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Abstract—We propose a hard expectation-maximization-based
normalized matched filter (EM-NMF) for the detection of chem-
ical warfare agent (CWA) clouds under background contamina-
tion. The NMF, which is one of the most powerful detectors, re-
quires background statistics calculated from a background training
dataset. However, in practice, because the training dataset is likely
to contain CWA-on background pixels, the performance of the
NMF is severely degraded. This phenomenon is referred to as
background contamination. To address this issue, we propose an
algorithm that estimates the posterior probability of each pixel
belonging to either the background or the CWA class. The opti-
mal posterior probabilities are obtained by maximizing the log-
likelihood of a contaminated dataset using the EM algorithm. Based
on the posterior probability, we extract CWA-free background
pixels from the contaminated dataset and design a hard EM-NMF
with extracted CWA-free background pixels. We demonstrate that
the proposed algorithm is an effective solution for background con-
tamination, via experimental results conducted with actual CWA
data measured by a Bruker HI–90 instrument in an outdoor setting
as well as synthetic CWA data.

Index Terms—Chemical warfare agent (CWA) detection,
expectation maximization, hyperspectral imaging system,
normalized matched filter.

I. INTRODUCTION

THE hyperspectral imaging system (HIS) has emerged as a
key technology for the detection of chemical warfare agent

(CWA) clouds [1]–[18]. A passive HIS sensor is composed of a
spectrometer and a focal plane array detector. The passive HIS
sensor can measure the radiance spectrum in each pixel for the
instantaneous corresponding field of view (IFOV) at a standoff
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distance without any additional light sources and generate cube
data with a spatial resolution of m × n pixels and a spectral
resolution of p channels. Therefore, the HIS sensor is able to
detect and visualize the CWA cloud in the atmosphere from
a distance. Many CWA cloud detection algorithms have been
proposed based on probabilistic theories [2]–[7], the spectral
unmixing [8], [9], or machine learning techniques [10]–[12].
Among these algorithms, a normalized matched filter (NMF)
algorithm, which is also referred to as the adaptive cosine
estimator, is a uniformly most powerful invariant test, which
has the best detection probability out of all tests for a given false
alarm probability [13], [14].

On the other hand, estimates of background statistics are
required to construct an NMF. The background statistics are
calculated from a background training dataset that consists
of CWA-free background pixels measured before the CWA
cloud occurs. Since it is impossible always to have information
about the background in advance, the training dataset should
be composed of unknown measured pixels. Then, it is likely to
contain CWA-on background pixels. If the training dataset con-
tains CWA-on background pixels, the background statistics are
distorted by CWA-on background pixels. This phenomenon is
referred to as background contamination. Distorted background
statistics degrade the detection performance of the matched filter
(MF) [15]–[17]. It is obvious that the detection performance
of the NMF also deteriorates due to background contamination
because both the NMF and the MF are designed in a similar way
using background statistics.

To mitigate the issue of background contamination, Niu et al.
[17] proposed an algorithm, which alleviates the distortion for
the covariance matrix by adding a diagonal matrix to the con-
taminated background covariance matrix. However, since the
mean vector of the background is still contaminated, there is a
limit to eliminating background contamination. Kim et al. [18]
proposed an iterative filtering algorithm, which separates CWA-
free background pixels by applying the MF iteratively. However,
to resolve the background contamination problem, the iterative
filtering algorithm requires information about the degree of
contamination, which indicates a ratio of CWA-on background
pixels in the contaminated dataset. Since it is difficult to predict
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the degree of contamination in advance, the iterative filtering al-
gorithm is not practical. To extract CWA-free background pixels
from the contaminated background dataset without information
about the degree of contamination, we focus on the posterior
probability of each pixel belonging to either a CWA-free back-
ground pixel group or a CWA-on background pixel group.

In this article, we propose an algorithm that estimates the
posterior probability of each pixel and extracts CWA-free back-
ground pixels from a contaminated dataset based on the posterior
probability. The optimal posterior probability of each pixel is
attained by maximizing the log-likelihood probability of the
contaminated dataset with the expectation and maximization
(EM) algorithm. The likelihood probability of the contaminated
dataset can be modeled as a product of the likelihood probabil-
ities of all pixels in the contaminated dataset. For the fast and
accurate convergence of the EM algorithm, we propose an ini-
tialization method, which is based on rough classification using
a robust NMF. Then, we extract CWA-free background pixels
from the contaminated dataset by thresholding the posterior
probability of each pixel and calculate undistorted background
statistics, which can be used to construct a hard EM-NMF.

We conduct experiments with synthetic CWA and actual
CWA data measured by a Bruker hyperspectral imaging system
(HI-90, Bruker Corporation, Germany) in outdoor settings. The
synthetic CWA data are generated by embedding CWA signals
into actual background data measured by the HI–90. The actual
CWA data are measured in a scenario where SF6 gas is sprayed
outdoors. The experimental results show that the proposed EM
algorithm correctly calculates the posterior probabilities without
information about the degree of contamination, which results
in the robust detection performance of the hard EM-NMF un-
der background contamination, and the proposed initialization
method provides good convergence characteristics for the EM
algorithm.

The remainder of this article is organized as follows. In
Section II, the NMF is summarized. We also explain that the
detection performance of the NMF deteriorates due to back-
ground contamination. We introduce related works to address
background contamination in Section III. In Section IV, we
present the proposed algorithm that finds the optimal posterior
probability of each pixel using an EM algorithm, extract CWA-
free background pixels from the contaminated dataset, and con-
struct a hard EM-NMF with extracted CWA-free background
pixels. We also discuss a suitable initialization method for the
EM algorithm. In Section V, experimental results are assessed
with synthetic data and actual data and demonstrate that the hard
EM-NMF is robust against background contamination. The final
conclusions are drawn in Section VI.

II. NORMALIZED MATCHED FILTER

A. NMF for Remote CWA Cloud Detection

To describe the basic characteristics of the spectra measured
by a passive HIS sensor, a three-layer model is widely used [1].
The three-layer model is composed of an atmosphere layer,
a CWA cloud layer, and a background layer, as depicted in
Fig. 1. From the three-layer model, light radiated from the back-
ground reaches an HIS sensor through the CWA cloud and the

Fig. 1. Three-layer model of the radiance spectra measured by a passive HIS
sensor.

atmosphere. To express the light measured by the HIS sensor
simply, four assumptions are required, as follows. First, the
atmosphere and CWA cloud are free of aerosols and scattering
by aerosols can be ignored throughout, second, the CWA cloud
and atmosphere can be homogeneous in terms of both the tem-
perature and composition, third, the thickness of the CWA cloud
layer and the distance between the CWA cloud and background
are short such that atmospheric transmittance can be neglected
in those layers, and finally reflections between all layers can be
ignored.

