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Crop Yield Estimation in the Canadian Prairies Using
Terra/MODIS-Derived Crop Metrics

Jiangui Liu , Ted Huffman, Budong Qian , Jiali Shang, Qingmou Li, Taifeng Dong, Andrew Davidson, and Qi Jing

Abstract—We evaluated the utility of Terra/MODIS-derived
crop metrics for yield estimation across the Canadian Prairies. This
study was undertaken at the Census Agriculture Region (CAR) and
the Rural Municipality (RM) of the province of Saskatchewan, in
three prairie agro-climate zones. We compared MODIS-derived
vegetation indices, gross primary productivity (GPP), and net pri-
mary productivity (NPP) to the known yields for barley, canola,
and spring wheat. Multiple linear regressions were used to assess
the relationships between the metrics and yield at the CAR and
RM levels for the years 2000 to 2016. Models were evaluated using a
leave-one-out cross validation (LOOCV) approach. Results showed
that vegetation indices at crop peak growing stages were better
predictors of yield than GPP or NPP, and EVI2 was better than
NDVI. Using seasonal maximum EVI2, CAR-level crop yields can
be estimated with a relative root-mean-square-error (RRMSE) of
14–20% and a Nash–Sutcliffe model efficiency coefficient (NSE)
of 0.53–0.70, though the exact relationship varies by crop type
and agro-climate zone. LOOCV showed the stability of the models
across different years, although interannual fluctuations of estima-
tion accuracy were observed. Assessments using RM-level yields
showed slightly reduced accuracy, with NSE of 0.37–0.66, and
RRMSE of 18–28%. The best performing models were used to map
annual crop yields at the Soil Landscapes of Canada (SLC) polygon
level. The results indicated that the models could perform well at
both spatial scales, and thus, could be used to disaggregate coarse
resolution crop yields to finer spatial resolutions using MODIS
data.

Index Terms—MODIS, yield, net primary productivity (NPP),
gross primary productivity (GPP), EVI2, NDVI.

I. INTRODUCTION

T IMELY and accurate estimates of crop yield are critical for
the economic forecasting and risk assessment of agricul-

tural production [1]. Driven by the effects of increasingly fre-
quent extreme weather events on crop yields, and the associated
increasing demand for information from stakeholders (produc-
ers, grain traders, transporters, and government policymakers)
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for food security planning, many countries have developed crop
monitoring and yield forecasting systems to provide regional,
national, and global production outlooks for major field crops
[2], [3]. In Canada, while historical yield data are available and
used in several national programs [4], [5], the only consistent
yield data are available at the broad scale of Census Agricultural
Regions (CAR). It is obtained through a farm survey program
by Statistics Canada, the official federal government statisti-
cal reporting agency for Canada. Estimates of crop yields at
more detailed regional and local scales are needed to better
support the aforementioned national research and operational
programs.

Crop yield is determined by many factors such as soil con-
ditions, temperature, soil moisture, and management practices
[6]–[8]. These factors are reflected by crop growth conditions
that can be characterized with crop biophysical and biochemical
parameters, such as vegetation cover fraction, green leaf area
index (LAI), and fraction of absorbed photosynthetically active
radiation (fAPAR). Remote sensing can be used to measure
these parameters continuously in space and time [9]–[12], thus
providing a useful tool for yield estimation. The availability of
free data in near real time from some satellite sensors (e.g.,
MODIS and AVHRR) allows for within-season yield forecasts
with relatively lower cost [2].

Three general types of approaches can be identified in using
remote sensing data to estimate crop yields. The first type of
approach is to correlate grain yield with vegetation indices
obtained at a single date or integrated over a period of time
during a growing season, to map spatial variability of final
yield [13]–[15]. Many vegetation indices are well correlated
with biophysical parameters indicative of biomass accumulation
[9]–[12]. Of these, the normalized difference vegetation index
(NDVI)—which uses red and near infrared reflectances—has
received much attention because of its computational simplicity
and its use in long term satellite data records (e.g. AVHRR).
However, NDVI is shown to be prone to saturation at high levels
of aboveground biomass. To directly address this issue, Huete
et al. [16], [17] developed the enhanced vegetation index (EVI).
The EVI, which uses blue, red, and near infrared reflectances, is
resistant to the effect of atmospheric aerosols and more sensitive
to canopy structural variations at high biomass conditions than
the NDVI. This index is included as a standard Level-3 MODIS
vegetation index product. The desire to calculate the EVI back
in time to the AVHRR data records, in the absence of a blue
band, prompted the development of a two-band version of the
EVI (EVI2) based on the red and near infrared reflectances only
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[18]. The EVI2 is applicable to sensors that lack a blue band
(such as MODIS at 250 m).

