
3350 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Ground Control Point Automatic Extraction for
Spaceborne Georeferencing Based on FPGA

Dequan Liu, Guoqing Zhou, Senior Member, IEEE, Dianjun Zhang, Xiang Zhou, and Chenyang Li

Abstract—Feature points that are obtained from the combined
speeded-up robust feature (SURF) detector and binary robust
independent elementary features (BRIEF) descriptor have a highly
robust performance. These points are previously considered the
ground control points (GCPs) for building a connection between
the image coordinates and the corresponding geodetic coordi-
nates. This article proposes a novel architecture to automatically
and intelligently extract GCPs based on field programmable gate
arrays (FPGAs). The parallelization SURF detector, BRIEF de-
scriptor, and BRIEF matching are implemented in a single Xil-
inx XC7VX980T FPGA system. Word length reduction, memory-
efficient parallel architecture, shift and subtraction strategies,
a sliding window for separable convolution, and an optimized
multispacer-scale are used to optimize the SURF detector. Im-
proved parallel adder trees are used to accelerate the BRIEF
matching. The proposed system achieves 380 frame per second
(fps) with a 100 MHz clock frequency, which satisfies the real-time
and low-power requirements of embedded devices. The results of
the experiment demonstrate that the proposed architecture, when
mapped onto a Xilinx Virtex-7 XC7VX980T FPGA device, can
select the robust feature points.

Index Terms—Binary robust independent elementary
features (BRIEF), field programmable gate arrays (FPGAs),
georeferencing, ground control points (GCPs), speeded-up robust
feature (SURF).

I. INTRODUCTION

G EOREFERENCING is an important technique of remote
sensing (RS) image for an extensive variety of tasks, and

estimation of the mathematical geometric calibration function
of RS image based on the ground control points (GCPs) is nec-
essary. Traditionally, GCPs are obtained by special equipment

Manuscript received January 17, 2020; revised May 15, 2020; accepted May
26, 2020. Date of publication June 1, 2020; date of current version June 29, 2020.
This work was supported in part by the National Natural Science of China under
Grants 41961065 and 41431179, in part by the Guangxi Innovative Development
Grand Program under Grants Guike AD19254002, GuikeAA18118038, and
GuikeAA18242048, in part by the Guangxi Natural Science Foundation for
Innovation Research Team under Grant 2019GXNSFGA245001, in part by the
Guilin Research and Development Plan Program under Grant 20190210-2, in
part by National Key Research and Development Program of China under Grant
2016YFB0502501, and in part by the BaGuiScholars Program of Guangxi.
(Corresponding author: Guoqing Zhou.)

Dequan Liu is with the School of Microelectronics, Tianjin University, Tianjin
300072, China (e-mail: 1017232001@tju.edu.cn).

Guoqing Zhou and Xiang Zhou are with the School of Microelectronics, Tian-
jin University, Tianjin 300072, China, and also with the GuangXi Key Laboratory
for Spatial Information and Geomatics, Guilin University of Technology, Guilin,
Guangxi, 541004, China (e-mail: gzhou@glut.edu.cn; zqx0711@tju.edu.cn).

Dianjun Zhang and Chenyang Li are with the School of Marine Sci-
ence and Technology, Tianjin University, Tianjin 300072, China (e-mail:
zhangdj@tju.edu.cn; lichenyang_1008@tju.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2020.2998838

or manually selected from a reference image or topographic,
which is computationally expensive. Furthermore, the tradition-
ally method cannot satisfy the practical real-time performance
[1]–[3] of RS image processing. The primary task of the RS
image matching is to find the correct GCPs correspondences
on the reference image and the warped image [4]. Therefore,
an automatic method for selecting GCPs is desired. This article
aims to automatically extract GCPs between the remotely sensed
image and the corresponding reference image in real-time.

In image matching, the keypoint can be recognized between
two or more images of the same scene. The images can be
employed in frequent matching for different times, perspectives,
and scales [5]. The local invariant feature has an important role in
image matching. The literature on local feature detection is vast
and dates to 1954, when Attneave [6] observed that information
about shape was concentrated at dominant points with high
curvature [7]. In 1980, Moravec [8] proposed a detector that was
repeatable for small variations and near edges and was applied
for stereo image matching. Harris and Stephens [9] improved
the prior Moravec detector in 1988. The Harris corner detector
includes gradient information and eigenvalues of symmetric
positive, which are defined as a 2 × 2 matrix to make it more
repeatable. The Harris corner detector is a prevalent feature
detection technique that combines a corner detector and edge
detector based on a local autocorrelation function. However,
it is not scale-invariant and sensitive to noise [10]. Smith and
Brady [11] developed the smallest univalue segment assimilat-
ing nucleus (SUSAN) detector in 1997. SUSAN is not sensitive
to local noise and high anti-interference ability [4]. To obtain
the scale-invariant feature, Lindeberg [12]–[14] investigated the
scale-invariant theory and presented a framework for selecting
local appropriate scales that can be used for automatic scales
selection. Mikolajczyk et al. [15] presented the Harris–Laplace
and Harris–Affine detectors and gradient location and orien-
tation histogram detector [16]. Lowe [17] proposed the scale-
invariant feature transform (SIFT) algorithm. Since each layer
relied on the previous layer and images had to be resized, it was
not computationally efficient [18]. Many SIFT variants, such
as PCA-SIFT [19], GSIFT [20], CSIFT [21], and ASIFT [22],
are relatively highly efficient. The speeded-up robust features
(SURF) is a local descriptor that is inspired by SIFT. SURF was
first introduced in [23] and fully explained in [24].

Recently, binary descriptors are being developed for im-
age processing. The binary robust invariant scalable keypoints
(BRISK) detector is a novel method for keypoint detection,
and description, and matching method that was proposed by

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:1017232001@tju.edu.cn
mailto:gzhou@glut.edu.cn
mailto:zqx0711@tju.edu.cn
mailto:zhangdj@tju.edu.cn
mailto:lichenyang_1008@tju.edu.cn

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3351

Leutenegger et al. [25]. BRISK is constructed by pixel compar-
isons, whose distribution forms a concentric circle surrounding
the feature. Calonder et al. [26] investigated the binary robust
independent elementary features (BRIEF) to efficiently extract
features. The BRIEF descriptor vector consists 512-, 256-, and
128-bit vectors. Hence, this feature substantially reduces the
memory required to store the feature descriptor and the time
consumed to match the features, while yielding comparable
recognition accuracy [27]. Rublee et al. [28] proposed a very
fast binary descriptor, named ORB, which was rotation invariant
and resistant to noise. The main contribution of this work is
the addition of an orientation component to the feature from
accelerated segment test (FAST) [29] feature detector and to
propose a learning method for choosing pairwise tests with
excellent discrimination power and a low correlation response
among the tests [30]. In [31], Alahi et al. suggested the fast
retina keypoint (FREAK) as a fast compact and robust keypoint
descriptor.

Feature-based matching algorithms have been extensively
employed for a variety of applications, such as object local-
ization, object recognition, motion estimation, and 3-D recon-
struction. These algorithms exhibit high-performance in image
matching. However, they cannot achieve a performance that is
sufficiently high to satisfy practical real-time requirements due
to the computational complexity and vast memory consumption
[32]–[35]. Therefore, researchers have applied the matching al-
gorithm to real-time applications. These studies can be grouped
into two main approaches: The first approach aims to reduce the
complexity of the matching algorithm without losing precision.
A principal component analysis (PCA) [19] and linear discrim-
inant analysis [36] are dimensionality reduction techniques that
reduce the size of the original descriptor, such as SIFT or SURF
[26], [37]. Calonder et al. [38] proposed a concept that used a
shorten descriptor to quantize its floating-point coordinates into
integers codes on fewer bits; the same result was proposed in [39]
and [40]. This concept is an effective way to replace the original
complex detector or descriptor with a speeded-up detector or
binary description, such as FAST [29], BRISK [25], BRIEF [26],
ORB [28], and FREAK [31]. Lowe [17] approximated the Lapla-
cian of Gaussian (LoG) via the difference of Gaussians filter. Bay
et al. [23] proposed approximation to the LoG by using
box filter representations of the respective kernels based
on SIFT.

The second method is focused on improving the process-
ing speed using dedicated hardware such as multicore central
processing units (CPUs), graphic processing units (GPUs), ap-
plication specific integrated circuits, and field programmable
gate arrays (FPGAs). Čížek et al. [41] proposed a processor-
centric FPGA-based architecture for a latency reduction in the
vision-based robotic navigation. Krajník et al. [42] presented
a complete hardware and software solution of an FPGA-based
computer vision embedded module that can carry out the SURF
image feature extraction algorithm. Yao et al. [43] proposed an
architecture of optimized SIFT feature detection for an FPGA
implementation of image matching. The total dimension of
the feature descriptor had been reduced to 72 from 128 of
the original SIFT. In [44], a parallelization and optimization

method to effectively accelerate the SURF was proposed and
achieved a maximum of 83.80 frame per second (fps) in a
real-machine experiment, which enables real-time processing.
Cheon et al. [45] analyzed the SURF algorithm and presented
a fast descriptor extraction method that eliminated redundant
operations in the Haar wavelet response step without additional
resources. Kim et al. [46] presented a parallel processing tech-
nique for real-time feature extraction in object recognition by
autonomous mobile robots, which utilized both CPU and GPU
by combining OpenMP, Streaming SIMD Extension and CUDA
programming. Schaeferling et al. [47] described two embedded
systems (ARM-based microcontroller and intelligent FPGA) for
object detection and pose estimation using sophisticated point
features. The feature detection step of the SURF algorithm was
accelerated by a special IP core. Huang et al. [48] designed an
architecture that combined the FAST detector and the BRIEF
descriptor for detection and matching with subpixel precision.
Lima et al. [30] proposed a hardware architecture based on the
BRIEF descriptor. This approach contributed to reducing the
number of memory accesses required to obtain the descriptor
while maintaining its discrimination quality. Zhao et al. [49]
presented an efficient real-time FPGA implementation for object
detection. The system employed the SURF algorithm to detect
keypoints in every video frame and applied the FREAK method
to describe the keypoints. In [50] and [72], a modified SURF
detector and BRIEF descriptor matching algorithm based on
FPGA were presented. To accelerate the SURF algorithm, an
improved FAST feature point combined with the SURF descrip-
tor matching algorithm was proposed in [51], which realized the
real-time matching of target images.

