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Region-Based Edge Convolutions With Geometric
Attributes for the Semantic Segmentation of

Large-Scale 3-D Point Clouds
Jhonatan Contreras , Sven Sickert , and Joachim Denzler , Member, IEEE

Abstract—In this article, we present a semantic segmentation
framework for large-scale 3-D point clouds with high spatial reso-
lution. For such data with huge amounts of points, the classification
of each individual 3-D point is an intractable task. Instead, we
propose to segment the scene into meaningful regions as a first
step. Afterward, we classify these segments using a combination
of PointNet and geometric deep learning. This two-step approach
resembles object-based image analysis. As an additional novelty, we
apply surface normalization techniques and enrich features with
geometric attributes. Our experiments show the potential of this
approach for a variety of outdoor scene analysis tasks. In particular,
we are able to reach 89.6% overall accuracy and 64.4% average
intersection over union (IoU) in the Semantic3D benchmark. Fur-
thermore, we achieve 66.7% average IoU on Paris-Lille-3D. We also
successfully apply our approach to the automatic semantic analysis
of forestry data.

Index Terms—3-D point clouds, geometric deep learning,
outdoor scenes, semantic segmentation.

I. INTRODUCTION

IN RECENT years, companies and research groups have
increased their interest in the use of light detection and rang-

ing (LiDAR) scanners. These scanners can be used to generate
precise spatial information about the shape, surface, and other
geometric characteristics of occurring objects in a scene. LiDAR
uses pulsed beams of light to measure distances from a scanner
to the surface of objects in a scene. The result is typically stored
as a 3-D point cloud. Thus, the data are composed of a collection
of nonuniformly distributed points in a continuous space (x-, y-,
z-coordinates), which can be referred to as unstructured data. In
some LiDAR campaigns, images are captured simultaneously
to retrieve additional color or reflectance information of objects
in a scene. Merging such information creates more meaningful
point clouds.

Especially in geological sciences, a setup with LiDAR offers
several advantages over regular 2-D images. In dense forest
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areas, for instance, an aerial 2-D photograph fails to capture the
terrain surface in areas with thick canopy cover. Furthermore,
clouds can make satellite imaging difficult. On the other hand,
terrestrial cameras fail to capture scenes completely due to
occlusions by nearby objects in the line of sight of the camera. In
poorly illuminated scenes or during darkness, a 2-D image cap-
tures only a few or very noisy information. In contrast, LiDAR is
an active sensor and can collect data during both day and night.
Although handling such data is not as intuitive as processing
images, point clouds are used in numerous applications. Ex-
amples include the generation of canopy models [1], individual
tree segmentation [2], building models, digital terrain elevation
models [3], or semantic understanding of forest and urban areas.
The latter can be achieved via semantic segmentation. It aims at
assigning one label from a set of predefined classes to each point
of a point cloud [4], [5]. Nearby points of the same class form
semantically meaningful segments that resemble real-world ob-
ject boundaries. For instance, in an urban outdoor scene, the
classes could include natural terrain, vegetation, buildings, and
cars. Semantic segmentation is an essential intermediate step
toward complex tasks, such as autonomous car driving, urban
planning or disaster prevention, and mitigation. It is crucial for
automatic decision making.

For large high-resolution outdoor scenes, pointwise classi-
fication approaches are an intractable problem. However, the
semantic segmentation of a scene can also be achieved dif-
ferently. To reduce the complexity of the task, points can be
grouped into segments before classification. Most commonly,
such segments are voxels in regular volumetric grids [6]–[8].
This process reduces the complexity and, thus, computational
requirements. However, at the same time, it decreases the output
resolution. Furthermore, especially in outdoor scenes, a large
number of voxels are empty.

Finally, rectangular grids are not a natural division for real-
world scenes. In most cases, a unit contains points of different
semantic classes. A consistent global labeling of all points in
such voxels will likely lead to many misclassifications. It can
be substituted by unsupervised segmentation, which obtains
3-D segments based on visual or geometric criteria. In the
best-case scenario, the resulting 3-D segments are consistent
with the spatial geometry and do not cross object boundaries.
Thus, 3-D segments are a more natural representation of point
groups than voxel grids. At the same time, the quality of the
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initial segmentation method can have considerable effects on
the behavior of subsequent processing steps.

In this article, we propose a method based on PointNet [9]
using a geometric deep learning operation called edge convo-
lution [10]. It can capture local geometric attributes of adja-
cent segments. As an initial segmentation step, we follow the
approach proposed in [11]. For the semantic segmentation of
outdoor 3-D scenes, we propose to use the normalized elevation
to simplify the distinction between elevated and nonelevated
objects. In urban scenes, for instance, it benefits the distinction
between ground, high vegetation, and building structures. Our
experiments demonstrate the viability of our approach for both
high-resolution and low-resolution point clouds displaying out-
door scenarios.