In an agricultural context, Becker–Reshef et al. [19] used
MODIS seasonal maximum NDVI to develop a generalized em-
pirical approach for winter wheat yield estimation at a regional
scale. Mkhabela et al. [15] used time-series 10-day composite
MODIS NDVI for crop yield estimation at the CAR-level in the
Canadian Prairies, and found that the best time for yield esti-
mation was dependent on crop and agro-climate zones. Bolton
and Friedl [20] tested MODIS time-series NDVI, EVI2, and
NDWI (the normalized difference water index [21]), and found
that performance for yield estimation was improved using phe-
nologically adjusted vegetation indices. While these studies rely
on the short revisit cycles of moderate resolution satellite sensors
(e.g., AVHRR, MODIS) to capture crop seasonal dynamics,
they have been limited to regional applications because of the
relatively coarse pixel resolution of the data. Other studies have
fused coarse and fine spatial resolution satellite data to generate
synthetic datasets with both high spatial and high temporal
resolutions [13], [22], [23].

The second approach uses radiation-use efficiency models,
where crop biomass or yield is related to gross or net primary pro-
ductivity, which are modeled using crop parameters estimated
from remote sensing data, agro-meteorological data, and some
crop-specific parameters [24]–[27]. These methods are often
used to model carbon cycling in the biosphere using satellite
observations [28]–[30]. In this approach, fAPAR is estimated
from remote sensing data, and light-use efficiency (LUE) is
determined as the product of maximum radiation-use efficiency
and factors representing environmental stresses, such as water
stress and heat stress.

The third approach relies on the assimilation of remotely
sensed data into process-based crop models [31], [32] or mech-
anistic radiation use efficiency models [22], [33]. Satellite-
derived crop parameters such as LAI or fAPAR are compared
with state variables (variables used to characterize crop growth
dynamics) in the models, either to reinitialize certain model
parameters or to update the state variables. The advantage of this
approach is that the spatiotemporal variability of land surface
conditions captured from space is integrated with physically
based process models to improve model performance. Opera-
tional implementation of this approach over large regions is often
challenging because of its high computational overhead and
the need for large number of cultivar-specific parameters [31],
whereas the first two approaches are simple, straightforward,
and effective to be applied at large scales.

The Canadian Crop Yield Forecaster (CCYF) was developed
at Agriculture and Agri-Food Canada (AAFC) to provide within-
season yield forecasts during the growing season [2]. The CCYF
is a probabilistic model that integrates climate data, EO-based
vegetation indices, and soil and crop information using a soil
water budget model and statistical algorithms. While the CCYF
is able to deliver yield forecasts with good accuracy, it is limited
by its application at coarse spatial resolutions (i.e., the CAR
and provincial scales [1]). To directly address this limitation and
better fulfill the operational yield forecasting needs, an approach
is needed for yield estimation at finer spatial resolutions. To

Fig. 1. Canadian Prairie agricultural region, with Provincial boundaries out-
lined in black, Census Agricultural Regions (CAR) in red, and the rural munic-
ipalities of Saskatchewan in gray. The shaded areas are croplands in the three
agro-climate zones (subhumid, semiarid, and arid).

this end, the objectives of our study were to, first, evaluate the
potential of satellite-derived metrics for crop yield estimation in
the Canadian Prairies, and second, establish models for yield
estimation at different spatial resolutions for the purpose of
providing a robust approach for operationally generating long
term historical yield databases. To do this, we intend to map
major crop yields at the Soil Landscapes of Canada (SLC) level,
because: 1) It is the lowest level in the Canadian ecological
stratification system [34], 2) it is used as the basis for several
regional and national programs, such as agro-environmental
assessment, and 3) yield is not generally spatially available at
this level. There are totally 1434 SLC polygons in the study area.
Several remote sensing metrics based on MODIS land products
were assessed, including vegetation indices derived from the
250-m reflectance, the gross primary productivity (GPP) and
the net primary productivity (NPP).