Inspired by previous research, this article proposes a hardware
architecture to automatically extract GCPs for the RS image
that is georeferenced based on the FPGA, which significantly
reduces the computational requirement. The main contribution
of this article is considered as follows.

1) A parallelization SURF detector and BRIEF descriptor are
designed in an FPGA.

2) Five approaches are applied to optimize the SURF de-
tector for hardware implementation. Moreover, a novel
suppressed method for candidate points that are not local
maxima in the 3-D scale-space domain is suppressed zero
in the nonmaximal suppression step, which ensures that
feature points do not overlap and are evenly spread over
the input image.

3) The BRIEF descriptor is adopted in the proposed system,
whose memory footprint is only a 256-bit vector, i.e., 32-
byte. However, the original SURF (O-SURF) descriptor
is a 512-bit vector of floating points, representing it still
requires a 64-byte. Moreover, the implementation of the
BRIEF matching is highly efficient in an FPGA, which has
the minimum Hamming distance between the reference
image and the sensed image. Improvement adder trees are
employed to reduce the complexity of the BRIEF matching
step.

The rest of this article is organized as follows. Section II
provides an overview of the SURF detector and BRIEF de-
scriptor. Five approaches for optimizing SURF feature detection

3352 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 1. Diagram of ground control point extraction for the remote sensing
images.

is introduced in Section III. Section IV describes the parallel
implementation on the SURF detector, the BRIEF descriptor,
and the BRIEF matching, which are implemented in a Xilinx
XC7VX980T FPGA. The evaluation experimental results and
comparison with existing schemes are reported in Section V.
Section VI concludes this article.

II. FEATURE DETECTOR AND DESCRIPTOR ALGORITHM

The process of feature-based matching has three steps: feature
detection, feature description, and feature matching. In this
article, an efficient real-time FPGA-based system, which com-
prises SURF feature detection, BRIEF descriptor, and BRIEF
matching, in a single chip, is investigated. The diagram of the
proposed process is presented in Fig. 1. The feature detection and
feature description module automatically extract GCPs from the
RS image. The feature matching module automatically matches
the image pairs based on the ground control point [4].

A. SURF Feature Detector

SURF [23], [24] is scale- and rotation-invariant, which takes a
grayscale image as an input. As shown in Fig. 1, SURF detector
can be divided into three steps, integral image, Hessian response,
and nonmaximum suppression. SURF feature detector will be
briefly summarized in this section.

1) Integral Image: Integral image is a novel method to im-
prove the performance of the subsequent steps of SURF detector
[32]. The integral image is used as a rapid and effective way to
calculate summations over image subregions [24]. Given the
pixel value i(x, y) for the coordinates (x, y) of an image with
width W and height H, the value of coordinates (x, y) in the
integral image ii(x, y) can be defined as follows [23], [52]:

ii (x, y) =
x∑

x′=0

y∑

y′=0

i (x′, y′) 0 ≤ x ≤ W, 0 ≤ y ≤ H. (1)

Fig. 2. Calculation cumulative sum of all pixels in the rectangular region by
(2). With an integral image, the sum values of the green rectangular region that
is bounded with A, B, C, and D are calculated by ii(A′) + ii(D)− ii(C ′)−
ii(B′).

Through the concept of integral image (as shown in Fig. 2),
the cumulative sum of all the pixels in the rectangular region
with the coordinates (x, y) of the top-left pixel, width w, and
height h can be stated mathematically as in [53]

Sw,h(x, y) =
x+w−1∑

x′=x

y+h−1∑

y′=y

i(x′, y′) = ii(x− 1, y − 1)

+ ii(x+ w−1, y + h− 1)−ii(x−1, y + h− 1)

− ii(x+ w − 1, y + h− 1) (2)

the initial condition of (2) is

ii(−1, y) = ii(x,−1) = ii(−1,−1) = 0. (3)

According to (2), integral image provides a fast way to get the
sum histogram of an arbitrary-sized rectangle, requiring only
three adders and calculating near-constant-time.

2) Hessian Response: In the O-SURF [23], [24], the scale
space was established by the purpose of the scale invariance.
The scale space can be divided into o(o ≥ 1) octaves, and each
octave is further divided into v(v ≥ 3) intervals to obtain a total
of o× v scale-levels. Each interval represents the response of the
Hessian determinant, which can be approximately defined as (4)
[23], [24], where ω = 0.912 is a weight coefficient that is used
to correct the error caused by approximation. The approximated
Dxx, Dyy , and Dxy box filter kernels are depicted in Fig. 3 [54],
where white, gray, and black pixels refer to the weight values
of {1, 0,−2} for the Dxx and Dyy box filters and {1, 0,−1}
for the Dxy box filter, respectively [55]. By the concept of
the integral image, the calculation of Dxx or Dyy requires 8
memory accesses [54], while the calculation of Dxy requires 16
memory accesses. The 32 memory accesses are marked with a
dot in Fig. 3. The scale σ is defined in the O-SURF method by
an analogy with the linear scale space. The distances between
the marked points increase with an increase of σ. However, the
number of points to be accessed remains constant [56]

det(A) = Dxx ×Dyy − ω2 ×Dxy
2. (4)

In the O-SURF method, the 9× 9 box filter is defined for the
first scale. However, Bay et al. did not specify exact values at
the remaining scales [57], [58]. Hence, numerous parameters for
the particular scale-levels (i, j), i ∈ [1, o] and j ∈ [1, v] need to
be defined. Lobe l, which is one-third of L—the size of the Dxx,

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3353

Fig. 3. 9 × 9 box filter that approximates the second-order Gaussian derivative in the x, y, and xy directions to obtain the Dxx, Dyy , and Dxy box filters.
(a) Dxx box filter. (b) Dyy box filter. (c) Dxy box filter.

TABLE I
BOX-SPACE SAMPLING VALUES

Dyy , and Dxy box filters, is 2o × v + 1. The scale σ is (2o ×
v + 1)× 1.2/3 = 0.4l. wl, which is the length of the white area
in the Dxx and Dyy box filters, is 2l+1 in [58] or 2l − 1 in
[59] or (3l + 1)/2 in MATLAB with OpenSURF by Evans [60].
gl, which is the length of the side of the gray area in the Dxx

and Dyy box filters, is (l − 1)/2 in [58] or (l + 1)/2 in [59] or
(3l + 1)/4 in [60]. The size of the octave increases by 6× 2o−1

pixels per interval. p is a constant of one pixel in the Dxy box
filter. Table I shows the values of the box filters.

According to (2), the separable convolution response of
the Dxx, Dxy , and Dyy can be computed by the following
equations:

Dxx = (A+ F −B − E)− 2× (B +G− C − F)

+ (C +H −D −G) (5)

Dyy = (A+ F −B − E)− 2× (B +G− C − F)

+ (C +H −D −G) (6)

Dxy = (A+ F −B − E)− (C +H −G−D)

− (I +N − J −M) + (K + P − L−O). (7)

3) Nonmaximum Suppression: To localize the interest point,
the nonmaximum suppression (NMS) is applied using the three
adjacent scales. The NMS compares a determinant with its 8
direction neighbors in its native scale interval, and 9 direction
neighbors in each of the intervals above and below for a total
of 26 direction neighbors. Moreover, a threshold is employed to
determine only the most distinctive image point as a candidate
point [24].

B. BRIEF Descriptor

BRIEF is a descriptor that uses binary tests between two pixels
in a smoothed image patch. More specifically, if p is a smoothed
image patch, the corresponding binary test τ is defined as follows
[26]:

τ(p;x, y) =

{
1 if I(p, x) < I(p, y)
0 otherwise

(8)

where p(x) is the intensity of p at the point x. The descriptor is
defined as a vector of nd binary tests [26]

fnd(p) =
∑

1<i≤nd

2i−1τ(p;xi, yi). (9)

3354 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

The length of nd is generally defined as 128-, 256-, and 512-
bit vectors. The result of the experiment in [26] demonstrated
that the performance of 256-bit vector was similar to that of
the 512-bit vector, while only marginally worse in other cases
[48]. Due to the limited hardware resources, a 256-bit vector is
employed in this article.

C. Hamming Distance Matching

In the BRIEF descriptor [26], the Hamming distance is used
to match. The Hamming distance can be efficiently calculated
by the XOR operation. Considering the two existing descrip-
tors S1 and S2, the corresponding Hamming distance (256-
bit) can be defined as Dhd(S1, S2) =

∑256
i=1 (ai ⊕ bi), where

S1 = a1a2, . . . , a256, S2 = b1b2, . . . , b256, and the value of ai
and bi is 0 or 1. The smaller is the value of Dhd, the higher is the
matching rate. Moreover, a threshold is used to check whether
points truly correspond to each other. If the Hamming distance
is less than a threshold, the feature points-pair are corresponding
points; otherwise, they are nonmatching points [50].

