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Weighted Machine Learning for
Spatial-Temporal Data

Mahdi Hashemi and Hassan A. Karimi

Abstract—Applying machine learning techniques to spatial-
temporal data poses the question that how the recorded location
and time for training samples should contribute to the training
and testing process. The prior knowledge of how spatial-temporal
phenomena are autocorrelated cannot be properly captured by
machine learning techniques, which either ignore location and time
altogether or consider them as input features. Not to mention that
the latter approach leads to slightly increased sparseness of data in
the feature space and more free parameters in the predictor; thus,
demanding for larger training datasets. We use the prior knowl-
edge about the spatial-temporal autocorrelation to determine how
relevant each training sample would be, given its spatial and tem-
poral distances to the irresponsive (unlabeled) sample. Weighted
machine learning techniques use this prior knowledge by taking
the relevance of training samples with regard to the irresponsive
sample into account as training samples’ weights. The proposed
approach overcomes the aforementioned issues by enriching the
training process with the prior knowledge about spatial-temporal
autocorrelation. Because the spatial-temporal weight of training
samples depends on the irresponsive sample’s location and time,
the machine needs to be trained separately for each irresponsive
sample. However, we show that in practice using only a small subset
of training samples with largest spatial-temporal weights not only
mitigates the training time but also results in the best accuracy in
most cases.

Index Terms—Analytical learning, autocorrelation, inductive
learning, machine learning, spatial data, temporal data.

I. INTRODUCTION

DATA from locations near one another in space are more
likely to be similar than data from locations remote from

one another” [1]–[6]. This observational fact is called spatial
autocorrelation [2], [3], [7]–[14] and makes spatial data different
from other types of data. The same definition is true in time
[3], [15], [16]–[18], referred to as temporal autocorrelation.
Temporal data also might have an additional cyclic autocorrela-
tion [19]–[25] termed cyclic temporal autocorrelation. Because
of spatial and temporal autocorrelations, spatial-temporal data
are not truly random. In other words, phenomena do not vary
randomly through space and time.

The spatial-temporal autocorrelation model shows how the
autocorrelation (similarity between observations as a function
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of the space or time lag between them) among observations
changes over space and time. The autocorrelation model con-
siders general behaviors of spatial-temporal phenomena: 1) as
spatial or temporal distance between observations increases,
their systematic similarity decreases; and 2) observations show
periodic similarities over time. Instances of these behaviors are
abundant in real life, especially in environmental phenomena.
For example, 1) temperature is more similar between two loca-
tions/times that are close to each other but we do not expect it to
be similar between two locations/times that are too far from each
other; and 2) temperature has a well-known yearly cycle. These
behaviors can be extended to other spatial-temporal phenomena,
such as elevation, air or water pollution, soil type, population,
landuse, and landslide.

Franklin [26], in her review paper, introduced the spatial de-
pendence/autocorrelation as a source of information that has yet
to be exploited in vegetation prediction models. O’Sullivan and
Unwin [1] raised the concern with applying machine learning
techniques to spatial data by briefly mentioning, in their book on
geographic information analysis, that special characteristics of
spatial data are ignored in regression and classification models
applied by geographers. Shekhar et al. [12], [13], [27] and
Shekhar and Chawla [3] showed that spatial autocorrelation
limits the usefulness of conventional classification and regres-
sion techniques for extracting spatial patterns. Santibanez et al.
[7], [8] also raised this issue by stating that “machine learning
algorithms are in general, not designed to deal with spatially
autocorrelated data.” The assumption of independent and iden-
tically distributed random variables is not valid for spatial data
because spatial autocorrelation causes the prediction residu-
als to exhibit clustering over geographic space [3], [7]–[13],
[28], [29].

On the other hand, some researchers showed the reversibility
(cyclic behavior) of landuse changes [19]–[22] and earthquakes
[17], [25] in time. Mertens and Lambin [19] showed that landuse
predictions are more reliable in long term when more historic
training samples are available. Britto et al. [30] investigated
the usefulness of a dynamic selection approach to consider
the seasonality of data in selecting the neighborhoods. Yet,
developing machine learning techniques that capture the cyclic
behavior of temporal phenomena and adjust their predictions
based on the irresponsive (unlabeled) sample’s time has not been
fully addressed in the literature.

Current machine learning techniques treat spatial-temporal
problems no differently than other types of problems. Current
machine learning techniques do not take into account spatial
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and/or temporal autocorrelations, neither in training nor in test-
ing the predictor. That results in poor performance of machine
learning techniques in the presence of spatial-temporal data [3],
[7]–[13], [15], [31]. On the other hand, taking location and
time as features in the training process is not the best way to
incorporate the result of autocorrelation [3], [12], [13], [27] as
it leaves autocorrelated prediction residuals behind [28], [29],
[32], not to mention it will increase the sparseness of training
samples in the feature space. It also slightly increases the number
of free parameters in the predictor and consequently the demand
for larger training datasets, referred to as curse of dimensionality
[33]–[35].

The contribution of this article is the formulation of spatial-
temporal autocorrelations of geographic phenomena and in-
corporating them as external knowledge in training weighted
machine learning techniques. The proposed approach prevents
occurrence of the problems associated with considering loca-
tion and time as features, potentially improves the prediction
accuracy by biasing the predictor in favor of more important
training samples, and expedites the training process by leaving
out training samples with very low spatial-temporal weights.
The accuracy and time performance of the proposed approach
will be compared against the following approaches:

1) ignoring location and time and using nonweighted ma-
chine learning techniques;

2) considering location and time as additional features in
nonweighted machine learning techniques;

3) considering location and time as the only features in
nonweighted machine learning techniques;

4) estimating the irresponsive sample’s response based on the
weighted votes (i.e., spatial-temporal weights) of training
samples’ responses.

The phrase, irresponsive sample, in this article refers to sam-
ples (aka observations or points) whose response (aka label,
dependent variable, or output value) is not known. In other
words, only the feature vector is observed. Conversely, if the
response is known for a sample, it is referred to as a responsive
sample. This terminology is preferred over training and test
samples because responsive and irresponsive samples could
both be used as training samples in semi-supervised machine
learning. This study is only concerned with supervised machine
learning, however.