The measured radiance spectra in the absence of the CWA
cloudLfree(ν) and that in the presence of the CWA cloudLON(ν)
are then correspondingly represented as follows:

Lfree(ν) = La(ν) + τa(ν)Lb(ν) + n(ν) (1)

LON(ν) = La(ν) + τa(ν)τc(ν)Lb(ν)

+ τa(ν) [1− τc(ν)]B(ν, Tc) + n(ν) (2)

where ν is the wavenumber, La(ν) is the atmospheric path
radiance, Lb(ν) is the background radiance, B(ν, Tc) is the
blackbody radiance at temperature Tc, τa(ν) is the atmospheric
transmittance, τc(ν) is the transmittance of the CWA cloud, and
n(ν) is a noise signal caused by the HIS sensor. Subsequently,
LON(ν) is expressed using Lfree(ν) as

LON(ν) = Lfree(ν) + τa(ν) [1− τc(ν)] [B(ν, Tc)− Lb(ν)] .
(3)

From Beer’s law [19], τc(ν) is obtained as

τc(ν) = exp

(
−

Nr∑
r=1

γrαr(ν)

)
(4)

where Nr denotes the number of CWAs in the cloud, αr(ν)
stands for the rth CWA-absorption-coefficient spectrum and γr
represents the concentration path length for the rth CWA. The
term γrαr(ν) is known as the optical depth.

According to (3), LON(ν) is a nonlinear function due to
the two terms 1− τc(ν) and B(ν, Tc)− Lb(ν). Applying two
reasonable approximations, we approximate (3) with a linear
function [1]. First, using Taylor’s approximation, we approxi-
mate 1− τc(ν) as follows:

1− τc(ν) = 1− exp

(
Nr∑
r=1

−γrαr(ν)

)
�

Nr∑
r=1

γrαr(ν). (5)

The second approximation is the linearization of the term
B(ν, Tc)− Lb(ν). Many background emissivity functions
εb(ν), which do not have sharp spectral peaks, are close to a
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uniform function whose value is near to 1. Then, it leads to
the approximation εb(ν) ≈ 1. Assuming εb(ν) ≈ 1, the back-
ground radiance Lb(ν) is almost same as the blackbody ra-
diance B(ν, Tb) at the background temperature Tb. If the dif-
ference between the background temperature Tb and the CWA
cloud temperature Tc is less than 10K, i.e., ΔT = |Tc − Tb| <
10K, we can approximate the blackbody radiance difference
B(ν, Tc)−B(ν, Tb) as a linear function for the temperature dif-
ference ΔT by applying the linear approximation of the Planck
function. Therefore, B(ν, Tc)− Lb(ν) can be represented as
follows:

B(ν, Tc)− Lb(ν) � CBΔT (6)

where CB = 5.5× 10−4 W · m−2 · str−1/cm−1/K represents
a constant, which is independent of wavenumber and the tem-
perature. Adopting (5) and (6), (3) can be linearized as

LON(ν) = Lfree(ν) + τa(ν)CBΔT

Nr∑
r=1

γrαr(ν). (7)

The measured spectra are sampled by the HIS sensor at a
set of bands [ν1, ν2, . . ., νp] to produce a measurement vector
x = [LON(ν1), . . ., LON(νp)]

T ∈ Rp×1, where p is the number of
channels. The measured radiance spectrum vector x of a CWA-
on background pixel is represented as

x =

Nr∑
r=1

srgr + v = Sg + v (8)

where sr = [τa(ν1) · αr(ν1), . . ., τa(νp) · αr(νp)]
T ∈ Rp×1 is

the at-sensor CWA signature vector of the rth CWA of interest,
the intensity of the rth CWA signal is gr = CBΔTγr, for
r = 1, . . . , Nr, and v = [Lfree(ν1), . . ., Lfree(νp)]

T ∈ Rp×1 is
the background clutter. The at-sensor CWA signature matrix
S is S = [s1, . . ., sNr

] ∈ Rp×Nr , and the intensity vector g is
g = [g1, . . ., gNr

]T ∈ RNr×1. Equation (8) is referred to as a
linear mixing model (LMM). Although the LMM is a less accu-
rate model than the line-by-line radiative transfer (LBL–RT)
model, the LMM have been widely used in CWA detection
studies [1], [4], [5], since the LMM represents the difference
of the measured spectrum directly depending on the presence
or absence of the CWA cloud and is a linear model to which
effective detection algorithms can be applied.

The background clutter v is the measured spectrum Lfree(ν)
of a CWA-free background pixel. In (1), the measured radiance
spectrum Lfree(ν) of the CWA-free background pixel is not
just the background radiance spectrum Lb(ν), but the radiance
spectrum composed of the atmospheric path radianceLa(ν), the
background radiance Lb(ν), which is modulated by the atmo-
spheric transmittance τa(ν), and noise n(ν). Each background
clutter v has a certain amount of random variation about a nomi-
nal mean according to changes in the physical composition, tem-
perature, atmospheric transmission, and sensor noise of the cor-
responding pixel. The background clutterv follows the Gaussian
distribution with the mean vector m ∈ Rp×1 and the covariance
matrix σ2C, i.e., v ∼ N(m, σ2C), where σ2 is the correction
factor for the covariance matrix [1]. The covariance matrix C ∈
Rp×p contains not only the variation according to changes in

physical composition, temperature, atmospheric transmission,
and sensor noise of each pixel for the IFOV but also the correla-
tion between background clutters at the different wavenumbers.

The NMF estimates the intensity of the CWA signature ĝ,
the background clutter v̂, and the correction factor σ̂2 from the
measured spectrum vector x using the background statistics as
follows:

ĝ = (STC−1S)STC−1(x−m) (9)

v̂ = x− Sĝ (10)

σ̂2 = (x−m)TC−1(x−m). (11)

The test statistic of the NMF is obtained by substituting (9) and
(11) into the likelihood ratio of x [14], as follows:

T (x) =

[
(x−m)TC−1S

] [
STC−1S

]−1 [
STC−1(x−m)

]
(x−m)TC−1(x−m)

=
(x̃T S̃)(S̃T S̃)

−1
(S̃T x̃)

(x̃T x̃)
= cos2φ (12)

where x̃ = C−1/2(x−m) is the whitened measured vector and
S̃ = C−1/2S is the whitened at-sensor signature matrix. The
test statistic is interpreted as the square value of the cosine of
the angle φ between the whitened measured spectrum vector x̃
and the subspace formed by the whitened at-sensor signature
matrix S̃. If T (x) is larger than a detection threshold λ, the pixel
corresponding to the spectrum x is determined as the CWA-on
background pixel. Otherwise, it is determined as the CWA-free
background pixel.