III. OPTIMIZATION OF SURF DETECTOR

To ensure efficient implementation of the SURF detector in
an FPGA, five approaches are applied to optimize the SURF
detector. The first approach, which is word length reduction
(WLR), is used to reduce the word length of the integral image
without a loss of accuracy. The second approach, which is
a memory-efficient parallel architecture (MEPA), is used to
parallel compute the output of FIFO. The third approach, which
consists of shift and subtraction strategies (SAS), is adopted
to simplify the response of the Hessian determinant. The SAS
transforms the floating-point operation into a shift and subtrac-
tion operation. The fourth approach utilizes sliding widow, is
used to parallel compute the Dxx, Dyy, and Dxy box filters.
The fifth approach is referred to a parallel multiscale-space. Five
approaches are introduced in this section.

A. Word Length Reduction (WLR)

SURF is a detector and descriptor of local scale- and rotation-
invariant image features. By using integral image for image
convolution, SURF computes faster than other state-of-the-
art algorithms but produces comparable or even better results
by utilizing repeatability, distinctiveness, and robustness [59].
However, the word length of the integral image substantially
impacts on the performance of designed hardware, especially
for implementations that need to store the entire integral image
on FPGA [55]. To solve this problem, Hsu et al. [61] pre-
sented a row-based stream processing (RBSP) method that only
needs a 34-row memory foot to simultaneously calculate the
response of two octaves box filters. The overflow based on two’s
complement-coded arithmetic and rounding with error diffusion
techniques were proposed by Belt [62], which can work on a face
detector for a VGA resolution with a 16-bit vector. However,
this approach has drawbacks, including rounding errors and an
additional constraint of a fixed size for a box filter. Lee and Jeong
[63] proposed a new structure for memory size reduction which

Fig. 4. Comparison of memory between worst-case and maximum width and
height of the box filter.

includes four types of image information: an integral image, a
row integral image, a column integral image, and an input image.
Using this method, the integral image memory can be reduced
to 42.6% for a 640 × 480 8-bit grayscale image. Ehsan et al.
[64]–[66] proposed a parallel recursive equation to compute the
integral image. This method not only substantially decreases
the operation and memory requirements (by at least 44.44%)
but also maintains the accuracy.

This article focuses on reducing the size of the memory and
parallelization computation. In [64], the maximum binary word
length of the integral image in the worst-case (WS) is stated as
follows:

iimax = (2Li − 1)×W ×H (10)

where ii is the word length of the integral image; iimax is the
value of WS; i is the input image; Li is the word length per
pixel of the input image; and W and H are the width and height,
respectively, of the input image. According to [62], the number
of bitsLii required for representing the WS integral image value
is (2Lii − 1) ≥ (2Li − 1)×W ×H . The total memory in bytes
required to store the integral image is (W ×H)× Lii/8. In
general, the maximum width and height of the box filter are
known, and the word length for the integral image using the
exact method [66] with complement-coded arithmetic needs to
satisfy

(2Lii − 1) ≥ (2Li − 1)×Wmax ×Hmax (11)

where Wmax and Hmax are the maximum width and maximum
height, respectively, of the box filter (i.e., lmax × wlmax or
wlmax × lmax in Fig. 3). For example, the input images comprise
8-bit gray data with resolution 512 ∗ 512 pixels. Table II lists
the WLR values of the different sizes of the box filter with four
octaves. The total memory in bytes is shown in Fig. 4. As shown
in Table II and Fig. 4, the box filters in [58] and [59] have the
same memory. The OpenSURF [60] has the smallest memory
compared with that of [58] and [59]. However, the value of l/2
is not an integer and is unsuitable for the FPGA. Compared
with the WS, WLR method substantially reduces the space of
memory.

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3355

TABLE II
WORD LENGTH (BIT) OF THE INTEGRAL IMAGE WITH THE MAXIMUM WIDTH AND HEIGHT OF THE BOX FILTER

B. Parallel Computation Integral Image

Equation (1) can be transformed into the pipeline recursive
equation that was presented by Viola–Jones [67]

S(x, y) = i(x, y) + S(x, y − 1) (12)

ii(x, y) = ii(x− 1, y) + S(x, y) (13)

where S(x, y) is the cumulative row sum value at the image
location (x, y).

In (1),M2N2/4 adders are used to compute the integral image
for an image with resolution M ×N pixels [68]. Apparently,
(1) is not suitable for a medium- or high-resolution image. In
the Viola–Jones parallel recursive (12) thru (13), the number of
additions is 2MN . However, the Viola–Jones method has time
delay drawbacks. To accelerate the processing of an integral
image, Ehsan et al. [66] proposed an n stage of a pipelined
system that processes n rows of an input image in parallel,
providing n integral image value per clock cycles without delay
when the pipeline is full. This method can be mathematically
defined as follows:

S(x+ j, y) = ii(x+ j, y) + S(x+ j, y − 1). (14)

For odd rows

ii(x+ 2k, y) = ii(x+ 2k − 1, y) + S(x+ 2k, y). (15)

For even rows

ii(x+ 2m+ 1, y) = ii(x+ 2m− 1, y) + S(x+ 2m, y)

+ S(x+ 2m+ 1, y) (16)

where n is the number of rows to be calculated (always a
multiple of 2),j = 0,, n− 1, k = 0,, n/2− 1, andm =
0,, n/2− 1. This set of equations requires 2MN +MN/2
addition operation for an input image with the resolutionM ×N
pixels [66]. Compared with Viola–Jones equation, the increase
is not significant.

To ensure a trade-off between the computation time and
consumption memory, the four-row parallel method is adopted
in the integral image module.

Fig. 5. Comparison between the SAS and the O-SURF for an image with the
resolution pixels.

C. Shift and Subtraction (SAS)

In (4), the weight coefficient ω2 = 0.831744 (ω = 0.912)
is derived to minimize the approximation error caused by the
box filters in the O-SURF. Hence, a floating-point architec-
ture is required to compute det(H). OpenSURF does not use
this value, but instead applies 0.81 (ω = 0.9). However, the
floating-point operation is more complex than that of a fixed
point. To overcome this problem, in Flex-SURF [55], the value
of ω2 = 0.875 is employed. The same strategy is adopted to
simplify the processing in [35], [48], [50], [69], [70]. Equation
(4) can be replaced by a subtraction and a shift operation [69]

det(Happrox) = Dxx ×Dxy − 0.875(Dxy)
2

= Dxx ×Dxy − (Dxy
2 −Dxy

2/8)

= Dxx ×Dxy −Dxy
2 + (Dxy

2 � 3). (17)

Fig. 5 shows the number of operations which are employed
to calculate the integral image using the SAS and the O-SURF.
As observed in Fig. 5, the SAS highly requires a larger number
of shift operations than O-SURF. However, the shift operation
consumes one clock period in the FPGA architecture. Compared
with the O-SURF, addition/subtraction (add-sub), multiplica-
tion and division are reduced by 4.44%, 13.33%, and 33.33%,
respectively.

3356 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6. Architecture of the sliding window.

D. Sliding Window

The sliding window technique has been indicated to be a good
choice for parallel computer data [30], [49], [71], and [72], which
includes four portions: the stream of an input image, a buffer,
slice registers, and a function module. The described fabric is
depicted in Fig. 6. The input data stream is buffered in a custom
pipeline structure and organized in pixel rows. The buffer is
implemented by a combination of block random-access memory
first in, first out (Block-RAM FIFO) and slice registers (SRs).
The SR sections enable access to all pixels in the respective
pipeline elements compared with a window. With each incoming
pixel, data are shifted by one pixel, which causes the window to
virtually slide forward. Hence, while the input image is streamed
into the pipeline, the window moves grid by grid from the top left
to the bottom right in the integral image of the original image and
reads the corresponding data from the slice register. A function
module, which is determined for a certain window operation,
interconnects to a subset of pixel registers to simultaneously
fetch all data required for one calculation. With each pixel shifted
into the structure, the function module calculates a new result
and produces an output data stream [54]. The module has three
types of sliding windows (N × N) in the total system, where
N is equal to 52, 5, and 35 in the Hessian response, non-max
suppression and BRIEF descriptor, respectively.

E. Parallel Multiscale-Space for Hessian Determinant

The larger is the number of octaves, the larger is the number
of hardware resources that will be consumed [73]. Avoiding
consumes more resources in the FPGA, and the parallel multi-
scale space architecture is simultaneously designed to compute
the Hessian determinant. The recommended two octaves and
six scales [24] are implemented to extract feature points, which
corresponds to the scales {9, 15, 21, 27} and {15, 27, 39, 51},
respectively.

The interpolation step in the Hessian determinant of the
O-SURF is computationally expensive because it requires the
calculation of the first- and second-order derivatives of the
Hessian matrices and their inverses. Two box filters with sizes 33
(l= 11, L= 33, 2l− 1 = 21, (2l+ 1)/2= 7), and 45 (l= 15, L=
45, 2l− 1= 29, (2l+ 1)/2= 8) are added to calculate the Hessian
determinants to create a scale-space with higher granularity and
remove the interpolation step without sacrificing the accuracy
[74]. A total of 8 scales {9, 15, 21, 27, 33, 39, 45, 51} are used
to compute the Hessian determinants.