The remainder of this article is organized as follows. In
Section II, we report on related work and put our approach in
context to the state of the art. After that, in Section III, we de-
scribe our approach based on convolutional networks using edge
convolutions and a normalized digital surface model (NDSM)
for 3-D point cloud data. Section IV follows with an extensive
experimental evaluation of our approach. We use diverse and
challenging outdoor datasets that differ in both quality and the
underlying recording settings. In Section V, we summarize our
findings.

II. RELATED WORK

There are mainly three kinds of approaches to directly process
3-D point cloud data: pointwise, voxelwise, and segmentwise.
Alternatively, a point cloud data can be mapped into 2-D space
and processed accordingly. The output is then obtained by
applying standard image CNNs on multiple 2-D images views
[12]–[14]. In the following, we will put our proposed approach
in relation to these works.

A. Voxelwise Approaches

VoxelNet proposes a generic 3-D detection learning network
that unifies feature extraction and bounding box prediction into
a single stage. Selected points inside each voxel are transformed
using a proposed voxel feature encoding [6]. A region proposal
network [15] uses the previous output to generate detections and
bounding boxes. The authors of OctNet [7] create a hierarchical
partition of the 3-D space that exploits its sparsity characteristics
using a set of unbalanced octrees [16]. It focuses on dense
regions, obtaining more partitions only over the relevant dense
regions without affecting the resolution and accuracy. Their 3-D
CNN redefines traditional operators for convolution and pooling,
to make deep learning tractable for high-resolution inputs. In
[8], a technique is proposed, where each voxel is encoded using
only 1 b, which saves computational time and effort. An essential
contribution is the implementation of a lightweight CNN model,
which obtains a low-power and low-cost inference targeting
robots, drones, and cars. It is independent of the number of
points and their distributions inside of voxels. However, the
voxelization process leads to a loss of information and details in
both geometric and visual aspect.

B. Pointwise Approaches

Pointwise approaches are computationally expensive but can
offer high details in scenarios with low point densities. Sickert
and Denzler [17] proposed to compute 3-D moment invariant
features for each occurring point. They are invariant under
scaling, rotation, and translation. Additionally, the feature rep-
resentation is augmented by local contextual information, which
is generated using cascaded classification. Context features are
shared among nearby points. Another example of hand-crafted
features is the work on SHOT descriptors [18]. The surrounding
of each point is organized in a structured spherical neighborhood
with bins. Based on the distribution of nearby points, a meaning-
ful histogram can be created, which is invariant under rotation.
A fast semantic segmentation pointwise approach is proposed
in [19], where a random forest classifier is used. The points
are described by a set of features of three different types. First,
they use a subset of geometric features based on eigenvalues
and corresponding eigenvectors. Additionally, the first- and the
second-order moments of the point neighborhood around the
eigenvectors are integrated. The third type of feature comprises
height values (z-coordinates) and vertical range.

In contrast to these works on features design, recent point-
wise classification approaches focus on the use of deep neural
networks [9], [10]. PointNet [9] divides a scene into 3-D blocks.
Points inside a block are then aligned by a spatial transformer
network [20] to retrieve point features. A max-pooling layer
serves as a symmetric function to aggregate information from all
the points resulting in a shared global feature, which is invariant
to input permutation. Finally, concatenated global and local
features are used to predict a class score for each point. Follow-
up work [21] addresses missing local context information by
applying a hierarchical PointNet variant called PointNet++. The
authors of PointCNN [22] proposed a hierarchical convolution
method with an X-Conv module that aggregates inputs into
less points with more valuable features. Also motivated by
the individual classification of points, Wang et al. [10] adapt
ideas from CNNs to incorporate neighborhood information.
In particular, an edge convolution operation based on graphs
is introduced. It allows to find semantically similar geometric
areas within a point cloud. PointSift [23] introduces a module
that can be incorporated to most of the existing PointNet-based
methods to improve the permutation invariance. This method
applies a scale-invariant feature transform to capture a feature
representation of the points. Ma et al. [24] proposed a multiscale
pointwise CNN based on PointNet. It consists of the four com-
ponents 3-D convolutions, up- and down-sampling, dynamic
feature extraction, and postprocessing using conditional random
fields (CRF). Furthermore, Ma et al. [25] presented a module
called PointGCR that can be included in 3-D CNNs to incor-
porate semantic context dependencies information with global
reasoning. It performs graph convolution operations considering
each channel of an output layer as a graph node while their
dependencies are modeled via edges.

In another work, Liang and Fu [26] proposed a network called
MHNet that is composed of four connected down-sampling
modules using PointNet layers to capture local features at
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multiple scales. The point cloud is up-sampled, concatenating
the local features obtained in the four stages of the hierarchi-
cal network. Additionally, a CRF is applied within the output
layer as postprocessing step. TGNet [27] is a geometric graph
convolution network applied on multiscale neighborhoods that
learns expressive and compositional local geometric features.
Their filters are defined as the products of the local point fea-
tures and the neighboring geometric features where Gaussian
weighted Taylor kernels represent the geometric features. The
work on MS-PCNN [24] proposes an end-to-end feature extrac-
tion framework inspired by PointNet and edge convolutions. Its
global and local features are extracted using dynamic edge con-
volutions on points at different scales utilizing down-sampling
and up-sampling modules. The previously mentioned multiscale
methods and others, such as 3P-RNN [28], have the advantage
of including information from a larger neighborhood. Using the
neighborhood size, the influence of context can be controlled
and scale invariance can be improved.