According to (12), these background statistics are estimated
from a background training dataset that consists of sample
CWA-free background pixels. In general, accurate estimation
of the inverse of the covariance matrix is difficult due to sev-
eral reasons, e.g., sample overfiting, ill-conditioned problems,
high-dimensional data, the small number of samples, etc. In
such cases, the regularization of the sample covariance matrix
is useful to build the robust NMF. There are several regulariza-
tion methods, i.e., the Hoffbeck and Landgrebe regularization
method [20], [21], the truncated singular value decomposition
regularization method [22], and the diagonal loading technique
(DLT) [1], [23].

In the hyperspectral image (HSI) data, the ratio of the largest
eigenvalue to the smallest eigenvalue of the covariance matrix is
extremely large. Since the covariance matrix is close to a singular
matrix, it is very hard to obtain an accurate inverse covariance
matrix [1]. This phenomenon is referred to as the ill-conditioned
problem. Among regularization methods, the DLT, which sets
eigenvalues of the covariance matrix above a certain value,
is effective in solving the ill-conditioned problem and robust
against the distortion of the background covariance matrix. In
the DLT, the background covariance matrix C is approximated
from the sample background covariance matrix as

C =

p∑
k=1

λkqkq
T
k + δI (13)
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where λk andqk, k = 1, 2, . . . , p, are the eigenvalues and eigen-
vectors for the sample background covariance matrix, respec-
tively, and δ > 0 is the loading parameter. Then, the inverse of
the background covariance matrixC−1 with the DLT is obtained
as following [4]:

C−1 =
1

δ

(
I−

p∑
k=1

λk

δ + λk
qkq

T
k

)
. (14)

B. NMF Under Background Contamination

The previous studies proved that the signal to clutter ratio,
which represents the performance of the MF, is reduced [15]–
[17] when background contamination occurs. In this article,
we briefly show that the detection performance of the NMF
with the DLT deteriorates as the concentration and the pro-
portion of CWA-on background pixels in the contaminated
dataset increase. Let H0 and H1 correspond to hypotheses
of the absence and presence of the target CWA, respectively.
Let X = {x1,x2, . . .,xN} denote the contaminated training
dataset, which contains both CWA-free background pixels and
CWA-on background pixels. Here, N is the number of pixels
in the contaminated dataset, and the degree of contamination,
which indicates a ratio of CWA-on background pixels in the con-
taminated dataset, is a%. Then, the numbers of CWA-free back-
ground pixels and CWA-on background pixels are (1 − a)N and
aN , respectively.

The jth pixel xj in the contaminated dataset can be repre-
sented with the following two hypotheses:

H0 : xj = vj

H1 : xj = Sgj + vj

(15)

where S is the at-sensor CWA signature matrix, and gj is the
intensity vector of the CWA signature. Let mg denote the mean
vector of gj . The background clutter vj follows the multivariate
Gaussian distribution with the mean vector m0 and the covari-
ance matrix σ2C0, i.e., vj ∼ N(m0, σ

2C0).
Then, the mean vector mcon of the contaminated dataset is

expressed as follows:

mcon =
1

N

⎧⎨
⎩

(1−a)N∑
i=1

xi,0 +
aN∑
k=1

xk,1

⎫⎬
⎭ = m0 + aSmg (16)

wherexi,0 andxk,1 are the CWA-free background pixels and the
CWA-on background pixels in the contaminated dataset, respec-
tively. The sample covariance matrix C̄con of the contaminated
dataset is also obtained as

C̄con =
1

N

N∑
j=1

(xj −mcon) (xj −mcon)
T

=
1

N

(1−a)N∑
i=1

(vi −m0 − aSmg) (vi −m0 − aSmg)
T

+
1

N

aN∑
k=1

(vk + Sgk −m0 − aSmg)

· (vk + Sgk −m0 − aSmg)
T . (17)

Assuming thatvk andgk are independent, the sample covariance
matrix C̄con of the contaminated dataset is

C̄con = C0 + a2S
(
aΣg + (1− a)mgm

T
g

)
ST (18)

where Σg =
∑Na

k=1 (gk − amg)(gk − amg)
T . After the DLT

with the loading parameter is applied, the contaminated covari-
ance matrix Ccon can be represented as

Ccon = C0 + a2S
(
aΣg + (1− a)mgm

T
g

)
ST + δI. (19)

We refer to an NMF designed with the distorted background
statistics as the contaminated NMF.

Let x0 = v and x1 = v + Smg be a CWA-free background
pixel and a CWA-on background pixel, respectively. We define
Tcon as the test statistic of the contaminated NMF. Then, the
test statistics of the contaminated NMF for the CWA-free back-
ground pixel and the CWA-on background pixel are Tcon(x0) =
cos2φ0 and Tcon(x1) = cos2φ1, respectively. Here, φ0 denotes
the angle between x̃0 and S̃, andφ1 represents the angle between
x̃1 and S̃. Using (16) and (19), x̃0, x̃1, and S̃ can be represented
as

x̃0 =
[
C0 + a2S

(
aΣg + (1− a)mgm

T
g

)
ST + δI

]−1/2

· [v −m0 − aSmg] (20)

x̃1 =
[
C0 + a2S

(
aΣg + (1− a)mgm

T
g

)
ST + δI

]−1/2

· [v −m0 + (1− a)Smg] (21)

S̃ =
[
C0 + a2S

(
aΣg + (1− a)mgm

T
g

)
ST + δI

]−1/2
S.

(22)

In case that the DLT is not used, i.e., δ = 0, the term
a2S(aΣg + (1− a)mgm

T
g )S

T whitens CWA signatures in x̃1

and S̃ even though the degree of contamination is low. Since
the magnitudes of CWA signature in x̃0 and x̃1 are ignored, φ0

and φ1 are about the same. Then, the NMF cannot distinguish
between CWA-free background pixels and CWA-on background
pixels at all, and the detection probability is the same as the false
alarm probability.

In case that the DLT is applied to the contaminated NMF,
since the term δI mitigates whitening of CWA signatures, the
difference between φ0 and φ1 are mainly determined by the
second terms in (20) – (22). As the degree of contamination a
increases, Tcon(x0) is elevated and it causes a higher false alarm
probability. On the other hand, Tcon(x1) is degraded, and the
detection probability is lowered. If the degree of contamination
is over 50%, the Tcon(x1) is smaller than Tcon(x0), and the NMF
classifies CWA-free background pixels as CWA-on background
pixels and vice versa. As with the degree of contamination,
the larger concentration of CWA-on background pixels in the
contaminated dataset, the worse the detection performance of the
NMF. No matter how the concentration of CWA-on background
pixels increases, however, Tcon(x1) is larger than Tcon(x0), and
the reverse classification of the NMF does not occur.