To efficiently calculate the Hessian determinant, multiple
integral images need to be accessed by RBSP [61] in parallel
to perform the separable convolution of the integral image with
24 box filters (8 × 3). The RBSP cores are visualized in Fig. 7.
Fig. 7(a) lists the 10-line buffers for the box filter of size 15 ×
15. Fig. 7(b) reveals that the memory foot of 32 (8 + 8 + 16)
points of the box filters in Fig. 7(a), where Wx, Wy, and W
represent the corresponding points in the Dxx, Dyy , and Dxy

box filters. Fig. 7(c) shows the memory foot of 24 box filters
with the size {9, 15, 21, 27, 33, 39, 45, 51}.

The 32 sampled points are a separable convolution with the
15× 15 box filter as follows: L0 thru L15 data are parallel input
to the r-line buffer cores. Sixteen registers (R0 thruR15) are used
to store one-line data, and 32 points can be selected to calculate
the determinant of the Fast-Hessian. The box filter responses are
given as follows:

Dxx = (L3_R15 + L12_R10 − L3_R10 − L12_R15)

− 2× (L3_R10 + L12_R5 − L3_R5 − L12_R10)

+ (L3_R5 + L12_R0 − L3_R0 − L12_R5)

= (L3_R15 − L3_R10)− (L12_R15 − L12_R10)

− 2× (L3_R10−L3_R5)+2× (L12_R10−L12_R5)

+ (L3_R5 − L3_R0)− (L12_R5 − L12_R0) (18)

Dyy = (L0_R12 + L5_R3 − L0_R3 − L5_R12)

− 2× (L5_R12 + L10_R3 − L5_R3 − L10_R12)

+ (L10_R12 + L15_R3 − L10_R3 − L15_R12)

= (L0_R12 − L0_R3)− (L5_R12 − L5_R3)

− 2× (L5_R12−L5_R3)+2× (L10_R12−L10_R3)

+ (L10_R12 − L10_R3)− (L15_R12 − L15_R3)
(19)

Dxy = (L2_R13 − L2_R2)− (L7_R13 − L7_R8)

− (L2_R6 − L2_R2) + (L7_v7 − L7_R2)

− (L8_R13 − L8_R8) + (L13_R13 − L13_R8).
(20)

Because the values of R0 thru R15 are integral, then the mul-
tiply operation can be transformed into a shift operation. Equa-
tions (18)–(20) are decomposed into the vertical and horizontal
convolution, which are implemented by addition/subtraction and
a shift operation. The proposed separable convolution method
is simpler than proposed by Čížek [75]. The proposed separable
convolution utilization is onlyO(n) and is notO(n2) for parallel
implementation of the full sliding window [75].

In Fig. 7(c), the color dots are the selected positions for the
convolution operation. The sliding window shifts from the left
to the right and from the top to the bottom of the image. After
scanning through the whole image, the Hessian determinants are
simultaneously computed at the same period clock.

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3357

Fig. 7. Parallel multiscale space hessian detector. (a) Ten-line buffers for the box filter of size 15 × 15. (b) Sampled points of the box filter. (c) Pixel-access
window is required for parallel convolution with the 24 box filters.

Fig. 8. Proposed hardware architecture.

IV. HARDWARE IMPLEMENTATION

A. Total System Architecture

Considering the memory-space, power, and real-time con-
straints of embedded systems, the FPGA is selected to ensure
the system performing in real-time. The proposed total hardware
architecture, which is shown in Fig. 8, contains memory con-
troller module, integral image generation (IIG) module, SURF

detector module, BRIEF descriptor module, and BRIEF match-
ing module.

1) Memory Controller Module: To drive onboard, DDR3 and
Xilinx IP memory interface generator (MIG) are chosen to create
a logical connection with DDR3 [40].

2) IIG Module: An integral image is a novel method for
improving the performance of the SURF detector. The WLR
algorithm and four-row parallel method are adopted to optimize

3358 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 9. Hardware architecture for the integral image generator. (a) Memory
interface generator. (b) Integral image generator.

the integral image. The IIG module transforms the integral image
to the SURF feature detector module, memory controller mod-
ule, and BRIEF descriptor module. Therefore, the IIG module
is separated from the SURF feature detector module.

3) SURF Detector Module: The SURF detector extracts the
local maxima Fast-Hessian determinant as candidate points on
the multiscale and then locates the corresponding index and
scale. The FPGA-based SURF feature detection architecture is
divided into two submodules: Fast-Hessian response generation
and the location of an interesting point. The location of inter-
est point is divided into three steps: nonmaximal suppression,
threshold, and interpolation. To solve these problems, a parallel
architecture for the modified SURF algorithm is proposed. A
sliding window buffer is used to store the shifted pixels of an in-
tegral image for each clock. The buffer is shared with the Hessian
determinant. The SAS algorithm and parallel multi-scale space
are used to implement the Hessian determinant. An additional
33 and 45 scales are used to replace the step of interpolation,
without sacrificing the accuracy [74].

4) BRIEF Descriptor and Matching Module: A 256-bit
BRIEF descriptor and matching require a low hardware cost.
To reduce the complexity of the BRIEF descriptor, optimized
parallel adder trees and parallel comparators are employed for
the BRIEF descriptor and matching.

B. Integral Image Generator (IIG)

IIG module generates the integral image from the incoming
8-bit grayscale image via the MIG [40] to communicate with
off-chip on-board DDR3 SDRAM [refer to Fig. 9(a)], which are
stored by the row sequence.

The hardware architecture of the integral image [refer to
Fig. 9(b)] consists of an address generator, row accumulator,
multiplexer, and adder. The address generator module is de-
signed to generate the read address (rd_addr) and write address
(wr_addr) via the column and the row counter. The value of the
row counter generates the selector (sel) signal of the multiplexer
(MUX).

C. SURF Detector Implementation

1) Fast-Hessian Responses Implementation: After calculat-
ing the integral image in the IIG module, the integral image

Fig. 10. Parallel multiscale-space for fast Hessian response. (a) Sliding win-
dow. (b) Parallel implementation Dxx, Dyy , and Dxy . (c) Parallel calculation
Hessian determinant.

Fig. 11. Architecture for the pipelined Hessian determinant calculation.

is sent to 52-line buffer [76] and 52 × 52 silence registers in
the sliding window for the separable convolution. The detailed
design of the multiscale-space Hessian detector is visualized in
Fig. 10. This architecture includes the sliding window, parallel
implementation second-order Gaussian derivatives, and parallel
calculation Hessian determinants. To construct a sliding window
for the Hessian response, an FIFO architecture includes 52-line
buffers and 52 × 52 silence registers are used. The sliding
window provides parallel access to the integral image that is
required for the second-order Gaussian derivatives Dxx, Dyy,
and Dxy using (18) thru (20). The 256 pixels (due to overlap,
220 pixels exist) enable access to the response of the 8 box filters.

AfterDxx ,Dyy, andDxy are obtained, the Hessian response
can be calculated in the three pipelines by using (17), as shown in
Fig. 11. Eight Hessian determinants are concurrently calculated
and then parallel output to the nonmaximal suppression module.

2) Nonmaximal Suppression Implementation: NMS module
selects the local maximal Hessian determinant as a candidate
point. A 5× 5 sliding window is chosen in the NMS module, as
shown in Fig. 12 [74]. Eight multiscales can be divided into
six multiscale-spaces to concurrently obtain the local maxi-
mal of interest point. The 5× 5 points of each matrix can be
presented as Top_mi,j , Middle_mi,j , and Bottom_mi,j (i =
1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5). The center point Middle_m3,3 is
compared with its 74 neighbor points (24 neighbors on the
same scale and 25 neighbors in the consecutive scales above
and below) in parallel. If the result of the AND operation is
true, the center point is regarded as a candidate point [50], as
shown in Fig. 13. The candidate point is fed to the user-defined
threshold module. Only the candidate point which is great than

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3359

Fig. 12. Architecture of nonmaximal suppression module.

Fig. 13. Architecture of location maximum across the 74 neighbor points.

the threshold can be considered as a feature point, and the 1-bit
interest point flag is set to true [72], [74].

The eight-scale Hessian determinants are parallelized to com-
pute it synchronously. The search for a local maximum in the
scale-space domain is also pipelined and parallelized using
register FIFOs. Only the determinants that exceed a certain
threshold are saved, while the other determinants, which are
set to zeros points and not local maxima in the 3-D, scale-space
domain, are suppressed (= 0). This method ensures that features
do not overlap and are evenly spread over the input image [74].
Every local maximum is compared with a user-defined threshold
value. The threshold controls the total sensitivity of the detector
by fine-tuning the number of interest point that populate the
image [58]. Considering that the features in the same octave will
generate the same descriptor if they have the same coordinates
but a different scale, we only store one of them if more than one
feature simultaneously exists [77].

D. BRIEF Descriptor Implementation

The BRIEF-32 [26] algorithm is adopted to generate descrip-
tors. As shown in Fig. 14, the BRIEF-32 structure includes
two modules: image buffer and point pair comparator. In the

Fig. 14. Exemplary 256 patch-pairs for BRIEF descriptor.

image buffer module, a 35 × 35 subwindow was presented by
Huang [50]. Calonder et al. [26] provided the time required for
Gaussian smoothing, a simple box filter, and a box filter using the
integral image, the latter was considerably faster. Furthermore,
no matching performance loss occurred. In this article, a 5 × 5
box filter using integral images is used to smooth the original
image. The point comparator module has 256-binary (32-byte)
patch tests, which are related to blue lines that are sampled
from an isotropic (0, S2/25) Gaussian distribution. A total of
256 patch-points p(ri, cj) (i = 1, . . . , 256; j = 1, . . . , 256) are
parallel compared with the corresponding points using (8) in the
same cycle, and the 1-bit result with a comparison of 1or 0 is
stored in a 256-bit descriptor register in sequence.