The rest of this article is structured as follows. Section II
provides a review of the related literature. Sections III-A and
III-B explain how the training samples’ weights are calculated
using spatial and temporal semivariograms and discuss the
weighted and nonweighted machine learning models applied
in this work, respectively. Section IV includes experiments with
real spatial-temporal datasets to compare the accuracy and time
performance of the proposed approach with traditional ones.
Finally, Section V concludes this article by providing insight
into the proposed approach and future directions.

II. RELATED WORK

The literature on machine learning for spatial-temporal data
deploys two general strategies toward applying location and time
during training and testing the machine: 1) ignoring location and

time altogether, and 2) considering them as input features. While
this section focuses on studies deploying the latter method,
examples of the former could be found in [19], [23], and
[36]–[42]. It is noteworthy that our proposed methodology is
different from existing approaches because location and time
contribute in training the machine through weights that are
assigned to samples not as features. This is theoretically more
in line with spatial-temporal autocorrelation and will indicate to
be experimentally more accurate.

This section focuses on machine learning studies for spatial-
temporal data. Li et al. [43] attempted to predict seabed mud
content in the southwest Australian margin, using machine
learning techniques, such as support vector machines (SVM),
regression tree (RT), and random forest (RF) and spatial inter-
polation methods, such as inverse distance squared (IDS) and
kriging. They showed that combining machine learning with
spatial interpolation improves the accuracy over applying either
one of them in isolation. In their methodology, machine learning
is applied first, next the spatial interpolation is applied to the
residuals of the machine learning predictions, and finally the
interpolated residual values are added to the predicted values
to produce the final predictions. The input features include
latitude, longitude, distance-to-coast, bathymetry, seabed-slope,
as well as their second and third powers, multiplication of
latitude and longitude, multiplication of longitude to the sec-
ond power of latitude, and multiplication of latitude to the
second power of longitude. RF combined with ordinary krig-
ing (RF-OK), RF combined with IDS (RF-IDS), RF, and RT
combined with ordinary kriging (RT-OK) achieved the highest
accuracies in their experiments, respectively. A combination
of SVM (with a linear or Gaussian kernel) with OK or IDS
noticeably boosted its prediction accuracy, although it remained
less accurate than OK and IDS. RF [44] achieved a higher
accuracy than RT and RT achieved a higher accuracy than
SVM.

In a similar methodology, Kanevski et al. [28] combined
geostatistical models and machine learning with the difference
that the geographical coordinates of observations formed the
only features that were inputted to the machine learning models.
They showed that nonlinear regression models including support
vector regression [45] with Gaussian kernel and multilayer
perceptron (MLP) could capture the nonlinear global spatial
trend in the response variable. Both models were trained with
geographical coordinates as the only input features. However,
prediction residuals were spatially autocorrelated, which means
the local spatial autocorrelation was left behind. They applied
sequential Gaussian simulation to capture local prediction
residuals and factor them into the predictions. The combined
approach resulted in a better generalization accuracy than either
of geostatistical or machine learning models, applied to predict
the radioactive soil contamination. In another effort to predict the
radioactive soil contamination, Kanevski et al. [46] used spatial
coordinates as the only input features to train a general regression
neural network (GRNN) and a kNN. GRNN is a nonparametric
regression model based on Parzen windows [47]. Two versions
of GRNN were considered: one isotropic where the kernel
bandwidth is the same in all directions and another anisotropic
where the kernel has different bandwidths in different directions.
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A matrix is used as the bandwidth instead of a constant value,
when bandwidths are different in various directions in a
kernel. Directions and bandwidths in their anisotropic GRNN
model were optimized using leave-one-out cross-validation.
Anisotropic and isotropic GRNN and kNN resulted in a
root-mean-squared error (RMSE) of 11.9, 12.4, and, 22.1,
respectively. This result indicates that: 1) attributing different
weights to neighboring samples based on Parzen windows,
which happens in GRNN, improves the accuracy in comparison
with equal weights, which is the case in kNN; and 2) considering
different bandwidths in different directions for the kernel,
which happens in anisotropic GRNN, improves the accuracy
in comparison with a single bandwidth, which is the case in
isotropic GRNN.

Santibanez et al. [7] compared the accuracy of different
machine learning techniques in regressing median rent price
per zip code of a two-bedroom two-bathroom apartment in
the Miami-Fort Lauderdale-West Palm Beach metropolitan area
in Florida, USA, based on 23 demographic features. Location
and time were not among the features. The best accuracy was
achieved by MLP combined with PCA, followed by SVM with
Gaussian kernel, RF, cubist, partial least squares (LS), MLP,
gradient boosting machine, SVM with linear kernel, and general
LS. Santibanez et al. [8] compared the accuracy of the same
machine learning techniques with the same input features but
with simulated data of varying degrees of spatial autocorrelation.
SVM with Gaussian kernel resulted in the highest accuracy
for weaker spatial autocorrelations, MLP with PCA achieved
the same accuracy as SVM with Gaussian kernel as spatial
autocorrelation was increased, and finally cubist performed best
when the spatial autocorrelation was very strong.

Cracknell and Reading [48] applied five machine learning
techniques, Naïve Bayes (NB), kNN, RF, SVM (using the one-
against-one scheme), and MLP, in classifying lithology based
on airborne geophysics (containing a digital elevation model,
total magnetic intensity, and four gamma-ray spectrometry chan-
nels comprising potassium, thorium, uranium, and total count
channels) and Landsat ETM + images. RF achieved the highest
accuracy followed by SVM, kNN, MLP, and NB where kNN ran
fastest and SVM slowest. They considered different scenarios for
spatial distribution of training samples with/without considering
location as an input feature. They observed that regardless of in-
cluding/excluding location as an input feature, substantial higher
accuracies are achieved by all machine learning techniques as
training samples become more spatially dispersed across the ge-
ographic region. This is not surprising as spatial autocorrelation
among responses of training samples limits proper training when
training samples are not well scattered in the geographic region.
Another observation was that higher generalization accuracies
are achieved when location is considered as the only feature
compared to the other two scenarios that either exclude location
or consider it as an additional feature. Although it is plausible
that considering location as an additional feature would improve
the generalization accuracy, the better accuracy achieved with
using location as the only feature than using it in combination
with other features is surprising. This can be true if the spatial
distribution of training samples is dense and well-engineered and

even in that case the trained machine will not perform as well
if an irresponsive sample is beyond the autocorrelation range of
all training samples.