C. Segmentwise Approaches

Another way to achieve a semantic segmentation is to classify
segments instead of individual points. Landrieu and Simonovsky
[11] proposed to combine PointNet with graphical models and
unsupervised segmentation. The whole point cloud is divided
into geometrically homogeneous segments. PointNet is utilized
to obtain a global feature for each of those segments. A su-
perpoint graph is built by modeling segments as graph nodes
on which a graph convolution can be applied. Xu et al. [29]
utilized a supervoxel-based method to generate nearly uniform
segments. For each segment, attributes are generated, then a
random forest classifier creates an initial label, which is refined
using a supervised graph-based model at the end. Similar to
Landrieu and Simonovsky [11], our proposed method uses unsu-
pervised segmentation to split the scene in a first step. However,
in our approach, we capture local information of the points in
each segment using an additional subnetwork. We make use
of extensive local knowledge, based on geometrical attributes
of the neighboring segments through edge convolutions. Thus,
our approach aims to reduce complexity and memory consump-
tion combining ideas of Wang et al. [10] and Landrieu and
Simonovsky [11] to overcome the limitations of global features
of the PointNet approach [9].

III. DEEP LEARNING USING ATTRIBUTES

AND ELEVATION MODELING

Our proposed deep learning based framework can manage
large-scale point clouds of outdoor scenes with high spatial
resolution. To achieve this goal, we segment a scene by grouping
geometrically and visually similar points together. Next, our
network classifies segments instead of individual points using an
architecture similar to PointNet. In Section III-A, we describe
our whole pipeline in detail. The modeling of additional geomet-
ric information features is covered in Section III-B. Afterward,
we recapture edge convolutions in Section III-C and how they
are used in our case. Finally, we propose an efficient organization
of the input data in Section III-D.

A. Pipeline and Attributes

An overview of our whole approach is given in Fig. 1. In
the first step, the NDSM of the scene is computed, stored, and
used as part of the input in the fourth step. We will come
back to this model later in Section III-B. Simultaneously, an
unsupervised segmentation based on Landrieu and Simonovsky
[11] is performed to reduce the complexity of the data. We
selected this approach, as the size of the segments depends
mainly on the local geometric homogeneity. In this way, small
segments can be obtained for objects, such as bollards or trash
can, as well as large segments for uniform surfaces, such as roads
or walls. Typically, a high-resolution scene can contain millions
of points. The analysis of all individual points is computationally
expensive and sometimes even redundant. In Figs. 5(b) and 7(b),
we visualize segments created by unsupervised segmentation.

As a result, instead of working with millions of points, our
approach needs to analyze several thousand segments. Each of
them contains a discrete subset of points with a fixed number
of elements. We accomplish segmentation using a particular set
of attributes computed for each point. Nearby points with similar
characteristics should be part of the same group. Those attributes
include linearity, planarity, scattering, and verticality [19]. They
are used again in the classification step as additional feature
input.

In the second step, each segment is considered as an inde-
pendent 3-D shape containing n points in R3 with x-, y-, and
z-coordinates. These shapes are used as input to our classifica-
tion subnetwork based on PointNet [9]. The latter is composed
of two multilayer perceptron blocks separated by an aggregation
function, which combines the information from all points in the
segment [see Fig. 2(a)]. The output of the aggregation function
is a feature vector, which serves as input for the semantic
segmentation subnetwork. Thus, the feature vector includes a set
of attributes, which are invariant under permutation and spatial
transformations that characterize segment properties.

In the following step, NDSM is applied to augment the feature
vector with minimum, maximum, and average elevation for each
segment. A more detailed explanation follows in Section III-B.
Additionally, a segment’s length, volume, surface, and the
number of points are determined and added as attributes. As a
result, the feature vector contains 11 additional attributes. The
feature vector is used as input in the semantic segmentation
subnetwork, which applies edge convolution operations [see
Section III-C and Fig. 2(b)] to convolve segments considering
a local neighborhood. Finally, a joint architecture is applied
between both networks in an end-to-end learning process. An
output score is computed for each segment.

B. Normalized Digital Surface Model (DSM)

Terrain elevation may vary a lot in forestry areas. In urban
areas, the terrain most often is flat or has only fluctuation in
altitude. Fig. 3 shows a scene of the Semantic3D dataset, which
we later use in our experiments. The LiDAR sensor is located
over a small hill, and it is represented as a red dot. The coordinate
system corresponds to the sensor position. Thus, the points above
it have positive z values, whereas points below it have negative
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Fig. 1. Pipeline of our approach for semantic segmentation: The original point cloud consists of A points, which is typically several orders of magnitude larger
than the number of segments B. Segments are generated using an unsupervised segmentation approach. Based on the input and the unsupervised oversegmentation,
NDSM is a means of modeling additional geometric attributes. These are added to the segment’s features and passed to a semantic segmentation subnetwork. The
losses of both the global classification and local semantic segmentation subnetwork are combined for optimization.