E. BRIEF Matching Implementation

The Hamming distance is used to match the 256-bit descriptor
in the BRIEF matching. The BRIEF descriptor is robust to
illumination changes and small rotations [26], which renders it
an excellent candidate point for the georeferencing. The BRIEF
matching module consists of computing the Hamming distance
module and finding the minimal Hamming distance module. The
reference image descriptors are stored in FIFO1, and the sensed
image descriptors are stored in FIFO2. To ensure a trade-off
between the speed time and resource. The number of descriptor
points determines the accuracy of the matching. However, the
larger is the number of descriptor points, the larger is the number
resources that are consumed. For example, 100 pair-descriptors
are used to parallel implement the Hamming distance in Fig. 15
[50]. In the Hamming distance module [refer to Fig. 15(a)],
the Hamming distance is computed using 256 XOR gates, and
the results are stored in a 256-bit register. Improved parallel
pipelined adder trees [77] are used to compute the number
of “1s” in the 256-bit register. The 256-bit result of the XOR

is divided into eight 32-bit registers, which are paralleled to
calculate the Hamming distance by 5-level pipeline adder trees
[refer to Fig. 15(c)]. However, 9-level pipeline adder trees were
employed in [27].

The finding minimal Hamming distance module begins to
work when the 100 Hamming distances are received. The
minimum Hamming distance means the best matching. The
corresponding matching feature point is defined as the GCP.
The architecture of the finding minimal Hamming distance mod-
ule is shown in Fig. 15(b), and an improved compactor module
is used to compare the Hamming distance with seven levels of

3360 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 15. Structure of matching coprocessor. (a) Computation Hamming distance. (b) Locating minimal Hamming distance. (c) 5-level adder trees.

pipeline. Three compactor modules are reduced compared with
[50].

Based on the matching algorithms, the best matching feature
points are the GCPs. The coordinates of GCPs are the scan-
ning coordinates. However, in the georeferencing method, the
geodetic coordinates are used in the projection transformation
equation. Thus, the scanning coordinates must be transformed
into geodetic coordinates [1].

V. EXPERIMENT

A. Hardware Environment and Dataset

The proposed system is implemented in a signal Xilinx
XC7VX980T FPGA that has 612 000 logic cells, 1 224 000
Flip-Flops, 1500 kB Block RAM, and 3600 DSP slices. The
development kit Vivado (14.2 version) is used to design the
hardware of the system in Verilog HDL, and the simulation tool
is Vivado simulator. The first data sets are obtained from [50]
[see Fig. 17(a) and (b)], the second datasets are downloaded
from the BIGMAP software [see Fig. 17(c) and (d)]. The image
resolution of 512 × 512, and a 100 MHz working frequency
are assumed. Additionally, the results that are generated by the
implemented FPGA are compared with those of the OpenCV

library, which is written by Chris Evans in the MATLAB. As
expected, the results are identical.

B. Interest Point Analysis

The number of interest points is affected by some parameters
such as octave, scale, resampling, size of the nonmaximal matrix,
and the threshold [24], [50], [80]. Table III shows the number
of interest point with the different thresholds. As seen from
Table III, the variation in the threshold has a significant effect
on the interest point distribution, which is consistent with [72],
[74], and [80].

Fig. 16 shows the results of the different textures pair-points
matching. In Fig. 16(a), the number of matching and mismatch-
ing points is 79 and 21, respectively. When the image pairs are
covered with the high-rise building in Fig. 16(b), the matching
points and mismatching points are 83 and 17, respectively.
There are 700 matching points and 100 mismatching points
in Fig. 16(c). And there are 90 matching points and 130 mis-
matching points in Fig. 16(d). The results indicated that the
uniform distribution of the matching points and the matching
rate are affected by the number of matching points and the
textures of the object. Additionally, some errors occur in the
matched point pairs; however, these points can be eliminated by

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3361

Fig. 16. Matched remote sensing image pairs. (a) Matched bungalows image
pairs with the best 100 matching pair-points. (b) Matched high-rise building
pairs with the best 100 matching pair-points. (c) Matched expressway pairs with
the best 800 matching pair-points. (d) Matched bare soil pairs with the best 220
matching pair-points.

using robust fitting methods, such as RANSAC [15], [27], [42],
[81] or a combined algorithm of slope-based rejection (SR) and
correlation-coefficient-based rejection [48].

Fig. 17. Recall versus 1−precision of four RS image pairs. (a) Bungalows.
(b) Rise-high building. (c) Expressway. (d) Bare soil.

TABLE III
NUMBER OF FEATURE POINTS WITH DIFFERENT THRESHOLDS (THS)

3362 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

C. Accuracy Analysis

The recall versus 1−precision curves [16] describe useful
characteristics of a feature’s performance, and are widely used
as standard criterion, which is defined as follows:

recall =
#correctmatches

#correspondences
(21)

1− precision =
#falsematches

#correctmatches + #falsematches
(22)

where recall is the ratio of the number of correctly matched
points relative over the number of corresponding matched points.
1−precision is defined as the ratio of the number of false
matches to the total number of matches, which includes the
false matches and the correct matches. The curves are generated
below a threshold t, which determines whether two descriptors
are matched, if recall is increasing and 1−precision is equal to 0,
it means that the point pairs are all correctly matched without any
mismatching; if recall is static and 1−precision is increasing, it
means that the number of falsely point pairs is increasing, while
the correctly point pairs remain unchanged [40].

SURF+BRIEF method has a better matching performance
in different land coverages than that of SURF in the software
(OpenCV2.4.9 + Microsoft Visual Studio 2015) [50]. In this ar-
ticle, the performance evaluation of the FPGA-based implemen-
tation is also conducted and compared with that of OpenSURF
in MATLAB [60]. The relationship between the two images can
be described by the Homography matrix [40]. The Homography
matrices of the four image pairs are calculated in advance by
MATLAB on a PC. The results are listed as (23)–(26) shown at
the bottom of this page.

Inspired by [40], the number of detected points in each image
is also defined as approximate 100 and there are 100 point-pairs
output by the PC. The higher value of recall and the lower value
of 1−precision mean better performance of matching. When
1−precision = 0 (i.e., the number of falsely point pairs is 0), the
value of recall is equal to “m,” which means “100×m” correctly
point pairs (the maximum number of point pairs is 100). While
1−precision stops at value “n,” the number of falsely point pairs
is “100 × n”. The curves of recall versus 1−precision of FPGA
and PC implemented are shown in Fig. 17.

In the bungalow image pairs [see Fig. 17(a)], the curve of
FPGA implemented is slightly lower than that of PC-based. In
other words, the performance of the PC-based is slightly better
than that of the FPGA’s. In addition, when 1−precision = 0, the
recall of FPGA-based and PC-based is approximately 0.79 and
0.81, respectively. Finally, the 1−precision of FPGA-based and
PC-based stops at approximately 0.20 and 0.14, respectively.

In the high-rise building image pairs [see Fig. 17(b)], the curve
of PC-based is slightly higher than that of FPGA-based. When
1−precision = 0, the recall of FPGA-based and PC-based is ap-
proximately 0.82 and 0.85, respectively. Finally, the 1−precision
of FPGA-based and PC-based stops at approximately 0.15 and
0.10, respectively.

The expressway texture in Fig. 17(c), the PC-based curve is
slightly higher than that of FPGA-based. When 1−precision =
0, the recall of FPGA-based and PC-based is approximately 0.70
and 0.71, respectively. Finally, the 1−precision of FPGA-based
and PC-based stops at approximately 0.23 and 0.20, respectively.

In the bare soil texture image pairs [see Fig. 17(d)], the FPGA-
based curve is slightly higher than that of PC-based. When
1−precision = 0, the recall of FPGA-based and PC-based is ap-
proximately 0.30 and 0.29, respectively. Finally, the 1−precision
of FPGA-based and PC-based stops at approximately 0.41 and
0.44, respectively.

The combined SURF+BRIEF method was also presented in
[50] and [72], and the same criterion recall versus 1−precision
curves is used to evaluate the matching performance. Experi-
ments indicated that the combined SURF+BRIEF method has
a similar performance with [40], [50], [72]. Hence, the final
computation accuracy is acceptable.

As shown in Fig. 17, the performance of the FPGA-based
implementation is slightly worse than that of the PC-based
implementation. The reasons are listed as follows [50], [73].

1) Error is inevitable when the floating-point data are ap-
proximated with fixed-point data, and an error analysis is
conducted [72]. To save logic resource, several fixed-point
approximations are implemented to save resources and fit
the entire architecture on a single Xilinx chip. The Hessian
determinant is approximated using only shifting and the
adding operation [35], [48], [50], [69], [70].