II. MATERIALS AND METHODS

A. Study Area

Our study covers the Canadian prairie provinces of Alberta
(AB), Saskatchewan (SK), and Manitoba (MB). The region is
characterized by a continental climate with cold winters and hot
summers, and comprises three agro-climatic zones (subhumid,
semiarid, and arid; Fig. 1). The growing season lasts from mid-
April to the end of September. Crops are susceptible to drought
conditions due to the relatively low annual precipitation of about
454 mm, which peaks in June and July [35]. The soils in the
region are dominated by brown grassland soils in the arid zone,
dark-brown mixed grassland soils in the semiarid zone, and black
and gray wooded soils in the subhumid zone. About 80% of
Canada’s total cropland area is in this region.

B. Crop Yield Data

In Canada, information on annual crop yield is available
at various spatial scales. CAR-level yields are collected by
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Statistics Canada through a rigorous farm survey program1. This
program records seeded and harvested areas, crop yields and
production on an annual basis for most principal field crops, and
some specialty crops. This provides the most geographically
complete and consistent source of long term crop yield data in
Canada. While more spatially detailed county-level yields are
compiled and held by provincial agencies, they may be absent
for some provinces, inconsistent in terms of the crops and/or
years reported, and/or publicly unavailable.

There are a total of 40 CARs in the three Canadian Prairie
provinces (8 in AB, 20 in SK, and 12 in MB) (Fig. 1). The
CARs are ascribed to subhumid (25), semiarid (7), and arid (8)
zones based on the majority of the area of each CAR. RM-level
crop yields in SK are collected and maintained by the provincial
government. These records are readily available with few gaps.
There are a total of 295 RMs in the province (137 in the subhumid
zone, 78 in the semiarid zone, and 80 in the arid zone). For this
study, we obtained yields of three major crops (barley, canola,
and spring wheat) at the CAR- and RM-levels for the years 2000
through 2016, as outlined in Fig. 1.

C. MODIS Data

MODIS land products were retrieved from the Land Processes
Distributed Active Archive Center (LP DAAC)2. The following
products were obtained.

1) The 250-m resolution 8-day composite surface reflectance
product (MOD09Q1, Collection-5). This product was
used to derive time series of the NDVI and EVI2. The EVI2
has been shown to perform better than NDVI in reducing
atmospheric effects and is less likely to saturate over areas
of high vegetation productivity [12], [36]. The MOD09Q1
product was used because it has a finer temporal resolution
than the 16-day MODIS standard vegetation index product
(MOD13Q1).

2) The 500-m resolution gross primary productivity product
(GPP, MOD17A2H, Collection-6). This product consists
of a cumulative 8-day composite of GPP and net photosyn-
thesis (PSN) generated using the Biome-BGC ecosystem
model [37] and a light-use efficiency concept [38]. The
algorithm incorporates the MODIS LAI/fAPAR product
(MOD15), estimated PAR, and surface meteorological
data (GMAO/NASA) using a set of biome-specific radi-
ation use efficiency parameters obtained from the Biome
properties look-up table (BPLUT). Specifically, fAPAR
is used to calculate light absorption (APAR), and LAI is
used to derive maintenance respiration of leaf (rml) and
fine root (rmr). The realized light-use efficiency (ε) is cal-
culated as biome-specific maximum light-use efficiency
εmax down regulated by temperature (f(T)) and water
vapor pressure (f(VPD)) stress factors derived from me-
teorological data. In the MODIS Net Primary Productivity
(NPP) algorithm, the annual growth respiration (rg) was
considered as 25% of the annual NPP. More details about

1[Online]. Available: https://www150.statcan.gc.ca/
2[Online]. Available: https://lpdaac.usgs.gov/

the algorithm can be found in Running and Zhao [39], [40]
and Zhao et al. [41]. GPP and NPP are calculated as

GPP = ε ∗APAR
= εmax∗f (T) ∗f (VPD) ∗fAPAR ∗ PAR (1)

NPP = GPP− rml − rmr − rg. (2)

The study area is covered by six MODIS tiles (h10v03,
h11v03, h12v03, h10v04, h11v04, and h12v04). Annually, there
are 46 sets of 8-day composites of reflectance and GPP/NPP
products. For subsequent processing, the six tiles were mo-
saicked using the MODIS Reprojection Tool (MRT, Release 4.1)
without reprojection.

D. MODIS Data Processing

To support the analysis for crop yield estimation, CAR-level
and RM-level MODIS data were extracted using a cropland
mask, projected to the same sinusoidal projection used in the
MODIS products. The MODIS sinusoidal projection was used
to avoid the computational overhead of reprojecting thousands of
MODIS tiles. MODIS data processing was carried out following
to the following steps.

