies
than SVM overall due to the reasonable network structure, yet
the improvements are not obvious since the network cannot
be fully trained under the situation of limited labeled samples.
In contrast, SFA-MSSNtar performs better than MSSN by in-
putting SFA projected vectors to the spectral branch, which
demonstrates the effectiveness of integrating SFA with MSSN
model. Finally, by transferring lower layers of the network
pretrained by samples of the source domain, the classification
results can be further improved. For instance, the OA and AA
can reach over 92% when only ten labeled samples of the
target domain are applied for fine-tuning, and the classification
accuracies of grass and soil are both up to 95% as the fine-tuning
sample size is enlarged to 75 per class. The results indicate that
the proposed method can overcome the distribution disparity
problem in cross-scene transfer learning and thus effectively
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TABLE VI
CLASSIFICATION RESULTS FOR THE FIRST DATA PAIR

TABLE VII
CLASSIFICATION RESULTS FOR UNIVERSITY OF PAVIA IN SECOND DATA PAIR

solve the problem of limited samples in HSI classification. Fig. 7
displays the ground truth and classification maps obtained by
different methods when the number of labeled samples is ten
in Pavia University. It is can be observed that the proposed
transfer learning framework achieves much better classification
performance than the other three with a result map that closest
to the ground truth.

3) Experiment 3: Chikusei Data and University of Pavia
Data: In the third experiment, cross-scene transfer learning
study is carried on Chikusei data (source domain) and University
of Pavia data (target domain) to further test the robustness of our
method. According to the dataset descriptions, the two scenes
are of different spectral ranges and spatial resolutions as they
were captured by different imagers. Besides, the Chikusei data
is in a larger scale that contains both agricultural and urban
areas compared with University of Pavia, which means that the
correlations between source and target images are even lower
than that of the data pair in experiment 2.

Since the spectral dimensions of the two images are different,
we choose 103 bands of the Chikusei data (band 13 to band 115)
to match with the bands of University of Pavia data according to
the wavelength range. Sample sizes of the co-occurrence classes

TABLE VIII
SAMPLE SIZE OF THE CO-OCCURRENCE CLASSES IN CHIKUSEI AND

UNIVERSITY OF PAVIA

in two datasets are given in Table VIII. Same with experiment
2 200 labeled samples and {10, 25, 50, 75} labeled samples
of each class are randomly chosen from the source and target
domain.

During the SFA process, spectral distribution differences be-
tween the two datasets are reduced by performing the domain
adaptation method, and the regularization parameter λ of the
objective function is selected as 0.58. The network training
settings of MSSN model based transfer learning are the same
as experiment 2: the pretrained bottom layers (first and second
layers) are transferred to the target domain directly, while the
parameters of top layer (third layer) is randomly initialized.
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Fig. 7. Classification maps for the University of Pavia dataset of the second data pair. (a) Ground truth map. (b) SVM. (c) MSSN. (d) SFA-MSSNtar. (e) Proposed.

TABLE IX
CLASSIFICATION RESULTS FOR UNIVERSITY OF PAVIA IN THE THIRD DATA PAIR

TABLE X
RUNTIME (SECONDS) OF THE PROPOSED METHOD

Finally, the classifier network is obtained by performing fine-
tune operation on the transferred MSSN.

Table IX shows the classification results of the experiment.
Comparing with the traditional SVM, MSSN trained by original
samples of the target domain, and MSSN trained by spectral
feature adapted labeled samples of the target domain (SFA-
MSSNtar), the proposed method yields the highest accuracies.
Similar to the case in experiment 2, SFA-MSSNtar can improve
the results to some extent when comparing with MSSN, and the
proposed method further enhances the classification accuracies.
Specifically, compared with applying SVM to the raw data, the
proposed method increases OA from 72.61% to 91% by using
ten labeled samples in the considered image. In addition, the

experimental data shows that the classification accuracies of
grass and soil can be greatly enhanced by transferring relevant
knowledge from the source image. As for road and trees, the
improvements are likely to be limited since the classification
accuracies acquired by traditional SVM are already up to 97%
even only ten samples are applied to train the classifier. It should
be noted that the margin between these methods is narrowed
as the sample size of the target domain enlarged, which gains
coincident conclusion with experiment 1 that transfer learning
can be more efficient to the situation of small sample size.

Finally, runtime of the proposed method conducted on these
data pairs is reported in Table X. The computation cost of the
proposed approach mainly contains two parts: the SFA and the
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MSSN based deep transfer learning which contains pretraining
and fine-tuning processes. The SFA is performed by using
MATLAB, and the training process of MSSN is implemented
on Pycharm platform with an NVIDIA GTX 1070 graphic card.
Each training time recorded in the table is computed in the
case where training iteration is taken as the maximum value.
Obviously, it takes longer to train the network with the increase
of the number of training samples. Note that testing on the whole
dataset costs less than one second, since only the feed-forward
propagation is performed.

V. CONCLUSION

In this article, we presented a novel cross-scene deep transfer
learning model for HSI classification. The model contains two
parts. With the proposed SFA in the first part, the distribution
differences between spectral vectors acquired by different sen-
sors can be explicitly narrowed. In the second part, the MSSN is
designed to exploit hierarchical spectral-spatial features of hy-
perspectral data. Through a cross-scene network training strat-
egy based on MSSN, relevant knowledge of the source dataset
can be efficiently transferred to the target dataset to help with
the classification task. Experimental results have shown that the
method can be very meaningful in dealing with the small-sample
problem in HSI classification, as it can significantly overcome
the cross-domain disparity and achieve comparatively ideal HSI
classification accuracies.

It is worth noting that the research in this article is still at
an early stage, since the co-occurrence categories appeared in
available hyperspectral datasets captured by different sensors
are relatively limited. Therefore, cross-scene transfer learning
experiments should be conducted on more hyperspectral data
pairs with diverse co-occurrence categories to further verify the
effectiveness of the proposed method.
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