Hbungalows =

⎡

⎣
1.024682517497177 0.018725015152393 −5.404435483561459
0.015206213894699 1.014273691140137 −2.552171349203126
0.000024222830514 0.000023299587958 1.000000000000000

⎤

⎦ (23)

Hhigh−risebuilding =

⎡

⎣
1.099260397052538 0.002259608451860 −7.957861186118295
0.090326101809412 0.955409181508876 −4.421034816054379
0.000271661969942 −0.000085315081328 1.000000000000000

⎤

⎦ (24)

Hexpressway =

⎡

⎣
1.000297662301777 0.025695798331601 −66.220856181085963

−0.032698271963169 1.023565673743905 8.462326102920549
− 0.000064630077908 0.000065894730718 1.000000000000000

⎤

⎦ (25)

Hbaresoil =

⎡

⎣
1.061661003420602 −0.064774241169707 −22.139327368389228
0.030845167584049 0.861666704860821 6.043495802072064
0.000065697594479 −0.000382940095883 1.000000000000000

⎤

⎦ . (26)

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3363

TABLE IV
COMPARISON OF FPGA UTILIZATION

2) Only two octaves are implemented to detect feature points,
which will inevitably cause performance degradation.

D. Performance of FPGA Analysis

1) FPGA Resources Utilization: A total of 298 864 (48.8%)
slice LUTs, 267 095 (21.82%) slice FFs, 144 DSP (4%), and 11
Kb (0.73%) memories that are used to implement the proposed
architecture. Two octaves and 8 scales [6 O-SURF scales and 2
extra scales (33 and 45)] are used to build the Hessian response.
The SAS, sliding window, parallel multiscale-space, and parallel
pipelined add-trees are used to optimize the SURF detector
and BRIEF descriptor. Compared with [27], [53], and [72], the
BRAMs resource is significantly reduced but the slice logical
resource substantially increases compared with [27], [32], [53],
[72], [74], and [78]. In [50] and [72], the same algorithm
was proposed, but only six scales were used to compute the
Hessian detection, and the interpolation step was omitted. This
method consumes fewer resources but reduces the performance
of subpixel precision [73]. Cai et al. [33] have designed a parallel
and pipeline architecture for SURF algorithm. The SURF image
feature point detecting system is implemented with hardware
and software co-design. There are four modules in the FPGA
architecture, which are integral image module, integral image
buffer module, Hessian calculation module, and nonmaximal
suppression module. However, we proposed an FPGA architec-
ture including SURF detector, BRIEF descriptors, and BRIEF
matching. Table IV lists the comparison results between the
proposed method and the method that have been published based
on the FPGA.

2) Speed Comparison: Speed is one of the most import
factors of on-board detection and matching. In the proposed
method, the run time of the integral image, SURF detection,
BRIEF descriptor, and BRIEF matching is 2.62 μs, 2.6 ms,
2.48 μs, and 15.56 μs, respectively. The total run time is about
2.62 ms, which guarantees a frame rate of 380 fps with a
resolution of 512 × 512 pixels at 100 MHz. An efficient image
matching system based on an FPGA chip was proposed in
[27] which can be implemented with the SIFT feature detector,
BRIEF descriptor, and BRIEF matching for two 1280 × 720
images within 33 ms, at 30 fps. The hardware and software
co-design system was proposed in [76], only the Fast-Hessian

TABLE V
COMPARISON OF THE PERFORMANCE OF FPS (SW: SOFTWARE; HW:

HARDWARE)

TABLE VI
COMPARISON OF THE PERFORMANCE OF TIME

detector part of SURF has been chosen for hardware-only im-
plementation. Generation of the SURF descriptor is handled en-
tirely by software. The FPGA-SURF implementation achieves
about 10 fps at HD (1024 × 768 pixels) resolution, which is a
necessity for real-time operation. A model which combines the
modified SURF detector and BRIEF descriptor was presented
and implemented in FPGA [50], which supports a throughput of
304 fps for 512× 512 pixels under a 100 MHz. An FPGA design
that combines SURF detector and FREAK descriptor for real-
time object detection [49] can process video frames with 800 ×
600 pixels resolution at 60 fps. In [78], the hardware-accelerated
version using the FPGA obtained execution times was 0.047 s
for the image sequences with a resolution of 640 × 480. In
[74], an optimized FPGA-based SURF extractor was proposed,
which achieved 131.36 fps for a video stream of VGA resolution
at 40.355 MHz. The throughput of [27], [43], [50], and [78] is
28, 10, 80, and 60 Mbps respectively. The proposed system can
achieve 100 Mbps throughput. The comparisons of the proposed
method with other investigators are shown in Tables V and VI.

VI. CONCLUSION

An optimized FPGA-based architecture for SURF and BRIEF
algorithm is proposed to select the robust ground control points
for georeferencing with RS image. The pipeline and parallel
structure on-chip system includes a modified SURF detector
and BRIEF descriptor. In the SURF detector module, the WLR
method is used to reduce the word length of the integral image

3364 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

without a loss of accuracy. MEPA method is used to compute
the output of the FIFO in parallel. SAS method is adopted to
simplify the response of the Hessian determinant, and sliding
widow is used to compute the Hessian determinant in parallel.
In the BRIEF descriptor module, only a 256-bit vector memory
footprint is used to store a feature point descriptor. Enhanced
adder trees are employed to reduce the complexity of the BRIEF
matching step.

Four pairs of remotely sensed images with different textures
are applied to evaluate the performance of FPGA-based imple-
mentation. The results of experiment indicated that the proposed
architecture can achieve a real-time performance with 380 fps
at 100 MHz. The proposed algorithm combines the accuracy
of SURF detectors and the rapidity of the BRIEF descriptor
to obtain a quick and accurate way of matching. Hence, the
combined SURF-BRIEF system has the advantages of real-time,
low-power, and high portability.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the asso-
ciate editor for their insightful comments and suggestions.

REFERENCES

[1] D. Liu et al., “On-board georeferencing using FPGA-based optimized
second-order polynomial equation,” Remote Sens., vol. 11, no. 2, Jan. 2019,
Art. no. 124, doi: 10.3390/rs11020124.

[2] G. Zhou, R. Zhang, N. Liu, J. Huang, and X. Zhou, “On-board ortho-
rectification for images based on an FPGA,” Remote Sens., vol. 9, no. 9,
Aug. 2017, Art. no. 874, doi: 10.3390/rs9090874.

[3] C. C. Leng, H. Zhang, B. Li, G. R. Cai, Z. Pei, and L. He, “Local
feature descriptor for image matching: A survey,” IEEE Access, vol. 7,
pp. 6424–6434, 2018.

[4] X. Deng, Y. Huang, S. Feng, and C. Wand, “Ground control point extraction
algorithm for remote sensing image based on adaptive curvature thresh-
old,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, pp. 137–140.

[5] H. Zhang and Q. Hu, “Fast image matching based-on improved SURF
algorithm,” in Proc. Int. Conf. Electron., Commun. Control, Sep. 2011,
pp. 1460–1463, doi: 10.1109/ICECC.2011.6066546

[6] F. Attneave, “Some informational aspects of visual perception,” Psycho-
logical Rev., vol. 61, no. 3, pp. 183–193, 1954, doi: 10.1037/h0054663.

[7] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: A
survey,” Found. Trends Comput. Graph. Vision, vol. 3, no. 3, pp. 177–280,
Jun. 2008, doi: 10.1561/0600000017.

[8] H. P. Moravec, “Rover visual obstacle avoidance,” in Proc. 7th Int. Joint
Conf. Artif. Intell., Aug. 1981, pp. 785–790, doi:10.1007/s00427-011-
0383-3.

[9] C. Harris and M. Stephens, “A combined corner and edge detec-
tor,” in Proc. Alvey Vision Conf., vol. 15, no. 50, pp. 147–151, 1988,
doi:10.5244/C.2.23.

[10] M. Y. I. Idris, N. B. A. Warif, N. M. Arof, A. W. A. Wahab, and Z. Razak,
“Acceleration FPGA-SURF feature detection module by memory access
reduction,” Malaysian J. Comput. Sci., vol. 32, no. 1, pp. 47–61, Jan. 2019,
doi:10.22452/mjcs.vol32no1.4.

[11] S. M. Smith and J. M. Brady, “SUSAN—A new approach to low level
image processing,” Int. J. Comput. Vision, vol. 23, no. 1, pp. 45–78,
May 1997, doi:10.1023/A:1007963824710.

[12] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at
different scales,” J. Appl. Statist., vol. 21, nos. 1/2, pp. 225–270, Jun. 1994,
doi:10.1080/757582976.

[13] T. Lindeberg, “Scale-space: A framework for handling image structures at
multiple scales,” in Proc. CERN School Comput., Sep. 1996, pp. 1–12.

[14] T. Lindeberg, “Feature detection with automatic scale selec-
tion,” Int. J. Comput. Vision, vol. 30, no. 2, pp. 79–116, 1998,
doi:10.1023/A:1008045108935.

[15] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” Int. J. Comput. Vision, vol. 60, no. 1, pp. 63–86, Oct. 2004, doi:
10.1023/b:visi.0000027790. 02288.f2.

[16] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615–1630, Feb. 2005.

[17] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Jan. 2004,
doi:10.1023/B:VISI.0000029664.99615.94.

[18] C. Evans, “Notes on the OpenSURF library,” Univ. Bristol, Bristol, U.K.,
Tech. Rep. CSTR-09-001, Jan. 2009.

[19] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vision Pattern Recognit., Jul. 2004, pp. 506–513.

[20] E. N. Mortensen, H. Deng, and L. Shapiro, “A SIFT descriptor with
global context,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit., 2005, pp. 184–190.

[21] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: A SIFT descriptor with color
invariant characteristics,” in Proc. Comput. Vision Pattern Recognit., 2006,
pp. 1978–1983, doi: 10.1109/CVPR.2006.95.