1) Creation of a Cropland Mask: We derived the cropland
mask from 30-m resolution Canadian decadal (circa-
1990/2000/2010) land-use maps3. These maps use the
legend classification of the Intergovernmental Panel on
Climate Change (IPCC). The maps were created from as
many relevant digital maps and information sources as
possible using a weight of evidence approach, through
which the “most probable” land use class of each pixel was
determined [42]. The overall mapping accuracy of these
datasets is greater than 95%. The 30-m land use maps
were reprojected to the sinusoidal coordination system,
and then resampled to 250- and 500-m grids to match the
projection and pixel resolution of the MODIS products
used in this study.

2) Screening Pixels Using MODIS Quality Control (QC)
Indicators: To ensure that only the highest quality MODIS
retrievals were used in this study, only pixels identified as
free from cloud and cloud shadow contamination were
retained for analysis.

3) Extraction of Vegetation Indices: High-quality cropland
pixels were identified in each MODIS image, from which
the red and near-infrared reflectances were used to calcu-
late CAR- and RM-level average NDVI and EVI2.

4) Extraction of GPP/NPP Data: Time-series CAR- and
RM-level average GPP and PSN were generated using
the high-quality cropland pixels. Annual GPP and PSN
were calculated by integrating the time-series GPP and
PSN over the typical crop growth cycle from mid-April
to the end of September. Annual NPP was calculated by
subtracting annual growth respiration from the cumulative
PSN. Annual GPP was calculated as the sum of time-series
GPP within the growing period.

3[Online]. Available: https://open.canada.ca/data/en/dataset/18e3ef1a-497c-
40c6-8326-aac1a34a0dec

https://www150.statcan.gc.ca/
https://lpdaac.usgs.gov/
https://open.canada.ca/data/en/dataset/18e3ef1a-497c-40c6-8326-aac1a34a0dec
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The above steps produced the following four MODIS metrics
for use in this study: 1) Time-series NDVI and EVI2; 2) maxi-
mum NDVI and EVI2; 3) maximum GPP; 4) annual GPP and
NPP.

E. Modeling the Relationships Between MODIS Metrics and
Crop Yields

A linear relationship is assumed to relate MODIS metrics with
crop grain yields [13], [14], [20] although nonlinear models have
also been attempted [15]. A multiple linear regression model is
used here

Y = a1X + a2t+ a0 (3)

where X represents a MODIS metrics, t represents the specific
year to account for long term yield increases due to agronomic
technology, and Y is crop yield. In consideration of crop re-
sponses to different environmental conditions, regression anal-
yses were conducted independently for the three agro-climate
zones. Our intention was to develop yield estimation models
to disaggregate CAR-level yields to finer spatial scales at the
RM-level (Saskatchewan) or the SLC-level (prairies). Thus,
CAR-level yields were used to develop the models, and RM-
level yield was used to assess model performance in revealing the
spatiotemporal variability of crop productivity. We also adopted
a leave-one-out cross-validation (LOOCV) approach to assess
model robustness at the CAR-level by iteratively excluding the
yields of a given year in model development and then testing
model performance using the actual yields of that year for
validation.

F. Model Assessment

The Nash–Sutcliffe model efficiency coefficient (NSE),
the root-mean-square-error (RMSE) and the relative RMSE
(RRMSE), defined in (4)–(6) below, were used to assess model
performance

NSE = 1−
n∑

i=1

(Yoi − Yei)
2/

n∑

i=1

(
Yoi − Ȳo

)2
(4)

RMSE =

√∑n

i=1
(Yoi −Yei)

2/n (5)

RRMSE = 100 RMSE/Ȳo (6)

where Yo and Ye are the reported and estimated yields,
respectively, Ȳo is the mean of reported yields, n is the number
of samples, and the subscript i represents individual samples.
The definition of NSE in this study follows the recommendation
of Kvålseth [43], and is not the squared linear correlation co-
efficient. To assess each model, we compared the performance
of each MODIS metric for CAR-level yield estimation. To do
this, we established multiple linear regression models to estimate
yield at CAR-level and then assessed model robustness and
applicability. This was done by: 1) Applying a LOOCV at the
CAR-level to assess interannual variation, and 2) using RM-level
yields to assess the effects of spatial scaling. We then applied the

established model to map the spatial variability of crop yields at
the SLC-level.

III. RESULTS

A. Time-Series Vegetation Indices

The correlation between time series of the two vegetation
indices and crop yields at the CAR-level showed clear seasonal
patterns. Fig. 2 shows the NSE of the three crops in the three
agro-climate zones, as functions of the day-of-year (DOY) of
each MODIS 8-day composite. These results were obtained from
multiple linear regression models using data from all 17 years
used in the study. We also applied a running average to the
original time-series data for comparative purposes, using the
period covered by three composites (24 days). The NSE curves
are shown as NDVI_a and EVI2_a in Fig. 2.