Fig. 2. Architectural details on the subnetworks used in our pipeline: (a) Classification subnetwork takes as input n 3-D points from the segments. A max-pooling
operation aggregates all information in a 1-D global feature descriptor, which is used as input for the segmentation subnetwork. The spatial transformation block
is used to align an input point cloud to a canonical space by applying a learned 3× 3 transformation matrix. (b) Semantic segmentation subnetwork takes as input
the 1-D global feature descriptor and information extracted in previous steps or from other sources. Those additional features can be added at an early or late step
in the system. The network computes features by applying edge convolutions and multilayers perceptron until the last layer classifies each segment in one of c
classes.

z values. Fig. 3 shows two points, where the altitude difference
is greater than 9 m on the ground level. In the absence of global
geoinformation for calibration, the LiDAR sensor is the center
of the reference system. Consequently, a normalization of the
surface is desirable.

Additionally, in point cloud datasets, pairs of classes, such
as high and low vegetation or building and hardscape, can have
small interclass variances. For instance, in [30], the class for
low vegetation includes flowers and small bushes. On the other
hand, the high vegetation class includes trees and large bushes.
The two are separated using a simple threshold value of 2 m. In
another example, garden walls belonging to the hardscape class
pose similar geometric attributes to building walls. However, the
latter are much taller than garden walls.

To allow direct measurement of object heights, we define a set
of ground models. They also help in simplifying the distinction
between elevated and nonelevated objects. The DSM represents
the earth’s surface and includes all objects on it. In contrast to

DSM, the digital terrain model (DTM) is a representation of
a terrain’s surface without any objects. Typical objects include
cars, plants, and buildings. The DSM can be directly obtained
as the outer hull of the point cloud or terrain’s elevation data
(see Fig. 4). Finally, the NDSM provides valuable information
in which the terrain is everywhere set to a standard of zero. It is
generated by subtracting the DTM from the DSM as

NDSM = DSM − DTM. (1)

Several filtering algorithms have been developed in the last
decades. In our approach, we use the progressive morphological
filter (PMF) proposed in [32] to distinguish between ground
and nonground points. Afterward, we define a radius and use
an interpolation algorithm to complete the DTM. We selected
PMF as it is implemented in the GDAL open source library.
It is convenient, acceptably fast, and we acquired satisfactory
terrain models. However, there are alternatives, such as cloth
simulation filter [33], that could be used as well. In fact, in some
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Fig. 3. Bildstein station 5 scene shows an urban area in Semantic3D dataset
[30] without surface normalization. The coordinate system corresponds to the
sensor position (red dot). We can observe the coordinates for two points on the
asphalt with values z = 2.2m and z = −7.19m.

Fig. 4. DSM represents earth’s surface and includes all objects on it. In
contrast, DTM is a representation of a terrain’s surface without any objects. In
the NDSM, the terrain is normalized to zero, which allows direct measurement
of object heights.

cases, surface models are already available from other sources,
such as satellite LiDAR data. From NDSM, we can extract the
maximum, minimum, and average elevation of the points within
a segment. These attributes represent extra information to enrich
a segment in addition to geometric attributes. Finally, all of the
aforementioned attributes are added to the feature vector that
serves as input for our semantic segmentation subnetwork.

C. Edge Convolution for Segments

In the following, we adopt the edge convolution operation
introduced by Wang et al. [10] as it is an essential part of
our pipeline. Note that edge convolutions are originally defined
for points. We extend them to be used in conjunction with
segments and consequently within our subnetwork for semantic
segmentation [see Fig. 2(b)].

As a prerequisite, we first introduce the notations that will
be used throughout this section. C = {c1, . . . , cn} denotes a F -
dimensional point cloud consisting of n points, where C ⊆ RF .
Thus, in the case F = 3, each element contains 3-D coordinates
ci = (x̄i, ȳi, z̄i). This representation can be extended to include
additional information representing color, verticality, scattering,
among others.

TABLE I
OVERVIEW OF THE ATTRIBUTES WE USE TO ENRICH THE FEATURE VECTOR OF

EACH SEGMENT IN THE SEMANTIC SEGMENTATION SUBNETWORK

Note: The majority of them are taken from Guinard and Landrieu [31],
where a more detailed explanation can be found.

We use the unsupervised segmentation method called geo-
metric partition with global energy defined in [11]. It computes
the point cloud partition using a set of dg geometric features
fi ∈ Rdg for each point ci. In particular, the set of feature dg
includes linearity, planarity, scattering, and verticality. Accord-
ing to the work in [31], those attributes are defined using the
eigenvalues λ1 � λ2 � λ3 of the covariance matrix defined for
each point and its neighborhood (see Table I).