[22] J. M. Morel and G. Yu, “ASIFT: A new framework for fully affine
invariant image comparison,” SIAM J. Imag. Sci., vol. 2 no. 2, pp. 438–469,
Apr. 2009, doi: 10.1137/080732730.

[23] H. Bay, T. Tuytelaars, and L.V. Goo, “SURF: Speeded up robust fea-
tures,” in Proc. Eur. Conf. Comput. Vision, 2006, pp. 404–417, doi:
10.1007/11744023_32.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vision Image Understanding, vol. 110, no. 3,
pp. 346–359, Jun. 2008, doi: 10.1016/j.cviu.2007. 09.014

[25] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proc. IEEE Int. Conf. Comput. Vision,
Nov. 2011, pp. 2548–2555.

[26] M. Calonder, V. Lepetit, M. Oezuysal, T. Trzcinski, C. Strecha, and P.
Fua, “BRIEF: Computing a local binary descriptor very fast,” IEEE Trans.
Pattern Analy. Mach. Intell., vol. 34, no. 7, pp. 1281–1298, Jul. 2012.

[27] J. H. Wang, S. Zhong, W. H. Xu, W. J. Zhang, and Z. G. Cao, “A FPGA-
based architecture for real-time image matching,” Proc. SPIE, vol. 8920,
Oct. 2013, Art. no. 892003, doi: 10.1117/12.2031050.

[28] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput. Vision,
Nov. 2011, pp. 2564–2571.

[29] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking,” in Proc. 10th IEEE Int. Conf. Comput. Vision, Oct. 2005,
pp. 1508–1515.

[30] R. D. Lima, J. Martinez-Carranza, A. Morales-Reyes, and R. Cumplido,
“Accelerating the construction of BRIEF descriptors using an FPGA-based
architecture,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs, 2015,
pp. 1–6, doi: 10.1109/ReConFig.2015.7393285.

[31] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina keypoint,”
in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2012. pp. 510–517.

[32] J. Zhao, S. Zhu, and X. Huang, “Real-time traffic sign detection using
SURF features on FPGA,” in Proc. IEEE High Perform. Extreme Comput.
Conf., 2013, pp. 1–6.

[33] W. Cai, Z. Xu, and Z. Li, “A high performance SURF image feature
detecting system based on ZYNQ,” DEStech Trans. Comput. Sci. Eng.,
vol. 12, pp. 256–261, 2017, doi:10.12783/dtcse/cii2017/17261.

[34] G. Zhou and R. Li. “Accuracy evaluation of ground points from
IKONOS high-resolution satellite imagery,” Photogrammetry Eng. Re-
mote Sens., vol. 66, no. 9, pp. 1103–1112, Sep. 2000, doi:10.1016/S0924-
2716(00)00020-4.

[35] S. S. Cai, L. B. Liu, S. Y. Yin, R. Y. Zhou, W. L. Zhang, and S. J.
Wei, “Optimization of speeded-up robust feature algorithm for hardware
implementation,” Sci. China Inf. Sci., vol. 57, no. 4, pp. 1–15, Jan. 2014,
doi: 10.1007/s11432-013-4946-y.

[36] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for local
image descriptors,” in Proc. IEEE 11th Int. Conf. Comput. Vision, 2007,
pp. 1–8.

[37] R. Rani, A. P. Singh, and R, Kumar, “Impact of reduction in descriptor size
on object detection and classification,” Multimedia Tools Appl., vol. 78,
no. 7, pp. 8965–8979, Nov. 2018, doi: 10.1007/s11042-018-6911-7.

[38] M. Calonder, V. Lepetit, P. Fua, K. Konolige, J. Bowman, and P. Mihelich,
“Compact signatures for high-speed interest point description and match-
ing,” in Proc. IEEE 12th Int. Conf. Comput. Vision, 2009, pp. 357–364.

[39] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011

[40] J. Huang, G. Zhou, X. Zhou, and R. Zhang, “A new FPGA architecture of
FAST and BRIEF algorithm for on-board corner detection and matching,”
Sensors, vol. 18, no. 4, Mar. 2018, Art. no. 1014, doi: 10.3390/s18041014.

https://dx.doi.org/10.3390/rs11020124
https://dx.doi.org/10.3390/rs9090874
https://dx.doi.org/10.1109/ICECC.2011.6066546
https://dx.doi.org/10.1037/h0054663
https://dx.doi.org/10.1561/0600000017
https://dx.doi.org/10.1007/s00427-011-0383-3
https://dx.doi.org/10.5244/C.2.23
https://dx.doi.org/10.22452/mjcs.vol32no1.4
https://dx.doi.org/10.1023/A:1007963824710
https://dx.doi.org/10.1080/757582976
https://dx.doi.org/10.1023/A:1008045108935
https://dx.doi.org/10.1023/b:visi.0000027790. ignorespaces 02288.f2
https://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://dx.doi.org/10.1109/CVPR.2006.95
https://dx.doi.org/10.1137/080732730
https://dx.doi.org/10.1007/11744023_32
https://dx.doi.org/10.1016/j.cviu.2007. ignorespaces 09.014
https://dx.doi.org/10.1117/12.2031050
https://dx.doi.org/10.1109/ReConFig.2015.7393285
https://dx.doi.org/10.12783/dtcse/cii2017/17261
https://dx.doi.org/10.1016/S0924-2716(00)00020-4
https://dx.doi.org/10.1007/s11432-013-4946-y
https://dx.doi.org/10.1007/s11042-018-6911-7
https://dx.doi.org/10.3390/s18041014

LIU et al.: GROUND CONTROL POINT AUTOMATIC EXTRACTION FOR SPACEBORNE GEOREFERENCING BASED ON FPGA 3365

[41] P. Čížek, F. Jan, and D. Masri, “Low-latency image processing for vision-
based navigation systems,” in Proc. IEEE Int. Conf. Robot. Automat., 2016,
pp. 781–786.

[42] T. Krajník, J. Šváb, S. Pedre, P. Čížek, and L. Přeučil, “FPGA-based mod-
ule for SURF extraction,” Mach. Vision Appl., vol. 25, no. 3, pp. 787–800,
Feb. 2014, doi: 10.1007/s00138-014 -0599-0.

[43] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, “An architecture
of optimised SIFT feature detection for an FPGA implementation of an
image matcher,” in Proc. Int. Conf. Field-Programmable Technol., 2009,
pp. 30–37.

[44] D. Kim, M. Kim, K. Kim, M. Sung, and W. W. Ro, “Dynamic load
balancing of parallel SURF with vertical partitioning,” IEEE Trans. Par-
allel Distrib. Syst., vol. 26, no. 12, pp. 3358–3370, Dec. 2014, doi:
10.1109/TPDS.2014.2372763.

[45] S. H. Cheon, I. K. Eom, and Y. H. Moon, “Fast descriptor extraction
method for a SURF-based interest point,” Electron. Lett., vol. 52, no. 4,
pp. 274–275, Feb. 2016, doi:10.1049/el.2015.3055.

[46] J. Kim, E. Park, X. Cui, and H. Kim, “A fast feature extraction in object
recognition using parallel processing on CPU and GPU,” in Proc. IEEE
Int. Conf. Syst., 2009, pp. 3842–3847.

[47] M. Schaeferling, U. Hornung, and G. Kiefer, “Object recognition and
pose estimation on embedded hardware: SURF-based system designs
accelerated by FPGA logic,” Int. J. Reconfigurable Comput., vol. 2012,
no. 6, pp. 1–16, Jan. 2012, doi: 10.1155/2012/368351.

[48] J. Huang, G. Zhou, D. Zhang, G. Zhang, R. Zhang, and O. Baysal, “An
FPGA-based implementation of corner detection and matching with outlier
rejection,” Int. J. Remote Sens., vol. 39, no. 23, pp. 8905–8933, Aug. 2018,
doi: 10.1080/01431161.2018.1500728.

[49] J. Zhao, X. Huang, and Y. Massoud, “An efficient real-time FPGA imple-
mentation for object detection,” in Proc. IEEE 12th Int. New Circuits Syst.
Conf., 2014, pp. 313–316.

[50] J. Huang and G. Zhou, “On-board detection and matching of feature
points,” Remote Sens., vol. 9, no. 6, Apr. 2017, Art. no. 601, doi:
10.3390/rs9060601.

[51] A. Li, W. Jiang, W. Yuan, D. Dai, S. Zhang, and Z. Wei, “An improved
FAST+ SURF fast matching algorithm,” Procedia Comput. Sci., vol. 107,
pp. 306–312, Dec. 2017, doi: 10.1016/j.procs. 2017.03.110.

[52] T. Kasezawa, H. Tanaka, and H. Ito, “Integral image word length reduction
using overlapping rectangular regions,” in Proc. IEEE Int. Conf. Ind.
Technol., 2016, pp. 763–768.

[53] X. Fan, C. Wu, W. Cao, X. Zhou, S. Wang, and L. Wang, “Implemen-
tation of high performance hardware architecture of OpenSURF algo-
rithm on FPGA,” in Proc. Int. Conf. Field-Programmable Technol., 2013,
pp. 152–159.

[54] M. Pohl, M. Schaeferling, and G. Kiefer, “An efficient FPGA-based
hardware framework for natural feature extraction and related computer
vision tasks,” in Proc. 24th Int. Conf. Field Programmable Logic Appl,
2014, pp. 1–8. doi: 10.1109/FPL.2014.6927463.