For all cases, NSE increased from the start of the growing
season to a maximum in the mid-season, and then decreased to
the end of the season. The time to reach maximumNSE changed
among crops and agro-climate zones (between DOY of 185 and
209). While the NSE of EVI2 was higher than that of NDVI
for most cases, it reached its maximum at about the same time
as the NDVI. The difference in NSE was smallest in the arid
zone. NSE was improved by using the running average. During
the mid-season, the semiarid zone had the strongest correlation.
In the arid zone, the change in NSE from the beginning of the
season to the mid-season was the smallest.

B. Comparison of Correlations Between MODIS Metrics and
Crop Yields

Fig. 3 provides a comparison of NSE between different
MODIS metrics, including the best regression model using
running averaged time-series NDVI and EVI2, the maximum
NDVI and EVI2 (Max NDVI and Max EVI2), the maximum
GPP, and annual GPP and NPP. Here, the best regression models
using the two vegetation indices were considered as the ones
having the largestNSE in a growing season for each crop in each
agro-climate zone. For the models based on maximum NDVI,
EVI2, or GPP, the maximum values for different CARs were
often from different composites.

For the two vegetation indices, it was observed that NSE
values obtained from the best regression model of the time-series
data are comparable with those derived from the model based
on the maximum value of vegetation indices. The performance
of EVI2 was better than that of the NDVI in the subhumid and
semiarid zones, but comparable in the arid zone. The GPP and
NPP metrics showed a lower NSE than the vegetation indices.
The performance of models using the annual GPP and NPP were
comparable for all cases, but were inferior to the models using
the seasonal maximum GPP in most cases.

C. Crop Yield Estimation at the CAR-Level

Based on the results presented in the previous section, re-
gression models for yield estimation were developed using
maximum EVI2, maximum NDVI, and annual NPP. We chose
to use maximum vegetation indices as the predictor variable
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Fig. 2. Nash–Sutcliffe model efficiency coefficient (NSE) between crop yields at the CAR-level and MODIS vegetation indices (2000–2016) as a function of
composite days. Solid lines represent the original vegetation indices, and dashed lines (EVI2_a and NDVI_a) represent the moving average of three composites.

because they showed comparable performance with the best re-
gression models using time-series vegetation indices. Although
annual NPP (and annual GPP) had a lower NSE than maximum
GPP, it was selected for comparison with vegetation indices
because crop respiration cost was subtracted from GPP. Since
instantaneous GPP is directly controlled by fAPAR, which is
largely determined by vegetation indices such as NDVI [39],
[40], annual NPP may be a more independent physical quantity
than GPP in this case. Fig. 4 compares the reported and esti-
mated CAR-level yields over the 17 years, and Table I lists the
regression results.

As shown in Fig. 3, EVI2 had the best performance for yield
estimation in all cases, with the range of NSE falling between
0.53 for barley (in the arid zone) and 0.70 for canola (in the
semiarid zone). Annual NPP had the lowest NSE, which fell
between 0.08 for barley (in the subhumid zone) and 0.59 for
canola (in the arid zone). The range of NSE for NDVI fell
between 0.42 for barley (in the subhumid zone) and 0.62 for
canola (in the semiarid and arid zone). RMSE was generally
lowest for canola (253–381 kg ha−1), and highest for barley
(385–664 kg ha−1). The RRMSE values for the three crops were
between 15% and 22%. Fig. 4 shows an overestimation for low
yields and an underestimation for high yields using the three

metrics. EVI2 showed the least tendency and annual NPP the
most tendency for this bias.

D. Assessment of Crop Yield Estimation

To further assess model performance using the three MODIS
metrics, we inspected the annual variation of RRMSE obtained
through the LOOCV using CAR-level yield data (Fig. 5).
RRMSE for each year was obtained using the regression model
established using crop yields from all other years. For com-
parison, annual RRMSE was also obtained using the regres-
sion model established using yields from all 17 years (all-data
model). RRMSE obtained through LOOCV was similar to that
obtained using the all-data models. With the exception of canola
in the arid zone, RRMSE for the three crops using EVI2 ranged
between 6% and 30%. In most cases, the annual RRMSE for
EVI2 was lower than for NDVI, although the difference was not
large. RRMSE for annual NPP was higher than that for the two
vegetation indices.