III. RELATED WORKS ON BACKGROUND CONTAMINATION

In this section, we briefly review related works to overcome
the background contamination problem.
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A. Robust NMF (R-NMF)

As with the NMF, the performance of the MF is degraded
when background contamination occurs. To deal with this prob-
lem, Niu et al. [17] proposed the robust MF (R-MF), which
applies the DLT. In the R-MF, the optimal loading parameter
δ̂, which minimizes distortion for the background covariance
matrix, is determined by solving the following equation:

p∑
k=1

|s̃k|2
(1 + δ−1λk)

= κ (23)

where s̃k = qT
k s, λk, and qk are the eigenvalues and eigenvec-

tors noted in (13), κ is a positive number satisfying ‖s− s0‖2 ≤
κ, and s0 is the absorption coefficient vector of a CWA. The MF
and the NMF are in a similar structure and the same background
statistics are used to construct both the MF and the NMF. There-
fore, we define R-NMF as an NMF, which uses the DLT with the
optimal loading parameter δ̂. The optimal loading parameter δ̂
mitigates the distortion for the background covariance. However,
it is not a fundamental solution because it does not eliminate the
distortion of the background mean at all.

B. Iterative NMF (I-NMF)

Kim et al. [18] proposed an iterative MF (I-MF), which
iteratively applies an MF to exclude the CWA-on background
pixels from the contaminated training dataset. Like the R-NMF,
we define an I-NMF that iteratively applies an NMF. The I-NMF
can only be designed if the degree of contamination a is known
in advance. The process of the I-NMF algorithm is summarized
as follows. First, the initial I-NMF detector T (0)

I-NMF is designed
using the contaminated dataset X and (12). Next, the initial
NMF is applied to all pixels in the contaminated training dataset.
Subsequently, the contaminated training dataset is divided into
the CWA-free background pixel set, X(i+1)

0 and the CWA-on

background pixel set X(i+1)
1 :

X
(i+1)
0 =

{
x
∣∣∣x ∈ X, T

(i)
I-NMF(x) < η(i)

}
(24)

X
(i+1)
1 =

{
x
∣∣∣x ∈ X, T

(i)
I-NMF(x) ≥ η(i)

}
(25)

where η(i) denotes the detection threshold at the ith iteration.
The detection threshold η(i) is determined as the test statistic
value of the ith NMF T

(i)
I-NMF(x) for the pixel whose test statistic

value is the upper a%.
Next, T (i)

I-NMF(x) is constructed using pixels in the (i+ 1)st

CWA-free background pixel setX(i+1)
0 . This process is repeated

until the mean value of test statistics converges. The convergence
condition is expressed as∣∣∣M (i+1) −M (i)

∣∣∣ < β (26)

where M (i) = 1
N

∑N
j=1 T

(i)
I-NMF(xj) is the mean value of the test

statistics at the ith iteration and β represents a convergence
threshold. Although the I-NMF eliminates the contaminated
pixels to some extent, it is considered impractical since it is
difficult to predict the degree of contamination in advance.

IV. HARD EM-NMF

Our proposed algorithm consists of two procedures. First, we
estimate the posterior probability of each pixel in the contam-
inated dataset. The optimal posterior probability, which maxi-
mizes the log-likelihood of the contaminated dataset, is obtained
using the EM algorithm. To achieve a fast and accurate conver-
gence of the EM algorithm, we also propose an initialization
method for the EM algorithm. Second, we extract CWA-free
background pixels by thresholding the posterior probabilities
and design an hard EM-NMF using the extracted CWA-free
background pixels.

A. Estimation of the Posterior Probability

1) Log-Likelihood of the Contaminated Dataset: From the
signal model (15) describing the jth pixelxj in the contaminated
dataset X, xj |Hi is a Gaussian random vector with mean mi

and covariance σ2
iCi. Because the variation of the CWA signals

is less severe than that of the background clutter, we assume
that the covariance matrix of the CWA-free background pixels is
identical to that of the CWA-on background pixels, i.e., σ2

1C1 =
σ2
0C0 = C. The probability density function (PDF) of xj under

Hi, i = 0, 1 can be expressed as

P (xj |H0) = ρ exp

[
−1

2
(x−m0)

TC−1 (x−m0)

]
(27)

P (xj |H1) = ρ exp

[
−1

2
(x−m1)

TC−1 (x−m1)

]
(28)

where ρ = 1/
√

(2π)p|C| and p is the number of spectral chan-
nels of the HSI image.

We define P (Hi|xj) as the posterior probability of the pixel
xj for a hypothesis Hi for i = 0, 1, which represents the proba-
bility that the pixel xj belongs to a background hypothesis H0

or a CWA hypothesis H1, respectively. From Bayes’ rule [26],
the posterior probability P (Hi|xj) is represented as follows:

P (Hi |xj ) =
P (Hi)P (xj |mi,C )∑1

k=0 P (Hk)P (xj |mk,C )
(29)

where P (Hi) denotes a mixing coefficient (called as a pri-
ori probability) corresponding to Hi, which satisfies P (H0) +
P (H1) = 1. Here, P (Hi) for i = 0, 1 refers to the ratio of
background or CWA-on background pixels in the contaminated
dataset, respectively. To find P (Hi|xj), it is necessary to es-
timate mi, P (Hi) and C. Let Θ denote a model parameter set
defined asΘ = {P (H0), P (H1),m0,m1,C}. We calculate the
maximum-likelihood estimate (MLE) of the model parameter
set, Θ̂, that maximizes the likelihood probability of the contam-
inated dataset P (X|Θ).

Assuming that pixels in X are independent and identically
distributed, the PDF of the contaminated dataset X is expressed
as

P (X|Θ) =

N∏
j=1

P (xj |Θ) (30)
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where N is the number of pixels in the contaminated dataset
and P (xj |Θ) represents a mixture PDF of xj . It is expressed as
follows:

P (xj |Θ) =
1∑

i=0

P (Hi)P (xj |Hi,mi,C). (31)

According to (30) and (27), P (X|Θ) is represented as the
product of many exponential terms. These terms make it hard
to obtain Θ̂ given that solving ∇ΘP (X|Θ) = 0 is very diffi-
cult. Therefore, we take the logarithm of P (X|Θ). Then, Q =
lnP (X|Θ) is represented as the summation of the polynomial
terms

Q =
N∑
j=1

ln

(
1∑

i=0

P (Hi)P (xj |Hi,mi,C)

)
. (32)