Gaussian process regression (GPR) is a nonparametric pre-
diction model. Its functionality is similar to nonparametric
Bayesian predictor with a Gaussian kernel. The difference is that
it uses the gram matrix, in addition to the weights obtained for
training samples using the kernel, to raise the weight of training
samples that are lonelier and more isolated and lower the weight
of training samples that are densely surrounded by other training
samples. In GPR, the output of an irresponsive sample (y∗) is
calculated using (1), where K is the gram matrix, k is the kernel
function, x∗ is the irresponsive sample, xi is the ith training
sample, y is the vector containing the responses, and N is the
number of training samples

y∗ = K∗K−1y (1)

K =

⎡
⎢⎢⎢⎣

k (x1, x1) k (x1, x2) · · · k (x1, xN )
k (x2, x1) k (x2, x2) · · · k (x2, xN )

...
...

. . .
...

k (xN , x1) k (xN , x2) · · · k (xN , xN )

⎤
⎥⎥⎥⎦
N×N

(2)

K∗ =
[
k (x∗, x1) k (x∗, x2) · · · k (x∗, xN )

]
1×N

. (3)

Flaxman [49] proposed a modified version of GPR for pre-
dicting spatial-temporal phenomena. Instead of one kernel, they
used two kernels, one spatial (ks) and one temporal (kt). They
combined the two kernels using the Kronecker product and
referred to the combined kernel as the spatial-temporal kernel
(kst).

We assign a weight to each training sample based on the
spatial and temporal semivariograms. These weights are later
used in weighted machine learning techniques. This approach is
superior to existing machine learning models, theoretically be-
cause it captures the spatial-temporal autocorrelation properly,
and practically as our experiments with real data indicate (see
Section IV).

III. METHODOLOGY

If the spatial-temporal autocorrelation is quantitatively cap-
tured, it can be used as external knowledge to enrich the training
process. This external knowledge is entered in the training pro-
cess as spatial-temporal weights assigned to training samples.
The higher the spatial-temporal weight, the more effective the
training sample is and more biased the training process must be
in its favor. Section III-A focuses on developing a quantitative
approach to assign a spatial-temporal weight to each training
sample.

Sometimes not all training samples are equal in supervised
machine learning due to their different accuracy, reliability,
source, relevance, or any other reason. Nonweighted machine
learning techniques are designed for equally important training
samples. On the other hand, the weighted predictor is more con-
cerned about correct prediction of training samples with larger
weights than those with smaller weights. As a result, the trained
model predicts in favor of training samples with larger weights.
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Fig. 1. Proposed methodology’s framework.

This makes the weighted predictor different than its nonweighted
counterpart. Section III-B discusses weighted machine learning
models that have the ability to take the samples’ weights into
account during both training and testing.

Fig. 1 portrays the general framework of the proposed method-
ology, where the following sections will provide details on
different parts of this framework.

A. Spatial-Temporal Weight for Training Samples

Here we focus on developing a quantitative approach to assign
a spatial-temporal weight to each training sample.

Semivariogram is used as the basis in calculating both spatial
and temporal semivariances and the spatial-temporal weight
is proportional to the inverse of the overall semivariance at
specific spatial and temporal distances. To develop the spatial
and temporal semivariograms and calculate the spatial-temporal
weights, we only need the location, time, and response of
training samples. Feature vectors are not needed to calculate
the spatial-temporal weights.

1) Spatial Semivariogram: Spatial autocorrelation or self-
correlation assesses the similarity of characteristics at geo-
graphic locations relative to their spatial distance [1], [2]. In other
words, a metric that relates the changes in responses to spatial
distance is used. This metric will help us determine the level of
similarity between the responses at two geographic locations,
knowing their spatial distance.

A measure of spatial autocorrelation among training samples
is semivariance (γ). Semivariance for the lag d is calculated
through (4) [1]–[3], [12], [13], [27], [29], where Δ is the lag
interval, nd is the number of observation pairs with a distance
(dij) between d–Δ/2 and d+Δ/2, and yi and yj are the responses
of the observations i and j, respectively. The hat (̂) over the
semivariance in this equation is to emphasize that the calculated
value is the mean over all pairs with a distance of d∓Δ/2

γ̂ (d) =
1

2nd

d+Δ/2∑
dij=d−Δ/2

(yi − yj)
2. (4)

Sill (c0+c1) is the semivariance upper bound (see Fig. 2).
Partial sill (c1) is formally defined in (5) as the limit of spatial

Fig. 2. Spherical semivariogram model.

semivariance as the spatial distance approaches infinity. This can
be estimated by the variance of responses (σ2) [1], [29]

c1 = lim
ds→∞

γ̂ (ds) ≈ σ2. (5)

The range (r) is the lag at which the semivariance reaches the
sill and flattens out (see Fig. 2). Beyond the range, there is no
particular spatial autocorrelation structure among observations
[1], [2], [29]. To find the range in practice, the algorithm sweeps
the calculated semivariances at ascending spatial distances, until
it reaches a spatial distance where the semivariance stabilizes
and shows no more systematic changes. This is formally defined
as

r = arg
r

{
γ̂(d) < γ̂(r) ∀d < r
γ̂(r) ≈ γ̂(d) ∀d > r

(6)

The nugget effect (c0) presents a discontinuity in the semi-
variance at the origin (see Fig. 2). In other words, it is the
semivariance at zero spatial distance, as shown in (7). Practically,
the semivariance calculated at the smallest spatial distance in (4)
is used as an estimate of the nugget

c0 ≈ γ̂ (0) . (7)

Many empirical spatial semivariograms approximate to a
spherical model [1], [2], [28], [31] shown in (8) and visualized
in Fig. 2. The spherical model is the most frequently used model
and is the default in many geographical information systems
(GIS) software [1], [2], [28], [31], [50]

̂̂γ (ds) =
{
c0 + c1

[
3ds

2r − 0.5
(
ds

r

)3]
ds ≤ r

c0 + c1 ds > r.
(8)

The second hat (̂) over the semivariance in (8) is to emphasize
that the calculated value is from the fitted semivariogram model
and the subscript s in ds is to emphasize that the distance is in
the space domain (not the time domain).

The spatial semivariogram model in (8), after c0, c1, and r
are replaced with their values obtained from training samples,
is used to show how strong is the correlation between each
training sample and the irresponsive sample based on their
spatial distance (ds).

2) Temporal Semivariogram: The semivariogram is also
used to model the autocorrelation among the responses of ob-
servations over time rather than space. Equation (4) can be used
to estimate the temporal semivariance, where d refers to the
temporal distance between pairs of training samples rather than
their spatial distance. The shape of the temporal semivariogram
might not necessarily be the same as the spatial semivariogram.
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Fig. 3. Semivariance versus temporal distance.