As a result, the point cloud C is divided in a set segment of
S with m components, S = {s1, . . . , sm}, where si ⊆ C. The
average values of the aforementioned attributes in a segment are
used to enrich the feature vector in the segmentation subnetwork.
The attributes length, surface, and segment volume are also
concatenated. They are defined in [11], using the eigenvalues
λs1 � λs2 � λs3 of the covariance matrix of the points into
a segment (see Table I). S has dimension F , which is the
feature dimensionality of a given layer. Thus, in the first layer,
it corresponds to the input dimension (F = 3). Each following
layer conducts convolutions on the output of the previous layer.

Consider a directed graph G = (V, E) representing the struc-
ture of a segmented point cloud using nodes V = {1, . . . , n}
and edges E ⊆ V × V . In our approach, we construct G as
the k-nearest neighbor (k-NN) graph in RF . Directed edges
are defined as (i, ji1), . . . , (i, jik) and sji1 , . . . , sjik are the k
closest segments to si. Furthermore, we define edge features
eij : hΘ(si, sj), where hΘ : RF × RF ⇒ RF ′

is a nonlinear
function parameterized by the set of learnable parameters Θ. In
this article, we set hΘ(si, sj) to be an asymmetric edge function
of the form hΘ(si, sj) = hΘ(si, sj − si), combining both the
global shape structure (captured by si) and local neighborhood
information (captured by sj − si).

The output of edge convolution [10] at node si is defined
by applying an aggregation operation on the k edge features
associated with si. In our case, the aggregation operation is
defined as maximum value and hΘ as a mlp

s′i = max
j:(i,j)∈E

hΘ(si, sj). (2)
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TABLE II
NUMBER OF POINTS AND NUMBER OF SEGMENTS FOR EXAMPLES OF THE

Paris-Lille-3D DATASET [35]

D. Batch Division Strategy

To reduce the impact on the performance of the proposed
method, we propose a smart batch division strategy. As men-
tioned in Section III-A, a point cloud initially contains A points.
After oversegmentation, we reduce it into B segments. These
values are different for every scene, depending mainly on the
size, the density, and the number of objects. Table II shows the
number of points and segments for the Paris-Lille-3D dataset,
which we later use in our experiments, as well. The semantic
segmentation subnetwork needs to infer the class of the segment
Si, the global feature vector from the classification subnetwork
of Si, and of its k nearest neighbors. Therefore, the minimum
batch size bz must be equal to k + 1 when only one segment is
inferred. A batch size bz = N � k + 1 depends on the GPU
memory size. Consequently, an efficient organization of the
input segments increases the number of inferred segments for a
batch. This is necessary to reduce the computation time and to
use the GPU resources as best as possible. The methodology is
explained below.

First, the k-NN is computed for each segment. Next, an
arbitrary initial input segment S0 and its k-NN S0knn

=
{S0,1, . . . , S0,k} is selected. We define the initial batch subset
as batch0 = {S0 ∪ S0knn}. Additionally, each neighbor segment
S0,j has its own subset of k-NN, S0,jknn = {S0,j,1, . . . , S0,j,k}.
Later, in an iterative process until we obtain N elements in the
batch subset, we assign asSi+1 ∈ Siknn the segmentSi,j with the
largest intersection between its subset Si,jknn and the batch sub-
set. The batch subset is updated as batchi+1 = batchi ∪ Si,jknn .

IV. EXPERIMENTS

In this section, we compare our results with the state of the
art using multiple outdoor LiDAR datasets covering forestal
and urban areas. Each series of experiments focuses on a dif-
ferent aspect covering quality improvements, scalability, and
the augmentation procedure for the geometric attributes. The
performance values of competing approaches mentioned in the
following were taken from the literature. We implemented our
framework (see Fig. 2) in Python 3.5 using open source libraries
and TensorFlow 1.14 as deep learning framework. Training and
testing were done using a single Nvidia Tesla v100. During
training, we used the ADAM optimizer [36] with initial learning
rate α = 0.001.

TABLE III
QUANTITATIVE RESULTS FOR THE FOREST 3D DATASET [34]: F1-SCORE IS

AVERAGED OVER ALL THREE CLASSES

Note: We achieved similar results. Our approach performs slightly better overall and in
particular for the class tree.

A. Forest Areas

To evaluate our approach in a typical geoscience scenario, we
used the 3D Forest dataset [34]. It consists of 467 211 points
recorded using a terrestrial LiDAR scanner. The dataset covers
an area containing multiple trees with labels for the semantic
classes tree, terrain, and dead wood. An additional miscella-
neous class exists for partial objects and background scatter. We
follow the experimental setup by Sickert and Denzler [17] and
remove that class from the evaluation. Furthermore, we adapt
their splits for training and testing sets in our initial experiment.
A visualization of the complete dataset and its ground-truth
labeling can be found in Fig. 5(a). After applying unsupervised
segmentation, we have segments as visualized using false-color
composition in Fig. 5(b).