2) Optimal Solution for Log-Likelihood Maximization: In
order to obtain Θ̂, we need to solve ∇ΘQ = 0. First, by solving
∂Q/∂mi = 0, the optimal mean vector, m̂i, is determined by

m̂i =
1

Ni

N∑
j=1

P (Hi|xj)xj (33)

where P (Hi|xj) is represented in (29), and Ni denotes the
effective number of pixels belonging to Hi

Ni =

N∑
j=1

P (Hi|xj). (34)

Second, the optimal covariance matrix Ĉ is found by solving
∂Q/∂C−1 = 0

Ĉ =

N∑
j=1

1∑
i=0

P (Hi |xj ) (xj −mi) (xj −mi)
T . (35)

From (33) and (35), the optimal statistics (m̂0, m̂1, Ĉ) in Θ̂
are interpreted as the weighted mean vector and covariance
matrix with P (Hi|xj , Θ̂) as weights. The posterior probability
P (H1|xj , Θ̂) for the CWA hypothesis is matched with the label
of the pixel with a value of 0 for a CWA-free background pixel
or 1 for a CWA-on background pixel. Therefore, P (H1|xj , Θ̂)
is regarded as a soft label.

Finally, the optimal mixing coefficient P̂ (Hi) can be attained
by solving the following optimization problem:

max
P (Hi)

N∑
j=1

ln

1∑
i=0

P (Hi)P (xj |Hi,mi,C)

subject to P (H0) + P (H1) = 1

P (Hi) ≥ 0. (36)

We solve the abovementioned problem using the Karush–Kuhn–
Tucker (KKT) condition, a necessary condition for a solution of
the optimization problem to be optimal [24]. First, we set the
Lagrangian function for (36) as follows:

L (P (Hi) , υ) =

N∑
j=1

ln

1∑
i=0

P (Hi)P (xj |Hi,mi,C )

− υ

(
1∑

i=0

P (Hi)− 1

)
. (37)

According to the KKT condition, the optimal solutions of (37),
(P̂ (Hi), υ̂), satisfy ∂L/∂P (Hi) = 0 and ∂L/∂υ = 0 as

∂L

∂P (Hi)
=

N∑
j=1

P (xj |mi,C )∑1
k=0 P (Hk)P (xj |mk,C )

− υ

= 0 (38)

∂L

∂υ
= P (H0) + P (H1)− 1 = 0. (39)

By multiplying (38) by P (Hi) and substituting it into (39),
P̂ (Hi) is derived as

P̂ (Hi) =
1

N

N∑
j=1

P (Hi |xj ) =
Ni

N
. (40)

3) Optimization With the EM Algorithm: According to (33),
(35), and (40), Θ̂ cannot be expressed in a closed form so-
lution. Therefore, we exploit an expectation maximization al-
gorithm to calculate Θ̂. The EM algorithm is an iterative
means of finding the MLE of the parameters in a statistical
model [27]. The EM algorithm alternates between an expec-
tation step (E-step) and a maximization step (M-step). In the
E-step, using the mth iteration’s model parameter set Θ(m) =

{P (m)(H0), P
(m)(H1),m

(m)
0 ,m

(m)
1 ,C(m)}, we calculate the

mth iteration’s posterior probability P (Hi|xj ,Θ
(m)) for Hi

(i = 0, 1), as follows:

P (Hi|xj ,Θ
(m)) =

P (m)(Hi)P (xj |m(m)
i ,C(m))∑1

k=0 P
(m)(Hk)P (xj |m(m)

k ,C(m))
.

(41)
In the M-step, we update Θ(m) to Θ(m+1), which maximizes

the log-likelihood probability Q as

P (m+1)(Hi) =
N

(m)
i

N
(42)

m
(m+1)
i =

1

N
(m)
i

N∑
j=1

P (Hi|xj ,Θ
(m))xj (43)

C(m+1) =
1

N

N∑
j=1

1∑
k=0

P (Hi|xj ,Θ
(m))

· (xj −m
(m)
i )(xj −m

(m)
i )

T
(44)

N
(m)
i =

N∑
j=1

P (Hi|xj ,Θ
(m)). (45)

We then acquire Q(m+1) by substituting Θ(m+1) into (32). The
E-step and the M-step are iteratively performed until the con-
vergence criterion is achieved, which is |Q(m+1) −Q(m)| < β,
where β is the convergence threshold.

4) Initialization Method for the EM Algorithm: The con-
vergence result of the EM algorithm is sensitive to an initial
model parameter setΘ(0). During the process of allocatingΘ(0),
pixels in X are assigned to two-pixel sets, i.e., the CWA-free
background pixel set X(0)

0 and the CWA-on background pixel

set X
(0)
1 . Then, Θ(0) is calculated from the assigned pixels.
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We propose an initialization method that obtains Θ(0) from
pixels classified by the R-NMF. In most cases, the proposed
initialization method provides fast and accurate convergence
because the R-NMF can roughly distinguish between CWA-free
background pixels and CWA-on background pixels.

Let TR-NMF(x) denote a test statistic of the R-NMF. Using the
initial R-NMF threshold η, we classify pixels in X as

X
(0)
0 = {x |x ∈ X, TR-NMF(x) < η } (46)

X
(0)
1 = {x |x ∈ X, TR-NMF(x) ≥ η } (47)

where X
(0)
i denotes a set of pixels assigned to Hi, i = 0, 1

to calculate Θ(0). Subsequently, Θ(0) is determined from the
pixels in X

(0)
0 and X

(0)
1 . Because TR-NMF(x) varies with the

degree of contamination and the concentration of the contam-
inated CWA-on background pixels, it is recommended to set
η = E(TR-NMF(X)) rather than to a specific value, where E(·)
is the expectation of (·).

B. Design of Hard EM-NMF

1) Hypothesis Labeling Check: If the degree of contamina-
tion is over 50%, the test statistic of the R-NMF, TR-NMF(x0)
for the CWA-free background pixels are higher than that for
CWA-on background pixels TR-NMF(x1). When assigning the
initial model parameter set, CWA and CWA-free background
pixels are mainly allocated to the CWA hypothesis and back-
ground hypothesis, respectively. As a result, the EM algorithm
recognizes CWA-free background pixels as the CWA hypothesis
H1 and CWA-on background pixels as the background hypoth-
esis H0. To check whether pixels belonging the background
hypothesis H0 is the actual CWA-free background pixels or
CWA-on background pixels, we use correlation coefficients ρi
for i = 0, 1 between estimated mean vectors m̂i and the CWA
signature matrix S as follows:

ρi =

√
(m̂T

i S)(S
TS)−1(ST m̂i)

m̂T
i m̂i

. (48)

If ρ0 > ρ1, the hypothesis labeling is wrong. Then, we ex-
change posterior probabilities for each hypothesis and recal-
culate the optimal model parameter set Θ̂ = {P̂ (H0), P̂ (H1),

m̂0, m̂1, Ĉ}.
2) Design of the Hard EM-NMF: The optimal background

statistics (m̂0, Ĉ) are background statistics robust to distortion
caused by background contamination. We denote an NMF de-
signed with background statistics as a soft EM-NMF. How-
ever, there is still room for improvement. If xj is a CWA-on
background pixel, the background statistics are affected by
P (H0|xj , Θ̂) of the CWA-on background pixel, as observed in
(33) and (35). For better exclusion of the effect of contamina-
tion, it is necessary to extract the CWA-free background pixels
from the contaminated dataset and calculate the statistics of the
extracted CWA-free background pixels.