The autocorrelation among the responses of observations is more
complicated over time than space because not only temporally
closer observations are more likely to have similar responses
than temporally farther observations [3] but also responses might
exhibit a periodic behavior [19]–[23] over time as shown in
Fig. 3. For example, the temperature or weather today is more
correlated with the temperature or weather yesterday than a
month ago and it is more correlated with the temperature or
weather a year ago than four months ago. In other words, the
temporal semivariogram, shown in Fig. 3, might never level off
but rather show a periodic behavior. Another important point is
that the responses might have none or more than one periodic
behavior with different frequencies and amplitudes, as exempli-
fied in Fig. 3. For example, there might be weekly, monthly, and
yearly cycles with different amplitudes. Therefore, the temporal
semivariogram, if stationary, is approximately the result of the
random superposition of periodic components oscillating at
different frequencies. Correspondingly, if the responses have
no cyclic behavior, the semivariogram would be a straight line.
It is important to mention that the nuggets (c0) in Figs. 2 and 3
are the same because they both refer to the semivariance at zero
spatial and temporal lags (ds = dt = 0).

The sinusoid model in (9) captures the periodic behavior of
the data at frequency ω where β1 = Acosφ and β2 = –Asinφ, A
is the amplitude, and φ is the phase shift, determining the start
point of the cosine function [51]

̂̂γ (dt) = β1 cos (2πωdt) + β2 sin (2πωdt) . (9)

The two coefficients (β1 and β2) can be estimated through a
linear regression via (10) and (11) [51], where n is the number
of points in the semivariogram cloud and d1 to dn are different
temporal distances that we calculated the semivariances for via
(4)

β̂1 =

∑dn

dt=d1
γ̂ (dt) cos (2πωdt)∑dn

dt=d1
cos2 (2πωdt)

=
2

n

dn∑
dt=d1

γ̂ (dt) cos (2πωdt)

(10)

β̂2 =

∑dn

dt=1 γ̂ (dt) sin (2πωdt)∑dn

dt=d1
sin2 (2πωdt)

=
2

n

dn∑
dt=d1

γ̂ (dt) sin (2πωdt) .

(11)

However, (9) captures the periodic behavior at only one
frequency (ω), whereas the data might oscillate at different
frequencies (ωi) with different amplitudes (A = �(β1

2 + β2
2)).

Equation (12) shows different frequencies that need to be con-
sidered, where n is the number of points in the semivariogram
cloud and i is the number of cycles through the life time of the
data [51]

ωi =
i

n
, i = 1, 2, . . . ,

⌈n
2
− 1

⌉
. (12)

To consider all frequencies, (13) is used to fit a periodic
regression on the semivariances based on the temporal lag (dt)

̂̂γ (dt) =
	n

2 −1
∑
i=1

βi1 cos (2πωidt) + βi2 sin (2πωidt) , ωi =
i

n
.

(13)
The coefficients (βi1 and βi2) in (13) are calculated through

(14) and (15) for different frequencies (ωi). We add frequencies
associated with the largest amplitudes to the periodic regression
in (13) one by one as long as it produces a closer fit to data points

β̂i1 =
2

n

dn∑
dt=d1

γ̂ (dt) cos (2πωidt) ,

ωi =
i

n
, i = 1, 2, . . . ,

⌈n
2
− 1

⌉
(14)

β̂i2 =
2

n

dn∑
dt=d1

γ̂ (dt) sin (2πωidt) ,

ωi =
i

n
, i = 1, 2, . . . ,

⌈n
2
− 1

⌉
. (15)

Equation (13) models the semivariance of responses based
on the time interval between observations and it can be used
to determine how significant the role of each training sample is
when we want to predict the response of a new sample.

3) Spatial-Temporal Weight: Equation (16) calculates the
spatial-temporal weight of the ith training sample (gi), where
ds(ip) is the spatial distance between the ith training sample
and the irresponsive sample p, dt(ip) is the temporal distance
between the ith training sample and the irresponsive sample p,
̂̂γ(ds(ip)) is the spatial semivariance at ds(ip) calculated from
(8), ̂̂γ(dt(ip)) is the temporal semivariance at dt(ip) calculated
from (13), and ̂̂γ(ip) is the overall semivariance between the ith
training sample and the irresponsive sample p

gi =
1

̂̂γ (ip) where, ̂̂γ (ip) =
̂̂γ (ds (ip)) + ̂̂γ (dt (ip))

2
. (16)

The choice of average in (16) is justified as follows. To find out
how relevant one training sample is to the irresponsive sample,
we need to uncover their anticipated similarity. Their anticipated
similarity is obtained by inversing their anticipated dissimilarity.
The anticipated dissimilarity is measured through semivariance.
The spatial semivariance (̂̂γ(ds)) tells us how dissimilar these
two points are by knowing their spatial distance. The temporal
semivariance (̂̂γ(dt)) tells us how dissimilar these two points are
by knowing their temporal distance. Despite the spatial semivari-
ogram uses the spatial distance to produce the dissimilarity value
and the temporal semivariogram uses the temporal distance to
produce the dissimilarity value, the two values are made of the
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same fabric, i.e., they are both semivariances (̂̂γ), which justifies
the choice of their average as the spatial-temporal semivariance.

4) Data Constraints:
a) Fixed location or time: When calculating the spatial

semivariance, the time must be the same for each pair of yi and
yj in (4). The same time does not mean the exact same instant and
depends on the dataset. For example, if one set of observations
are observed in one day (e.g., a series of satellite images taken
on January 1, 2001) and another set are observed in another day
(e.g., another set of satellite images for the same area taken on
February 1, 2002), then the same time means observed on the
same day. On the other hand, when calculating the temporal
semivariance, the location must be the same for each pair of
yi and yj in (4). Again, the same location does not necessarily
mean the exact same coordinates (x,y) but depends on the nature
of the dataset. For example, if each observation belongs to a
separate tree or neighborhood (e.g., the height of the tree or the
population of the neighborhood), then the same location means
the same tree or the same neighborhood. For a satellite image,
the same location means, e.g., the same pixel in the image.