Poor yield estimation was observed in several years, as shown
by the upward spikes in the annual variation of RRMSE in
Fig. 5. Using EVI2 as a predictor, the larger error was observed
throughout 2007 for all but one crop in all agro-climate zones
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Fig. 3. Comparison of the Nash–Sutcliffe model efficiency coefficient (NSE) between crop yields and MODIS crop metrics. GPP, gross primary productivity;
NPP, net primary productivity; “Max” represents the maximum value in the time-series composite data in a growing season.

TABLE I
RESULTS OF MULTIPLE LINEAR REGRESSION MODELS FOR YIELD ESTIMATION

Yield (kg/ha), CV, andn are average of observed yield, coefficient of variation of yield, and the number of samples in an Agro-Climate Zone, respectively;a1, b2, anda0 are
regression coefficients correspondent to Eq. (3); RMSE (kg/ha) is the root-mean-square-error; RRMSE is RMSE relative to average observed yield; NSE is the Nash–Sutcliffe
model efficiency coefficient; r1 and r2 are linear correlation coefficients for the metric and for the year, respectively.
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Fig. 4. Comparison of measured and estimated CAR-level crop yields, using multiple linear regression models established with yield data from all years.

TABLE II
MODEL PERFORMANCE ASSESSED USING SASKATCHEWAN RURAL MUNICIPALITY (RM) YIELDS

N: Number of samples; yield (kg ha−1) and CV are average and coefficient of variation of measured yield, respectively; NSE: The Nash–Sutcliffe model efficiency
coefficient; RMSE (kg ha−1): Root-mean-square-error; RRMSE: RMSE relative to mean measured yield.

(the exception was barley in semiarid zone). Large errors were
also observed in 2012 (for canola and barley), and a period
between 2001 and 2004 (with variation in the specific year
among crops and agro-climate zones). For barley, the largest
RRMSE was 19% in the subhumid zone in 2001, 20% in the
semiarid zone in 2002, and 23% in the arid zone in 2003. For
canola, the largest RRMSE was 28% in the subhumid zone in
2004, and 24% and 57% in 2003 in the semiarid and arid zones,

respectively. For spring wheat, the largest RRMSE was 22% in
the arid zone in 2002, and 25% and 23% in 2001 in the subhumid
and the semiarid zones, respectively.

An assessment of model performance was also conducted us-
ing Saskatchewan RM-level yields. Fig. 6 shows the comparison
between reported and estimated yields, and Table II provides
statistics for yield estimation using EVI2, NDVI, and annual
NPP. The scatter-plots in Fig. 6 are similar to the CAR-level data
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Fig. 5. RRMSE obtained from leave-one-out cross validation using CAR-level
yield data (LOOCV, blue lines), as compared with that obtained from regression
models using yields from all years (All_data, red lines). Left, middle, and right
columns are for EVI2, NDVI, and annual NPP, respectively.

shown in Fig. 4. NDVI showed a stronger tendency of overes-
timation at low yields and underestimation at high yields than
EVI2. Annual NPP was poor for yield estimation, particularly
for barley in the subhumid zone. Table II shows that, for each
crop in each zone, RRMSE was the lowest using models with
maximum EVI2 as predictor. The largest RRMSE values were
found in the arid zone for the three crops.

E. Mapping Crop Yield at the SLC Level

Since maximum EVI2 performed better than maximum NDVI
and annual NPP, the multiple linear regression models based
on maximum EVI2 were used to map annual crop yields for
SLC polygons over the study period. Fig. 7 shows maps of
the estimated yields for the three crops in 2000 (left) and 2016
(right). Crop yields of SLC polygons were highest in the sub-
humid zone and lowest in the arid zone. Within-zone variability
of estimated SLC level yields is also observable. Crop yields

increased markedly over the 17 years, with annual fluctuations
within each climate zone shown in Fig. 8. Average yields of
barley in the subhumid, semiarid, and arid zones increased
from 3305, 2428, and 2114 kg ha−1 to 3965, 3588, and 3405
kg ha−1, respectively. Canola yields increased from 1631, 1237,
and 1156 to 2385, 2325, and 2393, respectively, and spring
wheat yields increased from 2671, 1860, and 1698 to 3862, 3208,
and 2782 kg ha−1 in the three zones, respectively. The increase
in estimated yield over the study period ranges from 50 to 82
kg ha−1yr−1 for barley, 52 to 73 kg ha−1yr−1 for canola, and
63 to 91 kg ha−1yr−1 for spring wheat. These long term rates
of increase in crop yields are comparable to the rates calculated
from reported yields at the CAR-level (data not shown).