1) Default Setting: For evaluation of semantic segmentation
quality, we follow Sickert and Denzler [17] in using the common
criteria precision, recall, and F1-score. The latter is the harmonic
mean of the first two performance measures. Thus, it is a good
indicator for the overall best performance. We summarize our
results in Table III, where the best performances for each mea-
sure are highlighted in bold font, respectively. As can be seen,
our approach demonstrates the highest F1-score, as well as the
best performance for the most prominent class tree. A qualitative
comparison between our result and the ground-truth is shown in
Fig. 5. In addition to obtaining best performance, our method
has a lower computational effort than the method described in
[17]. It does not need to compute features for every single point.
Although Fig. 5 indicates the point cloud as a flat surface, and it
is a hill with a high degree of inclination. We observed that our
method is not affected by the terrain surface. We believe this to
be the result of our surface normalization process (NDSM).

2) Four Class Setting: A typical task in biological sciences is
to measure tree trunks to infer biomass prediction, tree volume,
and wood density [37], Thus, we carried out a second set of
experiments on the Forest 3D dataset for that task. In particular,
we divided the class tree manually into two new subcategories.
Those classes are leaves and tiny branches and trunk and sig-
nificant branches. Fig. 6(a) shows the new ground-truth point
cloud with four classes. For the evaluation, we applied the same
protocol as in the previous experiment. However, we extend it
to a two-fold cross-validation strategy. Fold 1 corresponds to the
configuration proposed in [17], which we used in the previous
experiment. In contrast, Fold 2 has reversed splits for training
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Fig. 5. Qualitative results for Forest 3D dataset [34]. (a) Ground-truth with labels for trees, terrain, and dead wood. (b) False color representation of the
unsupervised segmentation output. (c) Final output for our semantic segmentation pipeline.

TABLE IV
QUANTITATIVE RESULTS FOR THE FOREST 3D DATASET [34] LABELED WITH FOUR CLASSES USING TWO-FOLD CROSS-VALIDATION

BASED ON THE SPLIT PROPOSED IN [17]

Note: Both folds perform differently. At the same time, dividing the class tree leads to an overall improvement of performance compared to our result presented in Table III.

Fig. 6. Forest 3D dataset [34] with four labeled classes. (a) Ground-truth with
labels for leaves and tiny branches, terrain, dead wood, and trunk and significant
branches. (b) Final output for our semantic segmentation pipeline.

and testing. Thus, we can see how much impact the selected area
used for training.

The results of this experiment can be found in Table IV.
Accordingly, a qualitative comparison between our result and
the ground-truth is visualized in Fig. 6. As can be seen, our
approach exhibits high performance for all classes, including the
new two classes. It is important to note that by separating the
class tree into two subclasses, the performance has improved in
general. We believe this is due to better defined classes and, thus,
less intraclass and more interclass variance. In the three-class
setting, the tree class is based on features that describe both
leaves and trunks. However, they have completely different ge-
ometric characteristics, such that this class spans a wider area in
feature space. Note that the results of both cross-validation runs
are considerably different in their performance. The reversed
training strategy resulted in a performance drop of almost 10%.
It indicates that performance rates reported in [17] are optimistic.

B. Urban Areas

In our second set of experiments, we focus on LiDAR point
cloud data recorded in urban areas. For that task, we compare
our approach with state of the art in the Semantic3D dataset
[30] and Paris-Lille-3D dataset [35]. In the former, we show
the scalability of our approach to large-scale point clouds with
millions of 3-D points. Afterward, we look into the feature
augmentation procedure for our proposed geometric attributes.

Note that the evaluation of the test data is computed directly
at the dataset provider using intersection over union (IoU) [43]
and overall accuracy (OA) for Semantic3D and IoU for Paris-
Lille-3D as performance measures, respectively.

1) Semantic3D Dataset: Semantic3D [30] consists of 30 la-
beled urban scenes with a total of over three billion points.
Each point is represented by RGB color values and x-, y-,
and z-coordinates for geometric information. The dataset has
eight classes covering human-made terrain, natural terrain,
high vegetation, low vegetation, building, hardscape, scanning
artifacts, and cars. For benchmark purposes, there exist two
settings. The Semantic-8 benchmark uses complete point clouds
with the number of points mentioned earlier. In comparison,
the Reduced-8 dataset consists of the same training data as the
original set. However, the testing set is reduced in size for faster
testing [30].

For Semantic-8, we trained our approach using both color and
geometric information, whereas for Reduced-8, we trained using
only geometric information. The RGB information or intensity
values depend on the recording sensors and are frequently af-
fected by light conditions. Additionally, those values are not
always available. Thus, using the Reduce-8 benchmark, we also
show how geometric attributes are sufficient to segment point
clouds semantically. Our results for Semantic-8 and Reduced-8
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TABLE V
RESULTS ON SEMANTIC3D [30] FOR BOTH THE SEMANTIC-8 AND REDUCED-8 SETTING

Note: Values represent IoU scores per class. Classes are human-made terrain (C1), natural terrain (C2), high vegetation (C3), low vegetation (C4), building (C5), hardscape (C6),
scanning artifacts (C7), and car (C8). Additionally, IoU avg. is the averaged IoU over all the classes and OA is the overall accuracy.