[55] M. Schaeferling and G. Kiefer, “Flex-SURF: A flexible architecture for
FPGA-based robust feature extraction for optical tracking systems,” in
Proc. IEEE Int. Conf. Reconfigurable Comput. FPGAs, 2010, pp. 458–463.
doi: 10.1109/ReConFig.2010.11.

[56] T. B. Terriberry, L. M. French, and J. Helmsen, “GPU accelerating
speeded-up robust features,” in Proc. 4th Int. Symp. 3D Data Pro-
cess., Visualisation Transmiss., Jun. 2008, vol. 8, pp. 355–362, doi:
10.1016/j.cviu.2007.09.014.

[57] E. Oyallon and J. Rabin, “An analysis of the SURF method,” Image
Process. Online, vol. 5, pp. 176–218, Jul. 2015, doi:10.5201/ipol. 2015.69.

[58] N. Zhang, “Computing optimised parallel speeded-up robust features
(P-SURF) on multi-core processors,” Int. J. Parallel Program., vol. 38,
no. 2, pp. 138–158, Apr. 2010, doi: 10.1007/s10766-009-0122-9.

[59] D. Gossow, P. Decker, and D. Paulus, “An evaluation of open source SURF
implementations,” in Robot Soccer World Cup. Berlin, Germany: Springer,
2010, pp. 169–179, [Online]. Available: https://link.springer.com/chapter/
10.1007%2F978-3-642-20217-9_15#aboutcontent

[60] C. Evans, [Online]. Available: https://ww2.mathworks.cn/ matlabcentral/
fileexchange/28300-opensurf-including-image-warp

[61] P. H. Hsu and S. Y. Chien, “Reconfigurable cache memory architecture
for integral image and integral histogram applications,” in Proc. IEEE
Workshop Signal Process. Syst., 2011, pp. 151–156.

[62] H. J. W. Belt, “Word length reduction for the integral image,” in Proc. 15th
IEEE Int. Conf. Image Process., 2008, pp. 805–808.

[63] S. H. Lee and Y. J. Jeong, “A new integral image structure for memory size
reduction,” IEICE Trans. Inf. Syst., vol. 97, no. 4, pp. 98–1000, Apr. 2014,
doi: 10.1587/transinf.E97.D.998.

[64] S. Ehsan and K. D. McDonald-Maier, “Exploring integral image word
length reduction techniques for SURF detector,” in Proc. IEEE 2nd Int.
Conf. Comput. Elect. Eng., 2009, pp. 635–639.

[65] S. Ehsan, A. F. Clark, and K. D. McDonald-Maier, “Novel hardware
algorithms for row-parallel integral image calculation,” in Proc. Digital
Image Comput., Techn. Appl., 2009, pp. 61–65.

[66] S. Ehsan, A. F. Clark, N. Rehman, and K. McDonald-Maier, “Inte-
gral images: Efficient algorithms for their computation and storage in
resource-constrained embedded vision systems,” Sensors, vol. 15, no. 7,
pp. 16804–16830, 2015.

[67] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision
Pattern Recognit., 2001, pp. 511–518.

[68] B. Kisacanin, “Integral image optimizations for embedded vision applica-
tions,” in Proc. IEEE Southwest Symp. Image Anal. Interpretation, 2008,
pp. 181–184.

[69] T. Sledevič and A. Serackis, “SURF algorithm implementation on FPGA,”
in Proc. 2012 13th Biennial Baltic Electron. Conf., 2012, pp. 291–294.

[70] M. Schaeferling and G. Kiefer, “Object recognition on a chip: A complete
SURF-based system on a single FPGA,” in Proc. Int. Conf. Reconfigurable
Comput. FPGAs, 2011, pp. 49–54.

[71] M. Schmidt, M. Reichenbach, and D. Fey, “Generic VHDL template for
2D stencil code applications on FPGAs,” in Proc. IEEE 15th Int. Symp. Ob-
ject/Compon. /Service-Oriented Real-Time Distrib. Comput. Workshops,
2012, pp. 180–187.

[72] Q. Ni, F. Wang, Z. Zhao, and P. Gao, “FPGA-based Binocular image feature
extraction and matching system,” in Proc. 4th Int. Conf. Multimedia Syst.
Sig. Process., May 2019, pp. 182–187.

[73] C. Chen, H. Yong, S. Zhong, and L. Yan, “A real-time FPGA-based
architecture for OpenSURF,” Proc. SPIE, vol. 9813, Dec. 2015, Art.
no. 98130k, doi: 10.1117/12.2205633.

[74] C. Wilson et al., “A power-efficient real-time architecture for SURF feature
extraction,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs, 2014,
pp. 1–8.

[75] P. Čížek and J. Faigl, “Real-time FPGA-based detection of speeded-up
robust features using separable convolution,” IEEE Trans. Ind. Informat.,
vol. 14, no. 3, pp. 1155–1163, Mar. 2017.

[76] J. Svab, T. Krajnik, J. Faigl, and L. Preucil, “FPGA based speeded up
robust features,” in Proc. IEEE Int. Conf. Technol. Practical Robot Appl.,
2009, pp. 35–41.

[77] M. Fularz, M. Kraft, A. Schmidt, and A. Kasiński, “A high-performance
FPGA-based image feature detector and matcher based on the FAST and
BRIEF algorithms,” Int. J. Adv. Robotic Syst., vol. 12, no. 10, Oct. 2015,
Art. no. 141, doi: 10.5772/61434.

[78] W. Chen et al., “FPGA-based parallel implementation of SURF algorithm,”
in Proc. IEEE 22nd Int. Conf. Parallel Distrib. Syst., 2016. pp. 308–315.

[79] D. Bouris, A. Nikitakis, and I. Papaefstathiou, “Fast and efficient FPGA-
based feature detection employing the SURF algorithm,” in Proc. 18th
IEEE Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
2010, pp. 3–10.

[80] S. Ehsan, N. Kanwal, A. F. Clark, and K. D. McDonald-Maier, “An algo-
rithm for the contextual adaption of surf octave selection with good match-
ing performance: Best octaves,” IEEE Trans. Image Process., vol. 21, no. 1,
pp. 297–304, Jan. 2012.

[81] J. Li, T. Xu, and K. Zhang, “Real-time feature-based video stabilization
on FPGA,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 4,
pp. 907–919, Jan. 2016.

Dequan Liu received the B.S. degree in electronic
science and technology from Northwest Normal Uni-
versity, Lanzhou, China, in 2004, and the M.E. degree
in signal and information processing from Xidian
University, Xi’an, China, in 2013. He is currently
working toward the Ph.D. degree in circuits and
systems in the School of Microelectronics, Tianjin
University, Tianjin, China.

https://dx.doi.org/10.1007/s00138-014 ignorespaces -0599-0
https://dx.doi.org/10.1109/TPDS.2014.2372763
https://dx.doi.org/10.1049/el.2015.3055
https://dx.doi.org/10.1155/2012/368351
https://dx.doi.org/10.1080/01431161.2018.1500728
https://dx.doi.org/10.3390/rs9060601
https://dx.doi.org/10.1016/j.procs. ignorespaces 2017.03.110
https://dx.doi.org/10.1109/FPL.2014.6927463
https://dx.doi.org/10.1109/ReConFig.2010.11
https://dx.doi.org/10.1016/j.cviu.2007.09.014
https://dx.doi.org/10.5201/ipol. ignorespaces 2015.69
https://dx.doi.org/10.1007/s10766-009-0122-9
https://link.springer.com/chapter/10.1007%2F978-3-642-20217-9_15#aboutcontent
https://ww2.mathworks.cn/ ignorespaces matlabcentral/fileexchange/28300-opensurf-including-image-warp
https://dx.doi.org/10.1587/transinf.E97.D.998
https://dx.doi.org/10.1117/12.2205633
https://dx.doi.org/10.5772/61434

3366 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Guoqing Zhou (Senior Member, IEEE) received the
Ph.D. degree from Wuhan University, Wuhan, China,
in 1994.

He was a Visiting Scholar with the Department of
Computer Science and Technology, Tsinghua Univer-
sity, Beijing, China, and a Post-doctoral Researcher
with the Institute of Information Science, Beijing
Jiaotong University, Beijing, China. He continued
his research as an Alexander von Humboldt Fellow
with the Technical University of Berlin, Berlin, Ger-
many, from 1996 to 1998, and was a Post-doctoral

Researcher with The Ohio State University, Columbus, OH, USA, from 1998
to 2000. He was Assistant Professor, Associate Professor, and Full Professor
with Old Dominion University, Norfolk, VA, USA, in 2000, 2005, and 2010,
respectively. He has authored five books and more than 380 refereed papers.

Dianjun Zhang received the B.S. and M.S. degrees
in geographical information system from Ludong
and Beijing Forestry University, Beijing, China, in
2008 and 2011, respectively, and the Ph.D. degree
from the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences,
Beijing, in 2015.

His research interests include thermal infrared re-
mote sensing and retrieval of surface parameters from
satellite data.

Xiang Zhou received the M.S. degree in the detection
technology and automatic equipment from the Guilin
University of Technology, Guilin, China, in 2014.

He is currently with the School of Microelectron-
ics, Tianjin University, Tianjin, China. His research
interests include LiDAR imaging.

Chenyang Li was born in Hebei, China, in 1990. He
is currently working toward the Ph.D. degree in the
School of Marine Science and Technology, Tianjin
University, Tianjin, China. His research interests in-
clude airborne Lidar waveform data processing, the
character of Blue-Green laser transmission through
rough sea surface, and the methods and applications
of airborne Lidar bathymetry.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