Algorithm 1: Design of the Hard EM-NMF From a Con-
taminated Dataset X.

Using (12) and (13), construct an R-NMF
Find Θ(0) from (46) and (47)
while |Q(m) −Q(m−1)| < β do
m = m+ 1
Obtain P (Hi|xj ,Θ

(m)) for i = 0, 1 (E-Step)
Update Θ(m) using (42), (43) and (44) (M-step)
Find Q(m)

end while
Find ρ0 and ρ1 using (48).
If ρ0 > ρ1, exchange P (H0|xj) and P (H1|xj).
Calculate Θ∗ using (33), (35) and (40)
Extract X0 using (49)
Design the hard EM-NMF using (12), (13) and X0

We extract CWA-free background pixels X0 from the con-
taminated dataset based on P (H1|xj , Θ̂) as follows:

X0 =
{
x
∣∣∣x ∈ X, P (H1|xj , Θ̂) < ζ

}
(49)

where ζ is the classification threshold. In setting the classifi-
cation threshold ζ, it is crucial to minimize side effects due to
misclassification. Through several experiments, we determine
the optimal classification threshold as ζ = 0.1. Then, we calcu-
late the mean vector and covariance matrix of X0 and design
an NMF exploiting (12) and (13). We denote an NMF designed
using X0 as a hard EM-NMF. The overall design process of the
hard EM-NMF is described in Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we describe experiments that were conducted
to test the performance of the proposed algorithm on both
synthetic and real CWA data. HSIs used in the experiments were
collected by a Bruker hyperspectral imaging system (HI-90,
Bruker Corporation, Germany), which provides data with a
spectral resolution of 3.2 cm−1 from 903 to 1264 cm−1 with
128 channels and a spatial resolution of 122× 122 pixels [28].
The at-sensor CWA signature matrix was composed of sulfur
hexafluoride (SF6), Freon, tabun (GA), sarin (GB), mustard gas
(HD), methanol (MeOH), and triethyl phosphate (TEP). Each
at-sensor CWA signature vector sr, for r = 1, . . . , 8, is obtained
by interpolating the standard absorption coefficient spectrum
vector αr of the rth CWA material, which is sourced from the
National Institute of Standard and Technology (NIST) [29], to
suit the resolution of an HI-90 equipment and is shown in Fig. 2.

A. Synthetic Data Experiments

In the synthetic data experiment, the synthetic CWA data were
generated by embedding the CWA signals into the background
spectra based on (7). The TEP gas was selected as the syn-
thetic CWA. The charge-coupled device (CCD) image of the
HSI used in the synthetic data experiment is shown in Fig. 3.
There were 14 884 pixels in the contaminated dataset where
synthetic CWA-on background pixels formed a circle at the
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Fig. 2. Absorption coefficient spectra of target CWAs sourced from the NIST
and the PNNL over the HI-90 wavelength range. The right upper figure shows the
absorption coefficient spectra of the GA, MeOH, and HD, which have relatively
small absorption coefficients.

Fig. 3. CCD image of the HSI used in the synthetic data experiment.

center of the CCD image. The degree of contamination was
set to a = 40%. The red pixels in Fig. 3 indicate the synthetic
TEP-on background pixels. The TEP-free background pixels
used to generate the synthetic CWA-on background pixels were
taken with a background of grass and a building in Yuseong-gu,
Daejeon, South Korea, where the latitude is 36◦ N, the longitude
is 127◦ E and the altitude is 212 m. These data were measured
at 10 P.M. on April 11, 2017. The climate data of the experiment
are as follow. The atmospheric temperature was 284.5 K, the
background temperature was 286.3 K. The air humidity was
68.6 %, and the Zenith angle was 89◦. It was sunny and there
were no shadows.

The transmittance of the atmosphere τa was ascertained from
the moderate resolution atmospheric transmission 4 (MOD-
TRAN 4) [30]. We set the temperature difference to ΔT = 3 K.
The concentration path length for the TEP gas was assumed to
be Gaussian-distributed: γ ∼ N(150, 752) ppm·m. The spec-
tra of the TEP-free background pixels and synthetic TEP-on
background pixels are shown in Fig. 4. There is only a slight
difference between the TEP-free background spectra and the
CWA-on background spectra in the 1000−1100 cm−1 band,
which encompasses the absorption property of the TEP gas.

1) Estimation of the Posterior Probability: First, we per-
formed an experiment to show how the EM algorithm given
in Section IV-A3 estimates the posterior probability of each
pixel. Fig. 5(a) presents the initial label image used to obtain

Fig. 4. Spectra of the synthetic TEP-on background pixels and TEP-free
background pixels in the synthetic data experiment. The right upper figure shows
the enlarged spectra in the 1,000 − 1,100 cm−1 band where the TEP gas has
absorption properties.

Fig. 5. Soft label images of the EM algorithm at the (a) initial, (b) 1st,
(c) 7th, (d) 14th, (e) 21st, and (f) 40th.

the initial model parameter set Θ(0). Fig. 5(b)–(f) illustrates
images of the soft label P (H1|xj ,Θ

(m)) at the first, seventh,
fourteenth, twenty-first, and fortieth iteration, respectively. La-
bel values for TEP-free background pixels gradually approach
zero. Label values of some less-concentration TEP-on back-
ground pixels, which has little TEP signatures and are nearly
identical to TEP-free background pixels, also reach to zero.
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Fig. 6. Label images of (a) K-NMF, (b) I-NMF, (c) soft EM-NMF, and
(d) hard EM-NMF for the contaminated dataset.

In the case of low-concentration TEP-on background pixels that
are ambiguous to be classified as TEP-on background pixels,
the label values converge to 0.1− 0.9. The label values for the
evident TEP-on background pixels become 1. As the number of
iteration increases, the more precise the label values, the more
accurate the model parameter set can be estimated, allowing the
calculation of more precise label values. After the twenty-first
iteration, there are no changes in the label images, demonstrating
the convergence of the EM algorithm.