Fig. 7. Qualitative result for one test scene of the Semantic3D dataset [30]. (a) Ground-truth for classes human-made terrain, natural terrain, high vegetation,
low vegetation, buildings, hardscape, scanning artifacts, and cars. (b) False color representation of the unsupervised segmentation output. (c) Final result for our
approach.

setting are summarized in Table V. We report performance for
measures OA and average IoU. Additionally, we show individual
performance for the eight classes using their respective IoU.
Note that OA does not take imbalanced classes into account and
is dominated by the performance of most frequently occurring
classes. As before, the best results for each class and total
performance are highlighted in bold font.

For the Semantic-8 setting in the upper part of Table V, it
is visible that classes, such as building, human-made terrain,
natural terrain, and high vegetation achieve high scores. At the
same time, classes, such as low vegetation, hardscape, scanning
artifacts, and cars, achieve low scores, decreasing the overall
average performance on the benchmark. In comparison, in the
Reduced-8 setting (bottom), classes hardscape and low vegeta-
tion show low performance for our approach. There is often
a confusion between low vegetation and building structures,
mainly when the low vegetation objects are small bushes with
low elevation. This confusion of our algorithm between those

two classes is also visible in Fig. 7. In general, our approach does
not reach state-of-the-art results for this dataset but establishes
a competitive performance of almost 90% OA for the scenes.
While classifying segments is more efficient than a pointwise
classification of most of the competing works, it can also lead
to misclassifications of larger areas. The configuration of the
unsupervised segmentation step also has a significant influence
on performance. However, we did not optimize this step in our
experiments yet.

2) Paris-Lille-3D: In addition to Semantic3D [30], we evalu-
ated our approach on another urban LiDAR dataset called Paris-
Lille-3D [35]. It is a benchmark dataset for point cloud classi-
fication with dedicated training and testing sets. The training
set consists of four scenes with nine labeled classes, including
ground, building, pole, bollard, trash can, barrier, pedestrian,
car, and vegetation. In comparison, the test set consists of three
scenes. Each point cloud of the dataset has exactly ten million
points. There is no RGB information, but reflectance values,
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TABLE VI
QUANTITATIVE RESULTS FOR THE Paris-Lille-3D DATASET [35], WHERE WE COMPARED TWO DIFFERENT FUSION VARIANTS

Note: The dataset has labeled classes ground (C1), building (C2), pole (C3), bollard (C4), trash can (C5), barrier (C6), pedestrian (C7), car (C8), and vegetation (C9). Early fusion
is preferable for this dataset.

Fig. 8. Qualitative results for the Paris-Lille-3D dataset [35] for the test point clouds Ajacio (top) and Dijon. (a) Output of the unsupervised segmentation method
in false color composition. (b) Our results for early fusion. (c) Our results for late fusion. Colors in results indicate classes ground, buildings, pole, bollard, trash
can, barrier, pedestrian, car, and vegetation, respectively. In late fusion, there is a lot more confusion between small object classes.

which we did not use in our experiments. Our approach was
trained exclusively using geometric information based on x-,
y-, and z-coordinates.

In contrast to our previous experiments, we not only wanted to
estimate the best performance but analyze the feature augmenta-
tion step. The input for our semantic segmentation subnetwork
has two sources (see Fig. 1). Those sources are the output of
the aggregation function of the classification subnetwork and
a vector composed of 11 additional attributes. Thus, for this
dataset, we tested two different alternatives for the fusion of these
features, namely early fusion and late fusion. In early fusion, the
11 attributes are concatenated directly to the output of the aggre-
gation function [see Fig. 2(b)]. That vector is used as input in our
semantic segmentation subnetwork. In late fusion, the semantic
segmentation subnetwork is only trained using the output of the
aggregation function of the classification subnetwork. Instead,
the 11 attributes are concatenated to the last set of mlp-layers
[see Fig. 2(b)].

In Table VI, we give an overview of the results for both
analyzed fusion cases. KP-FCNN outperforms all methods, and
we achieve results in the same range as the remaining ones. Our

method using early fusion obtains the better result for the trash
can class. The class barrier is often confused with the building
and vegetation classes, when the barrier is not well separated
from a building or has bushes on top, respectively. We observed
that several times, the error is originated in the oversegmentation
step. Segments contain parts of vegetation mixed with parts
of the barrier. The problem could be reduced by changing the
unsupervised parameters or selecting another method. It can be
seen that our approach performs considerably better using early
fusion as opposed to late fusion. The best-classified classes
are ground, building, cars, and vegetation that also correspond
to the more prominent objects in the scenes. In contrast, the
small class pole is often misclassified as a tree trunk (vegetation
class). In both fusion setups, the class pedestrian (C7) shows the
weakest performance. Additionally, barriers are often confused
with buildings.