b) Categorical responses: As mentioned before, yi in (4)
is the response of the observation i. If the responses are already
quantitative (interval- or ratio-scaled), they are used for y. Qual-
itative (or categorical) responses are either ordinal or nominal
[52]. If the responses are ordinal such as the agricultural potential
of different lands or purity of different water bodies (e.g., good,
average, and bad), they can be defined with a quantitative scale
(e.g., 1, 2, and 3) somehow that the interval between scales ap-
proximates the implicit interval between levels (although ordinal
data do not suggest any quantitative interval between levels).
Although converting ordinal variables to interval variables in
this way is not precise, it is legitimate here as weighted machine
learning techniques are not much sensitive to small changes in
training samples’ weights. If the responses are nominal, where
the responses cannot be ordered (e.g., different landuses or
building uses: shop, residential, etc.), defining responses with
a quantitative scale, incorrectly implies that some categories
are closer to each other than others. In this case, we consider
yi–yj = 0 if samples i and j have the same response and 1 (or
any desired constant value) otherwise [53], [54]. An alternative
approach is to code responses via dummy variables [34]. In
this approach, responses are represented using vectors so as the
distance between categories remains constant. The number of
elements in the vector is equal to the number of categories. For
each category, one element of the vector is one and the rest are
zero (e.g., [1,0,0], [0,1,0], [0,0,1]). Hamming distance, L1, or
L2 norms can then be used to calculate the distance between
response vectors. This is a common approach to code nominal
variables.

c) Stationarity of data: Fitting the periodogram to the tem-
poral semivariances is only meaningful if the data are temporally
stationary [51]. A stochastic process is strictly stationary if the
joint statistical distribution ofxt1 , . . . , xtl is the same as the joint
statistical distribution of xt1+τ , . . . , xtl+τ for all l and τ [55],
where t represents the time. This means that statistical properties
of all degrees (expectations, variances, third order, and higher)
of the process, anywhere are the same. Since, strict stationarity

Fig. 4. Stabilizing the temporal variance and mean before developing the
temporal semivariogram. (a) Original responses (y) over time. (b) Adding a
constant value to make all responses positive if necessary. (c) Taking the log
to stabilize the variance. (d) Subtracting the trend line. (e) Calculating the
semivariances based on residuals. (f) Fitting the periodic semivariogram.

is too unrealistic for real-world processes, weak or second-order
stationarity is defined as a process whose mean and variance do
not vary with time and the autocovariance between xt and xt+τ

(shown as cov(xt, xt+τ )) only depends on the lag τ [55]. We
attempt to transform the data closer to a weakly stationary one
by first stabilizing the variance and then stabilizing the mean.
To stabilize the temporal variance, y is replaced by log(y) for
training samples. If there are negative values among responses,
we can add a constant value to make them all positive and then
take the log. This constant value will be removed in the next step.
To stabilize the temporal mean, after stabilizing the temporal
variance, a line, called the trend line, is fitted to all log(yi) based
on time. Then, the value on the trend line is subtracted from
log(yi). Temporal semivariances are calculated based on these
residuals. Fig. 4 summarizes these steps.

Fitting the spherical semivariogram to the spatial semivari-
ances is only meaningful if the data are spatially stationary
[28], [29]. If the spatial mean is not stable or, in other words,
if there is a trend among the responses of training samples
over space, the spatial semivariances will show an exponential
behavior over lags and never flatten out. On the other hand,
if the spatial variance is not stable or, in other words, if the
range of changes in responses varies dramatically over space,
the spatial semivariances will be dramatically scattered around
the spherical model. Again, because real-world processes are
far from being strictly stationary, we resort to weak stationarity.
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Fig. 5. Stabilizing the spatial variance and mean before developing the spatial
semivariogram. (a) Original responses (y) over location. (b) Adding a constant
value to make all responses positive if necessary. (c) Taking the log to stabilize
the variance. (d) Subtracting the trend plane. (e) Calculating the semivariances
based on residuals. (f) Fitting the spherical semivariogram.

Thus, before calculating the spatial semivariances and fitting
the spherical semivariogram model, the spatial variance and
mean must be stabilized. The steps are very similar to temporal
stabilization and are illustrated in Fig. 5. It is noteworthy that
because space has two dimensions, in comparison to time with
one dimension, here we have a trend plane instead of a trend
line.

If our dataset is only spatial or temporal, we use either of
the previous sections to stabilize the dataset. However, if our
dataset is spatial and temporal, we do not need to transform the
dataset twice, once over location and once over time. Instead,
the two processes are combined as shown in Fig. 6. First, we add
a constant value to make all responses positive. Then we take
the log to stabilize the variance. To stabilize the mean, a 3-D
hyperplane is regressed over all responses based on both location
and time and subtracted from all responses. These residuals are
both spatially and temporally stabilized and we can proceed with
developing semivariograms.

B. Weighted Machine Learning

Weighted LS [56] is one of the earliest examples of a weighted
machine learning technique. Hashemi and Karimi [57] devel-
oped the weighted versions of Bayesian predictor, perceptron,
MLP, SVM, and decision tree. Table I lists the weighted and

Fig. 6. Stabilizing the variance and mean before developing the spatial and
temporal semivariogram. (a) Original responses (y) over location and time.
(b) Adding a constant value to make all responses positive if necessary. (c)
Taking the log to stabilize the variance. (d) Subtracting the trend plane.

nonweighted versions of the aforementioned machine learn-
ing techniques, which are elaborated in [57]. We employ both
weighted and nonweighted versions of these machine learning
techniques in our experiments. In Table I, M is the number of
classes, ω indicates a specific class, N represents the number
of samples, l is the number of features, x represents a sample’s
feature vector, the subscript k in xk refers to the kth feature in
the corresponding feature vector, X is the N × l input feature
matrix, Σ is the covariance matrix of features, y is the training
samples’ responses, w is a column vector representing the norm
of the classifier hyperplane, w0 is the intercept or threshold of the
classifier hyperplane, g represents the training samples’ weights,
G indicates the N×N diagonal matrix of samples’ weights, g(ω)
is the sum of the weight of training samples belonging to class
ω, and K is the kernel function for the Bayesian predictor. C, ξi,
λi, and μi are the smoothing parameter, the slack variable, and
Lagrangian multipliers for SVM. wr

j is the weight vector of the
jth node in the rth layer in MLP and α is its training rate. NA

is the number of training samples at the ancestor node, NY and
NN are the number of training samples in the descendant nodes,
ΔI is the impurity decrease, IA is the impurity of the ancestor
node, IY and IN are the descendent nodes’ impurities in the
decision tree.