2) Comparison of Background Extraction Performances: To
compare the background extraction performance, we obtain
the label images of several NMFs, as shown in Fig. 6. The
K-NMF is an NMF made with TEP-free background pixels
extracted by the K-means clustering algorithm, which is one
of the classification algorithms [25]. Because information about
the degree of contamination is required to design the I-NMF,
it is unfair to compare the EM-NMFs with the I-NMF. Never-
theless, we compared the EM-NMFs with the I-NMF because
the I-NMF is a state-of-the-art algorithm for the background
contamination problem. In the case of the soft EM-NMF, the
posterior probability P (H1|xj ,Θ

(m)) of each pixel is used as
the label value.

These NMFs were designed using the same optimal loading
parameter. In the real world, it is difficult to determine the actual
value of κ in (23). Therefore, we found the optimal loading pa-
rameter numerically, i.e., λ̂ = 5 · 10−6. The convergence thresh-
olds were set toβ = 10−3. In Fig. 5(f), the label values of TEP-on
background pixels exceed 0.1, except for the less-concentration
TEP-on background pixels, which hardly contaminate the back-
ground statistics. Therefore, we determined the classification
threshold for the hard EM-NMF as ζ = 0.1 in the experiments.

Compared with the ground truth depicted in Fig. 3, the K-
means clustering does not distinguish TEP-free background pix-
els from TEP-on background pixels at all because it categorizes

Fig. 7. ROC curves of several NMF algorithms.

pixels based on the mean value of each pixel’s radiance spec-
trum, which is determined by the temperature of the correspond-
ing pixel. Therefore, the effective degree of contamination for
the K-NMF is larger than that for the R-NMF. The I-NMF and the
EM algorithm divide TEP-free background pixels from TEP-on
background pixels correctly, except for the less-concentration
TEP-on background pixels. The EM algorithm estimates TEP-
free background pixels more accurately than the I-NMF since
the EM algorithm calculates the posterior probabilities using
not only background statistics but also TEP statistics, unlike
the I-NMF that estimates TEP-free background pixels using
the only background statistics. Comparing Fig. 6(c) with (d),
we confirm that low-concentration TEP-on background pixels
whose labels are ambiguous (i.e., 0.1 < P (Hi|xj , Θ̂) < 0.9) in
the soft EM-NMF are classified as TEP-on background pixels
in the hard EM-NMF.

3) Detection Performance Comparison: We also use the
receiver operating characteristic (ROC) curve, which directly
shows the relationship between the probability of false alarm
and that of detection, as a metric for evaluating the performance
capabilities of the algorithms. We performed Monte Carlo simu-
lations in which 14 884 TEP-free background pixels and 14 884
synthetic TEP-on background pixels whose concentration path
lengths follow γ ∼ N(150, 752) ppm·m were used. Fig. 7 plots
ROC curves of the uncontaminated NMF, soft and hard EM-
NMFs, I-NMF, K-NMF, and R-NMF. The uncontaminated NMF
represent an NMF designed with only TEP-free background
pixels in the contaminated dataset.

The detection performance of the R-NMF is degraded since
the background mean vector is still contaminated. The K-NMF
has a worse detection performance than the R-NMF because
the effective degree of contamination for the K-NMF is bigger
than that of the R-NMF. The I-NMF and EM-NMFs show
robust detection performances under the background contam-
ination condition. According to Fig. 7, the hard EM-NMF is
better than the I-NMF in terms of the detection performance
although the degree of contamination is unknown. The hard
EM-NMF has better performance than the soft EM-NMF since
the background statistics of the hard EM-NMF is not distorted by
low-concentration TEP-on background pixels. It also performs
nearly equal to the uncontaminated NMF.
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Fig. 8. Label images before (left images) and after (right images) the EM
algorithm according to the initialization method: (a), (b) the K-means clustering,
(c), (d) the random selection, and (e), (f) the proposed initialization method.

4) Comparison of Initialization Methods: Next, we per-
formed experiments to compare our initialization method pro-
posed in Section IV-A4 with two other initialization methods:
the K-means clustering and the random selection. In the random
selection, randomly selected half of the contaminated dataset,
are categorized as CWA-on background pixels. In Fig. 8, images
on the left are label images obtained from the initialization
methods, and those on the right are the soft label images resulted
from the EM algorithm. The K-means clustering categorizes
pixels based on the pixels’ temperature, and the random selection
method classifies pixels without any criteria, as depicted in
Fig. 8(a) and (c), respectively. Then, the EM algorithms with
the K-means clustering or the random selection method do not
estimate accurate soft label values, as shown in Fig. 8(b) and
(d). However, the EM algorithm with the proposed initialization
method estimates the soft label values well since the R-NMF
distinguishes between TEP-free background pixels and CWA-on
background pixels roughly.

5) Detection Performance According to Degree of Contami-
nation: We conducted experiments to compare detection per-
formances based on the degree of contamination. The AUC
score defined as an area under a ROC curve is used as a metric
for evaluating the performance capabilities of the algorithms.
We changed the degree of contamination of the contaminated

Fig. 9. AUC scores according to the degree of contamination from 0% to 90%.
The right upper figure illustrates the AUC scores of the uncontaminated NMF,
soft and hard EM-NMFs, and I-NMF according to the degree of contamination
from 55% to 90%.

dataset a% from 0% to 90% at intervals of 5%, and the concen-
tration path-lengths of synthetic TEP-on background pixels in
the contaminated dataset were set to γ ∼ N(150, 752) ppm·m.
To obtain the AUC score, we performed a Monte Carlo sim-
ulation with 14 884 TEP-free background pixels and 14 884
TEP-on background pixels whose concentration path length is
γ ∼ N(150, 752) ppm · m. Fig. 9 depicts AUC scores of the
R-NMF, K-NMF, I-NMF, and EM-NMFs.

The detection performance of the uncontaminated NMF de-
creases in the high degree of contamination because the covari-
ance matrix is calculated with a few TEP-free background pixels
and becomes slightly inaccurate. As the degree of contamination
increases, the detection performances of the R-NMF and the
K-NMF diminish. When the degree of contamination is over
50%, AUC scores of the R-NMF and the K-NMF are under
0.5, which means that the R-NMF and the K-NMF recognize
TEP-free background pixels as target CWA-on background pix-
els, as explained in Section II-B. Even though the degree of
contamination exceeds 50% and the initial model parameter set
of the EM algorithm is assigned in reverse, the EM algorithm
estimates posterior probabilities correctly via the hypothesis
labeling check process described in Section IV-B2. The hard
EM-NMF has robust detection performance regardless of the
degree of contamination.