With late fusion, we intended to force the network to focus
more on the 11 attributes for the classification decision. In the
Paris-Lille-3D dataset, street and sidewalk belong to the same
class (ground). As can be seen in Fig. 8(c), there is a small
difference in elevation between street and sidewalk, which has
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TABLE VII
F1-SCORE FOR THE Paris-Lille-3D DATASET [35], WHERE WE COMPARED OUR METHOD USING DIFFERENT INPUT DATA FOR THE

SEMANTIC SEGMENTATION SUBNETWORK

Note: The dataset has labeled classes ground (C1), building (C2), pole (C3), bollard (C4), trash can (C5), barrier (C6), pedestrian (C7), car (C8), and vegetation (C9).

the height of a brick. In late fusion, that difference in the height of
the segment leads the network to consider it as the class barrier.
In contrast, early fusion considers it as a ground class.

Our method aims at being an automatic learning method
without applying postprocessing algorithms. However, it is ev-
ident from the top of Fig. 8(c) that for late fusion, the class
building presents the largest amount of false positives reflected
in small segments. Thus, a possible postprocessing option for
improvement could be first merged adjacent segments of the
same class. Then, segments on the ground with labels building
need to be refined. Independent of such an algorithm, we con-
clude that incorporating basic attributes in the final steps hinder
their effectiveness. However, we believe it to be beneficial in
cases where prior knowledge indicates that certain geometric
attributes are crucial for correct classification.

C. Ablation Study

The semantic segmentation subnetwork introduced in
Section III takes as input the feature vector of dimension d
generated for the classification subnetwork and additional at-
tributes presented on Table I. In this last experiment, we test five
configurations of the input data for the semantic segmentation
subnetwork. Configuration (all) is our default model, which
takes as input the concatenation of the feature vector and the
11 attributes. In comparison, (d+ 3f) takes as input the feature
vector of d = 256 and the three features related to the NDSM.
For (d+ 8f), the feature vector and the attributes are used
excluding the three NDSM features. Configuration (d) takes as
input only the original feature vector, whereas (11f) only uses
the 11 attributes (see Table I).

We ran this experiment on the Paris-Lille-3D dataset [35].
However, the testing part is not publicly available. Therefore,
exclusively for this experiment, we divided the official training
dataset into a training and validation part. For training, we used
the scenes Lille 1-1, Lille 2, and Paris, whereas for validation, we
used the scene Lille 1-2. During training, we combined ADAM
optimizer [36] as mentioned earlier with an early stopping strat-
egy to avoid overfitting. We did not apply any data augmentation
technique.

Table VII lists the F1-score for all nine classes and the average
F1 for the validation segments. We can observe that the (all)
configuration presented the highest precision with exception to
the pedestrian class, which is particularly hard to classify in our
approach. Fig. 9 shows the precision for each of the classes for
the five configurations. The classes bollard and trash present

Fig. 9. Precision for the Paris-Lille-3D dataset [35], where we compared our
method using different input data for the semantic segmentation subnetwork.
Classes are listed in Table VII. There is a clear advantage of using additional
attributes in this study.

Fig. 10. Recall for the Paris-Lille-3D dataset [35], where we compared our
method using different input data for the semantic segmentation subnetwork.
Classes are listed in Table VII. The recall results also show that additional
attributes improve classification performance in comparison to only using the
original feature vector (d).

high precision but lower recall (see Fig. 10). These classes
correspond to the objects with smaller size and less presence in
the dataset. The (all) model presents the best and most uniform
results for both precision and recall measures. The architecture
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of our network does not require a large context during inference.
However, it uses additional features to overcome this limitation.
By using more information as input, the network can distinguish
the objects with small sizes, such as bollards, trash cans, and
pedestrians. In summary, we can clearly observe the advanta-
geous effect of using additional information in this study.

V. CONCLUSION

In this article, we showed how edge convolution could be
adopted for segmentwise semantic segmentation. We proposed
a deep learning pipeline, where regions are classified instead
of individual points, and geometric attributes are used as ad-
ditional features. Furthermore, we demonstrated the inclusion
of normalized elevation information. It helped to distinguish
between objects of low interclass variances, such as trees and
small bushes based on their relative height above ground. In
our experiments, we analyzed quality, scalability, and feature
augmentation procedure.

For a forest LiDAR dataset, we established a new top per-
formance with 80.1% F1-score. Especially the segmentation
of individual trees with precision and recall of 96.3% and
99.6, respectively, is notable. Additionally, we were able to
achieve competitive performances on popular urban 3-D point
cloud benchmarks. On Semantic3D dataset, we obtained an OA
of 89.6% and average IoU of 64.4%. For the urban dataset
Paris-Lille-3D, we reached 66.7% mIoU. Our results on the
feature augmentation process indicate that a fusion before edge
convolution is preferable when compared to adding information
directly in front of the classification layer.
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