IV. DISCUSSION

A. Cropland Mask

A general cropland mask was used to facilitate the identifica-
tion of high quality MODIS retrievals over cropland. This mask
was derived from 30-m land use maps which did not discriminate
different crops. As a result, crop-specific growth conditions
could not be captured from the time-series MODIS data used
here. However, this is likely not a limitation for our study because
the majority of crops grown within the study region are spring
seeded, and show similar growth cycles. The implementation of
the AAFC Annual Space-Based Crop Inventory for the prairies
in 2009 and nationally in 2011 [44] means that, crop-specific
masks could be used to further test the yield estimation pro-
cedures developed in this article. However, the evaluation of
the use of such masks for yield forecasting across Canada by
Zhang et al. [1] showed that their use improved yield forecasts
in less than half of the CARs in the Prairie Provinces. This likely
indicates the comparable values of vegetation indices among
different crops. Nevertheless, even though crop specific masks
cannot be generated for the Canadian Prairies before 2009, a
yield estimation model based on a general cropland mask might
still be useful for generating an historical crop yield database.

B. Time-Series Vegetation Indices

Several studies have shown the effectiveness of using vege-
tation indices for crop yield estimation, and the most effective
indices for this purpose are derived from the peak growth stage
[13]–[15], [20], [27]. One reason for this is that vegetation
indices indicate crop photosynthetic capacity and are propor-
tional to the aboveground live biomass accumulated by plants
through the integration of growth resources and constraints. The
amount of green biomass accumulated up to the peak growing
stage is proportional to the maximum photosynthetic capacity
in a growing season, and thus, largely determines final biomass
accumulation and grain yields. However, vegetation indices at
the peak growing stage do not capture crop conditions later in
the season. As a result, final grain yields may be impacted by
abnormal growth conditions occurring after the peak growing
stage. Integrating conditions (e.g., climate variability) after the
peak growing stage could improve the performance of yield
models.
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Fig. 6. Comparison of measured and estimated crop yields at Saskatchewan at the Rural Municipality (RM) level using multiple linear regression models
established with CAR-level grain yields.

This study and several others showed that yield estimation
can be improved through temporal smoothing of time-series
vegetation indices [15], [45], [46]. This is because running
averages of time-series vegetation indices can help stabilize or
improve model performance by getting rid of noise in the data.
Considering that crops usually remain at their peak growing
stage for a period of time, maximum photosynthetic capacity can
still be measured, and a simple model can be implemented for
application over multiple years. In a study in the central United
States, Bolton and Friedl [20] derived county-level average
time-series vegetation indices using “phenologically adjusted”
time-series vegetation indices for crop yield estimation at the
pixel level. This adjustment relies on the detection of green-up
date, whose accuracy influences final results. Identifying green-
up date can be difficult when spring snow cover is present in the
time-series signals of green vegetation development [47].

Fig. 2 shows that NSE of EVI2 is higher than that of NDVI
during the peak growing stage, and Fig. 4 shows that the un-
derestimation at the high yield ranges is less severe using EVI2
than using NDVI. These results agree with the previous studies
showing that EVI2 is less prone to saturation at high biomass
[18], [48]. As the three-band counterpart of EVI2, MODIS
EVI was found to outperform other vegetation indices for GPP
estimation when the indices were scaled [49]. Fig. 9 shows the
relationship between CAR-level peak growing stage NDVI and

EVI2. Peak growing stage NDVI is larger than EVI2, with a
range from 0.54 to 0.81 in the subhumid zone, 0.42 to 0.78 in the
semiarid zone, and 0.32 to 0.75 in the arid zone. The two indices
are strongly correlated with an exponential model. The relative
rate of increase of EVI2 over NDVI (i.e., first derivative of EVI2
as function of NDVI) is smaller than 1 at the lower range but
larger than 1 at the higher range of NDVI (Fig. 9). This illustrates
that EVI2 is less susceptible to saturation with increasing green
biomass, and hence an increased sensitivity at higher crop yields
than NDVI. Since EVI2 is also more resistant to atmospheric
interference than NDVI [12], [18], it is recommended as a better
predictor of crop yield.