IV. EXPERIMENTS

The MATLAB software on a 64-b platform with 8 GB RAM,
a Core i7 CPU, and a 2.00 GHz processor was used for the
validation of the proposed techniques. Two applications are
presented, regression of air temperature based on meteorological
features and classification of land cover based on morphological
and remote sensing features.
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TABLE I
WEIGHTED AND NONWEIGHTED MACHINE LEARNING TECHNIQUES
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Fig. 7. Geographical location of samples, shaded based on their observed
temperature, where the lighter points indicate lower temperatures.

TABLE II
CORRELATION COEFFICIENT BETWEEN DIFFERENT VARIABLES

A. Regression of Air Temperature

Oceanographic and surface meteorological readings, taken
from a series of buoys positioned throughout the equatorial
Pacific, from 1980 to 1998, are available to public in [58].
Each reading includes location, date, zonal winds, meridional
winds, humidity, and temperature. The dataset has 178 000
records. Removing records with missing features leaves the
dataset with 94 000 records. In this experiment, we will predict
the air temperature based on zonal winds, meridional winds, and
humidity. Fig. 7 visualizes the geographical location of samples,
shaded based on their observed temperature, where the lighter
points indicate lower temperatures. Table II lists the correlation
coefficient between different variables in this dataset.

According to Table II, air temperature is fairly correlated with
all other variables, whereas other variables are not much corre-
lated with each other. The spatial and temporal semivariances
for the response variable (air temperature) and the spatial and
temporal semivariograms fitted to them are shown in Figs. 8
and 9. These figures are produced using the proposed approach
in Section III-A. As required in Section III-A-4a, we consider
two observations to be at the same time as long as their time
difference is less than one day and we consider two observations
to be at the same location as long as their distance is less than
10 m.

Spatial and temporal semivariograms in Figs. 8 and 9 can
be used to determine the spatial-temporal weight of training

Fig. 8. Spatial semivariogram for temperature.

Fig. 9. Temporal semivariogram for temperature with a period of 1 year.

samples. Knowing the spatial distance of a training sample to
the irresponsive sample, we can use the spatial semivariogram in
Fig. 2 [represented by (8)] to calculate its spatial semivariance.
Knowing the temporal distance of a training sample to the
irresponsive sample, we can use the temporal semivariogram in
Fig. 3 [represented by (13)] to calculate its temporal semivari-
ance. Knowing both spatial and temporal semivariances for that
training sample, we can use (16) to calculate its spatial-temporal
weight.

We use the leave-one-out or N-fold cross-validation to evalu-
ate the performance of weighted regression versus nonweighted
regression. RMSE and coefficient of determination (R2) are
reported in Table III for each regressor. The time performance
includes the time spent to calculate the spatial-temporal weights
in addition to the training and test time. All input features are
normalized to have a zero mean and unit variance. Table III lists
the accuracy and experimental time performance of different
weighted regressors. Estimating the response as the weighted
average (i.e., spatial-temporal weights) of training samples’
responses, the simplest regression model, is also considered
in Table III, for comparison purposes. We also used only the
top 30%, 10%, and 1% of training samples with largest spatial-
temporal weights for training, to investigate how it will affect
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TABLE III
ACCURACY AND TIME PERFORMANCE OF DIFFERENT REGRESSION TECHNIQUES FOR PREDICTING THE AIR TEMPERATURE

the accuracy. The resulted accuracy and time performance are
reported in Table III.

As discussed in Sections I and II, two previous common
approaches in machine learning for spatial-temporal data are
ignoring location and time altogether and considering them
as additional features. Ignoring location and time means ap-
plying nonweighted regressors trained with nonspatial fea-
tures (zonal winds, meridional winds, and relative humidity).
Considering location and time as additional features means
applying nonweighted regressors trained with all features in-
cluding location and time. Table III reports the accuracy and
time performance of both these approaches for comparison
purposes.

Spatial and spatial-temporal regression are common tools
in geographical studies and software, where different machine
learning models are deployed whose only inputs are location and
time (ignoring all other features). For example, kriging (also
known as GPR) in GIS is similar to nonparametric Bayesian
regressor with a Gaussian kernel, where location and time (or
location alone) are the only input features. For comparison
purposes, Table III also reports the results of such regression
models, which are equivalent to nonweighted regressors trained
with location and time as the only features.

One apparent irregularity in Table III is that for the regres-
sor that simply estimates the irresponsive sample’s response
as the weighted average of training samples’ responses, the
performance time does not reduce when training samples with
small weights are excluded. It is because if all training samples
participate in taking the weighted average, there will be no need
to sort the weights of training samples but if one decides to
exclude the training samples with very small weights, the weight
vector needs to be sorted. The sorting function, which is invoked
only if a subset of training samples needs to be deployed, has a
greater time complexity than the function that takes the weighted
average of training samples’ responses.

Nonparametric regressors, in our case the Bayesian re-
gressor with Parzen windows, need to be trained separately
for each irresponsive sample, regardless of the regressor be-
ing nonweighted or weighted. For parametric regressors, the
weighted version needs to be trained separately for each ir-
responsive sample but the nonweighted version needs to be
trained only once for all irresponsive samples. In other words,
the weighted regressors need to be trained as many times
as the number of irresponsive samples because the spatial-
temporal weights for training samples depend upon the loca-
tion and time of the irresponsive sample. However, the leave-
one-out approach for evaluation eliminates this time perfor-
mance difference between weighted and nonweighted regres-
sors, because in leave-one-out evaluation approach, each time
there is only one test sample and consequently both weighted
and nonweighted regressors are trained equal number of
times.

The weighted and nonweighted nonparametric Bayesian re-
gressors have almost identical performance times with only
10% difference. The weighted LS takes 3.7 times longer than
nonweighted LS. Among the same versions of four different
regressors (weighted average, LS, nonparametric Bayes, and
decision tree) in Table III, the weighted average is the fastest
approach, followed by LS, nonparametric Bayesian regressor,
and decision tree. Cross-validation of the weighted decision
tree, trained with only 10% of training samples, took 29 days.
Cross-validation of a decision tree, trained with 30% of training
samples (or more), takes months and the results are not reported
in Table III.