6) Detection Performance According to Concentration:
Next, we also obtained AUC scores based on the concentra-
tion of CWA-on background pixels. In the experiment, the
degree of contamination a of the contaminated dataset was
40%, and the concentration path-lengths of the synthetic TEP-
on background pixels in the contaminated dataset was set to
γ ∼ N(c, (c/2)2) ppm·m. The mean concentration path-length
c was changed from 75 ppm·m to 325 ppm·m at intervals of
25 ppm · m. We acquired the AUC scores as conducting a Monte
Carlo simulation whose condition is the same as the experiment
in Section V-A5. Fig. 10 shows the corresponding AUC scores.
As the concentration of synthetic TEP gas increases, the AUC
scores of the K-NMF and the R-NMF are degraded, but not less
than 0.5. On the other hand, the detection performances of the
I-NMF and EM-NMFs increase since it is easier for the I-NMF
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Fig. 10. AUC scores according to the mean concentration path-length of
synthetic TEP-on background pixels from 75% to 325%. The right upper figure
shows the AUC scores of the uncontaminated NMF, soft and hard EM-NMFs,
and I-NMF according to the mean concentration path-length of TEP pixels from
200% to 325%.

Fig. 11. CCD image of the HSI used in the sprayed gas experiment.

and the EM algorithm to distinguish TEP-on background pixels
and TEP-free background pixels. Like other experiments, the
hard EM-NMF has better performance than the I-NMF without
knowing the degree of contamination. It performs nearly equally
to the uncontaminated NMF.

B. Actual Data Experiment

In the experiments with real data, we obtained measurement
data for a scenario. The scenario is that SF6 gas was sprayed
into the air with a grass field as the background. The HSI
for the scenario was measured a few seconds after spraying
of the SF6 gas. The measurement environment is the same as
the synthetic data experiments and the temperature of the SF6

cloud is 283 K. A blue box in Fig. 11 presents a CCD image of
the measured HSI. The SF6 gas area was obtained by applying
an uncontaminated NMF that is designed using the HSI data
measured before the SF6 spray and eliminating some outlier
pixels. Red pixels in Fig. 11 indicate the area where the SF6 gas
was present. The degree of contamination, which is the ratio of
the red pixel area to the total area, was calculated to be 21.2%.
Fig. 12 plots the spectra of the SF6-on background pixels and
the SF6-free background pixels. The absorption property for the
SF6-on background pixels exists in the 900–1000 cm−1 range.

Fig. 12. Spectra of SF6-on background pixels and SF6-free background
pixels in the sprayed gas experiment. The right upper figure shows the en-
larged spectra in the 900−1000 cm−1 band where the SF6 gas has absorption
properties.

Fig. 13. Label images of (a) the K-NMF, (b) the I-NMF, (c) the soft EM-NMF,
and (d) the hard EM-NMF for the measured HSI in the sprayed gas experiment.

Fig. 13 shows label images of the K-NMF, I-NMF, and soft
and hard EM-NMFs. The K-means clustering does not extract
SF6-on background pixels at all. There are many false alarm pix-
els in the I-NMF since background statistics are only exploited
in each iteration. Then, SF6-on background pixels (especially
diffused low-concentration pixels) are classified as SF6-free
background pixels by the number of these false alarm pixels.
On the other hand, EM-NMFs obtain more accurate SF6-on
background pixels than the I-NMF because both background
statistics and SF6 statistics are used in each iteration. In the soft
EM-NMF, the labels of low-concentration SF6 pixels are in the
range of 0.2− 0.8. These low-concentration pixels are labeled
as SF6-on background pixels in the hard EM-NMF.

We applied these NMF algorithms to the measured HSI and
obtained ROC curves. Fig. 14 shows the ROC curves of several
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Fig. 14. ROC curves of several NMF algorithms in the sprayed gas experiment.

NMF algorithms. The R-NMF and the K-NMF have poor detec-
tion performances. Compared with the uncontaminated NMF,
the hard EM-NMF performs as well as the uncontaminated
NMF. The hard EM-NMF has slightly better detection perfor-
mance than the I-NMF, which is in agreement with the result
pertaining to the label image analysis results in Fig. 13. In the
soft EM-NMF, low-concentrationSF6 pixels distort background
statistics as much as P (Hi|xj , Θ̂). Because the hard EM-NMF
regards these low-concentration SF6 pixels as SF6 pixels, the
hard EM-NMF has a more robust performance than the soft
EM-NMF under the background contamination condition.

C. Summary of Experiments

In the synthetic data experiments, we showed that the EM
algorithm calculated posterior probabilities when the proposed
initialization method, which provided rough classification re-
sults, is used. We also compared the proposed hard EM-NMF
with the uncontaminated NMF, R-NMF [17], K-NMF [23] [25],
I-NMF [18], and the soft EM-NMF through label images,
ROC curves, and AUC scores. The R-NMF had poor detec-
tion performance because CWA-on background pixels distort
the background mean vector. The K-NMF also showed low
detection performance because K-means clustering, which cat-
egorized pixels based on the mean value of each pixel’s radiance
spectrum, did not distinguish pure background pixels from the
CWA-on background pixels at all. The I-NMF, soft and hard
EM-NMF demonstrated robust detection performance outcomes
in condition with background contamination.

The soft and hard EM-NMFs, which exploited both the statis-
tics of estimated CWA-free background pixels and CWA-on
background pixels, shoed better detection performance than the
I-NMF, which used only the statistics of the estimated CWA-free
background pixels, even though we did not know information
about the degree of contamination, which is impractical. The
detection performance of the proposed hard EM-NMF was
slightly better than that of the soft EM-NMF because the es-
timated background statistics of the hard EM-NMF was not
distorted by low-concentration CWA-on background pixels. The
hard EM-NMF exhibited a more robust detection performance
than the K-NMF, I-NMF and soft EM-NMF regardless of the

degree of contamination or the concentrations of the CWA-on
background pixels. Through the sprayed gas experiment, we
demonstrated that the hard EM-NMF detector could match the
performance as the uncontaminated NMF in real environments.

VI. CONCLUSION

A NMF, which is one the most powerful detectors, is vul-
nerable to background contamination, which refers to a situa-
tion where a background training set contains CWA-on back-
ground pixels. In order to mitigate background contamination,
we utilized the optimal posterior probabilities by maximizing
the log-likelihood of the contaminated dataset using the EM
algorithm. We presented a hard EM-NMF constructed with
CWA-free background pixels extracted from the contaminated
dataset based on the the optimal posterior probability of each
pixel. For the fast and accurate convergence characteristics for
the EM algorithm, we also proposed an initialization method
using a robust NMF. Experimental results confirmed that the pro-
posed hard EM-NMF has a more robust detection performance
than other NMFs even without information about the degree of
contamination. Therefore, the hard EM-NMF is a useful solution
to the problem where the NMF not being feasible for use when
background statistics are unavailable.
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