C. GPP and NPP

Fig. 3 shows that NSE of MODIS annual cumulative GPP
and NPP is comparable to that of maximum GPP. The NSE
of these metrics is lower than that of peak stage EVI2 or
NDVI. MODIS daily GPP is calculated as the product of the
realized light use efficiency (ε), solar incident PAR, and MODIS
fAPAR [39], [40]. GPP is correlated with MODIS vegetation
indices since fAPAR can be considered proportional to NDVI
(or EVI2). Although it incorporates meteorological constraints
through temperature and moisture stresses, the peak value of
GPP has a weaker determination on grain yields than peak
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Fig. 7. Estimated crop yields in 2000 (left) and 2016 (right) for barley (top), canola (middle), and spring wheat (bottom) at the Soil Landscape of Canada level,
using a regression model based on EVI2.

vegetation indices. We tested vegetation indices calculated from
MODIS 500-m reflectance data (MOD09A1) and found that the
correlation with crop yields is comparable to the 250-m MODIS
data. Thus, the lower correlation of MODIS GPP and NPP
data with crop yields is unlikely caused by the coarser spatial
resolution. However, we note here that the MODIS GPP/NPP
algorithm treats cropland with the same set of biome-specific
parameters. In reality, different crops may have different grain
formation mechanisms, and different light use efficiency [50].
Further study is necessary to improve the modeling of crop GPP
and NPP for final grain yield estimation.

D. Spatiotemporal Variability

Our results show that the regression models developed from
CAR-level data can be used for RM-level yield estimation
with acceptable accuracy (Fig. 6 and Table. II). This indi-
cates that 250-m peak stage MODIS EVI2 may be useful for

disaggregating CAR-level grain yields for mapping yields at a
finer spatial resolution. In contrast to the more cadastrally delin-
eated RM polygons, SLC polygons delineate patterns of natural
physical conditions (soils, landscape, and climate), and their
boundaries are more intricate. Crop growth conditions in an SLC
polygon can be obtained from time-series MODIS data if there
are enough representative cropland pixels in each polygon. There
are 1434 SLC polygons in the Canadian Prairies with annual
cropping activities. More than 95% of the polygons have more
than 50 qualified 250-m cropland pixels. Thus, it is reasonable
that the model can be applied for crop grain yield mapping at the
SLC level (Fig. 7) to generate a historical database across this
agricultural region. However, as noted, poor model performance
is shown in certain years, as shown by the spikes of large RRMSE
in 2003, 2007, and 2012 (Fig. 5). The similar behavior of the
models based on peak stage vegetation indices and those based
on annual NPP indicates that abnormal yield-limiting effects are
not successfully captured by the models. For instance, in 2012 in
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Fig. 8. Annual variation of estimated grain yields for barley (top), canola (middle), and spring wheat (bottom) in three agro-climate zones. Solid line represents
the averages, and shaded band represents ±1 standard deviations of estimated yields at the Soil Landscapes of Canada (SLC) level.

Fig. 9. Comparison of CAR-level maximum NDVI and EVI2.

Saskatchewan, flooding, heat stress, diseases, insects, wind, and
hail influenced the growth of many crops across the province4.
Here, the eastern prairies experienced excessive moisture, while
the southern prairies experienced high temperatures and heat
stress. Yield estimation models based on remotely sensed veg-
etation indices may benefit from incorporating these extreme
conditions.

V. CONCLUSION

The use of MODIS data for estimating grain yields of barley,
canola, and spring wheat in the Canadian Prairies was evaluated

4http://www.agriculture.gov.sk.ca/Crop-Report

at two spatial scales. Correlations between crop yields and
MODIS vegetation indices show clear seasonal patterns, with
the strongest correlations being observed at peak growth in late
July and early August. EVI2 was observed to be better than
NDVI for crop yield estimation, and a running average with three
8-day composites improves model performance. The correlation
between crop yields and MODIS GPP or NPP is lower than that
between crop yield and peak growing stage vegetation indices.
A multiple linear regression model can be established for crop
yield estimation, using MODIS data to reveal spatiotemporal
variability of crop productivity and to identify long term yield
trends. Using seasonal maximum EVI2 as a predictor, the rela-
tive root-mean-square-error of estimation is between 14% and
20% for the three crops in the three agro-climate zones, and the
respective coefficients of determination are between 0.53 and
0.70. Although interannual variation exists, leave-one-out cross
validation demonstrated model stability and robustness across
different years. Model evaluation using crop yield data at a finer
spatial resolution showed its applicability to disaggregating crop
yields from a coarser resolution to finer spatial resolutions. This
study provides a potential approach for establishing a long term
historical crop yield database across the Canadian Prairies.
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