Despite its simplicity and speed in comparison with other
more complicated techniques, the regressor that estimates the
irresponsive sample’s output as the weighted average of train-
ing samples’ responses achieves an accuracy close to that of
more complicated techniques. Considering that this technique
only needs location and time (to calculate the spatial-temporal
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Fig. 10. Geographical location of samples, shaded based on their predicted
temperature by weighted Bayesian regressor using only the top 1% of training
samples, where the lighter points indicate lower temperatures.

TABLE IV
DIFFERENT LAND COVERS AND THEIR RELATIVE FREQUENCY

weights), its high accuracy underscores the efficiency of spatial-
temporal weights in depicting the spatial and temporal autocor-
relation between training samples and the irresponsive sample.

Among the same versions of four different regressors
(weighted average, LS, nonparametric Bayes, and decision tree)
in Table III, the nonparametric Bayesian regressor achieves the
highest accuracy, followed by LS, decision tree, and weighted
average. However, weighted decision tree seems to precede
weighted LS, in terms of accuracy, when more training samples
are included.

In the following, we compare four general strategies in dealing
with location and time in machine learning, where item (a) is the
methodology known as spatial-temporal regression in GIS, items
(b) and (c) are previously used methodologies in the literature
on machine learning for spatial-temporal data, and item (d) is
our proposed methodology.

a) Regressors trained using location and time as the only
features.

b) Regressors that ignore the location and time altogether.
c) Regressors that take account of location and time as addi-

tional input features.
d) Regressors that take account of location and time as

weights for training samples.
Rows with a bold font in Table III show the settings leading

to the best accuracy for each of the four regression techniques
(weighted average, LS, nonparametric Bayes, and decision tree).
In all cases, the regressor in group (a) results in the worst
accuracy. This highlights the importance of nonspatial/temporal
features in proper training. On the other hand, in all cases, the
regressor in group (b) results in a lower accuracy than regressors
that somehow take account of location and time, i.e., groups

Fig. 11. Geographical location of samples, colored based on their land cover.

Fig. 12. Spatial semivariogram for land covers.

(c) and (d). This highlights the importance of location and
time in proper training. The difference between the accuracy
of regressors in groups (c) and (d) is very small in all cases.
However, when only a subset of training samples with largest
spatial-temporal weights are applied to train the regressors in
group (d), the accuracy is considerably improved, revealing
the best accuracy and performance time. This also uncovers
the fact that training samples with very small spatial-temporal
weights are not much constructive in training the regressor.
This is in line with our expectations that weighted regression
captures the spatial-temporal autocorrelation best and exclud-
ing training samples with very small spatial-temporal weights
not only reduces the performance time but also improves the
accuracy.

Fig. 10 visualizes the geographical location of samples,
shaded based on their predicted temperature by weighted
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TABLE V
ACCURACY AND TIME PERFORMANCE OF DIFFERENT CLASSIFICATION TECHNIQUES FOR PREDICTING THE LAND COVER

Bayesian regressor using only the top 1% of training samples,
where the lighter points indicate lower temperatures.

B. Classification of Land Cover

This is a classification problem with eight input features
and eight classes. In this application, we use bands 2, 3, 5,
and 7 of Landsat TM images, two categorical features in-
cluding geology—with six categories: 1) Quaternary Allu-
vium, 2) Termeil Essexite Permian, 3) Snapper Point Per-
mian, 4) Pebbly Beach Permian, 5) Sedimentary Permian,

and 6) Ordovician—and aspect—with five categories: east,
north, west, south, and no aspect indicating zero slope—and
two quantitative hydrological features including flow accu-
mulation and flow length to predict the land covers shown
in Table IV.

Geology and aspect are coded in dummy variables [34]. All
features are in 30×30 m grid format and the land covers represent
the dominant vegetation cover by field observation for 1121 sites
in Kioloa, NSW, Australia. These sites are not contiguous re-
gions but are instead isolated samples, as represented in Fig. 11.
The TM images are from November 8, 1994 and other layers
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TABLE VI
SAME VERSION OF DIFFERENT CLASSIFIERS RANKED BASED ON THEIR ACCURACY

are from 1992 [36], [59]–[63] and the entire dataset is publicly
available in [64].

This dataset is available only for one point in time. Therefore,
the spatial weight is used instead of spatial-temporal weight
during training. Fig. 12 shows the spatial semivariances for land
covers and the spatial semivariogram fitted to them. This figure
is produced using the proposed approach in Section III-A.

Table V lists the overall accuracy and experimental time
performance of different weighted and nonweighted classifiers
based on leave-one-out or N-fold cross-validation. The time
performance includes the time spent to calculate the spatial
weights in addition to the training and test time.

One apparent irregularity in Table V, similar to Table III,
is that for the classifier that simply assigns the class with the
largest collective spatial weight among training samples to the
irresponsive sample, the performance time does not reduce when
training samples with small weights are excluded. The reason
is the same; there is no need to sort the weights of training
samples when they all participate in finding the class with the
largest collective weight.

The weighted and nonweighted nonparametric Bayesian clas-
sifiers have almost identical performance times with only 4%
difference. The weighted SVM takes 65 times longer to be
trained than nonweighted SVM in Table V. The reason is that
finding the weighted SVM classifier includes an additional step
where the original training samples are shifted with respect to
the nonweighted SVM classifier proportional to their weight and
the nonweighted SVM classifier is recalculated for the shifted
training samples. The weighted MLP takes three times longer
than nonweighted MLP and the weighted Perceptron takes
1.4 times longer than nonweighted Perceptron. Upon detailed
analysis of the results, it became clear that the longer training
time for weighted MLP and weighted Perceptron is due to the
presence of training samples’ weights in computing the synaptic
weight correction term. Weighted LS takes 2.8 times longer
than nonweighted LS and weighted decision tree halves the
performance time in comparison with nonweighted decision
tree, which is because the former is developed in a feature
space with one less dimension (i.e., location) than the latter and

dimensionality plays a crucial role in both training and height
of decision trees.

Among the same versions of seven different classifiers in Ta-
ble V, the collective weight is the fastest approach, followed by
LS, nonparametric Bayesian classifier, decision tree, perceptron,
SVM, and MLP in most cases. Weighted SVM is the slowest
approach. Cross-validation of the weighted SVM, trained with
only 30% of training samples, took 14 days. Cross-validation
of the weighted SVM, trained with all training samples, takes
months and the results are not reported in Table V.

Despite its simplicity and speed, the classifier that assigns
the irresponsive sample to the class with the largest collec-
tive weight among the top 1% of training samples achieves
an accuracy that is surpassed only slightly (1.61%) by deci-
sion tree with location as the only feature. Considering that
this technique only needs location (to calculate the spatial
weights), its high accuracy underscores the efficiency of spa-
tial weights in depicting the spatial autocorrelation between
training samples and the irresponsive sample. It is worth not-
ing that this classifier owes its high accuracy, in part, to the
almost uniform and dense distribution of samples across space,
shown in Fig. 11, which manifests itself in a large value
for partial sill (c1 = 0.82) in the spatial semivariogram (see
Fig. 12).

The absence of such density and uniformity in distribution of
samples across space and lack of a large value for partial sill
(c1) in the spatial semivariogram would make the geographical
proximity of much less help in classifying irresponsive samples.
This could significantly degrade the accuracy of this classifier.
In such circumstances, nonspatial features can help to improve
the classification accuracy.

Highly nonlinear classifiers (decision tree, collective weight,
and Bayes) with location as the only input feature achieve the
highest accuracies, as shown in Table V. This implies two facts
in classifying land covers: 1) the distribution of classes in space
is very nonlinear and 2) location proximity plays the most impor-
tant role in identifying the land cover. The first fact explains why
the classification accuracy drops for linear and slightly nonlin-
ear classifiers even when location is their only input feature.
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Fig. 13. Weighted machine learning for spatial-temporal data.
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The second fact explains the low accuracy of any classifier
that ignores the location altogether. None of these facts explain
why the weighted version of these highly nonlinear classifiers
(decision tree and nonparametric Bayesian) is outperformed by
their nonweighted version that uses location as the only input
feature. This can be explained by the low distinctive power
(noisy behavior) of nonspatial features in identifying the classes,
which is proven by the very low accuracy of all nonweighted
classifiers with only nonspatial input features (second row in
each group in Table V).

The lower sensitivity of perceptron to noisy training sam-
ples in comparison with LS comes as a major advantage in
such circumstances, creating a considerable difference between
their classification accuracies when there are nonspatial features
among inputs. The low distinctive power of nonspatial features in
identifying the land covers is also accountable for the decreasing
accuracy of weighted classifiers as the training samples are
shrunk to those with largest spatial weights. However, as the
first four rows in Table V indicate, applying a small percentage
of training samples with largest spatial weights, by itself, has a
positive effect on the prediction accuracy.

Table VI ranks the same version of the seven different classi-
fiers (collective weight, LS, nonparametric Bayes, decision tree,
SVM, perceptron, and MLP) based on their accuracy in Table V.

In the following, we compare four general strategies in deal-
ing with location in machine learning, where item (a) is the
methodology known as spatial classification in GIS, items (b)
and (c) are previously used methodologies in the literature on
machine learning for spatial data, and item (d) is our proposed
methodology.

a) Classifiers trained using location as the only feature.
b) Classifiers that ignore the location altogether.
c) Classifiers that take account of location as an additional

input feature.
d) Classifiers that take account of location as weights for

training samples.
Rows with a bold font in Table V show the settings leading

to the best accuracy for each of the seven classification tech-
niques (collective weight, LS, nonparametric Bayes, decision
tree, SVM, perceptron, and MLP). The accuracy of classifiers
in group (d) is always higher than those in group (b), is always
higher than the accuracy of their nonweighted counterpart in
group (c), with one exception, decision tree, and is higher than
those in group (a) in majority of cases.

V. CONCLUSION AND FUTURE DIRECTIONS

Fig. 13 shows the overall scheme of the proposed weighted
machine learning for spatial-temporal data. It starts with
calculating the spatial-temporal weight for training samples and
ends with using them to bias the predictor in favor of training
samples with larger weights. Spatial-temporal weights are visu-
alized using color saturation. Darker samples have larger spatial-
temporal weights. The red cross is the irresponsive sample and
plays the central role in determining the spatial-temporal weight
for training samples. Training samples are weighted based on
their spatial and temporal auto-correlation with the irresponsive

sample. In the spatial-temporal domain, the irresponsive sample
is at the origin of the coordinate system and spheres delineate
the training samples with larger spatial-temporal weights. The
predictor is trained to be more concerned about the correct pre-
diction of training samples with larger spatial-temporal weights.

The question posed in this study, how the recorded location
and time for training samples should contribute to the training
and testing process, can be answered more precisely now. We
compared the following four approaches:

a) ignoring location and time;
b) considering location and time as the only input features

(commonly used in GIS);
c) considering location and time as additional input features;
d) using the spatial-temporal autocorrelation between each

training sample and the irresponsive sample as that
training sample’s weight in weighted machine learning
techniques.

The first three are existing approaches, whereas the last one
was proposed in this work. While we theoretically showed that
the proposed approach captures the spatial-temporal autocor-
relation more precisely, this was also confirmed by its higher
accuracy in experiments with two real-world datasets. Because
the spatial-temporal weight of training samples depends on the
irresponsive sample’s location and time, the machine needs to
be trained separately for each irresponsive sample. We showed
that using only a subset of training samples with largest spatial-
temporal weights is an effective way to mitigate the training time
without compromising the prediction accuracy. The accuracy of
predictors in group (d) was followed by predictors in groups
(c), (b), and (a), respectively. Nevertheless, this conclusion is
based on only two datasets. Further research is required to in-
vestigate the generalizability of this conclusion to other datasets.
Applying different feature selection and generation methods and
investigating their effect on the prediction accuracy is another
future research direction.

Our approach of calculating spatial weights for training sam-
ples assumes that the underlying phenomenon is isotropic by
considering only the distance between pairs of observations and
ignoring the direction of the vector connecting them. A future
research venue is to increase the accuracy of spatial weights
by taking into account the anisotropy or directional effects in
the spatial variation of responses. This can be done by devel-
oping two (or more) spatial semivariograms, each modeling the
spatial similarity in either north–south or east–west direction.
To calculate the semivariance in a specific direction, only pairs
of samples aligned in that direction (at least approximately)
are used. Therefore, the direction of the vector connecting the
irresponsive sample to each training sample determines which
spatial semivariogram must be used to calculate that training
sample’s spatial weight. This way training samples aligned in a
specific direction with respect to the irresponsive sample might
gain a higher spatial weight.

We developed spatial and temporal semivariograms sepa-
rately because the former is best modeled with a spherical
model and the latter with a periodogram. Another future research
venue is to find a way to develop a single spatial-temporal
semivariogram.
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