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Abstract—Due to the extremely complex composition of remote
sensing scenes, REmote Sensing Image Scene Classification (RE-
SISC) is still a challenging task. To further improve classification
accuracy, this article introduces a deep-learning detector into RE-
SISC and proposes to classify remote sensing images according
to the detected class-specific signature objects. Inspired by the
classification procedure of human vision system, we design a clas-
sification framework that utilizes class-specific signature objects of
scene classes to guide scene classification. When performing image
classification, the proposed framework first adopts a deep-learning
classifier to create an initial judgment of the scene class for an
image and then determines the scene class based on the class-
specific signature objects detected from the image. The proposed
method can compete with the state-of-the-art methods on three
RESISC benchmark datasets, including NWPU-RESISC45, AID,
and OPTIMAL-31.

Index Terms—Class-specific signature object, deep-learning
detector, remote sensing image, scene classification.

I. INTRODUCTION

W ITH the rapid development of remote sensing tech-
nology, the automation level of remote sensing image

interpretation is constantly improving. REmote Sensing Image
Scene Classification (RESISC), which aims to label remote
sensing images covering multiple land-cover types or ground
objects with semantic classes, is a fundamental step in auto-
matic interpretation of remote sensing images. During past few
years, there has been increased interest in RESISC owing to
its wide applications, such as land resource management, urban
planning, and environmental protection [1]–[3], etc.

The existing scene classification methods are mainly car-
ried out in the feature space. Through extracting the designed
global and local features, the image is represented as a fea-
ture vector in the classifier. In the early 1970s, methods with
human-engineering features are mainly adopted in RESISC.
To continually improve classification performance, significant
efforts have been made to design human-engineering features.
The proposed human-engineering features have developed from
the initial low-level features [4]–[6] to the mid-level features
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[7]–[11]. It is worth noticing that scene classification meth-
ods with human-engineering features perform well on some
scenes with uniform structures and spatial arrangements, but
it is difficult for them to depict the high diversity and the
nonhomogeneous spatial distributions in remote sensing images
[12]. In addition, these methods require a considerable amount
of feature engineering skills, which may lead to the lack of the
flexibility and adaptivity to different scenes.

Currently, deep learning has brought a revolution in com-
puter vision. The deep convolutional neural network (CNN),
which is acknowledged as the most successful and widely
used deep-learning approach, has dramatically improved the
state-of-the-art in natural image classification, object detection,
and visual object recognition [13]. Since deep learning requires
very little feature engineering by hand and can take advantage
of increases in the amount of available data, it is now the
dominant approach for almost all classification and detection
tasks. Especially, many recent works have demonstrated that
fine-tuning is an effective way to accomplish many other new
classification tasks with limited training data. Based on this,
researchers have investigated transferring CNNs for RESISC.
Compared to conventional methods with human-engineering
features, deep-learning methods achieve far better performance
(e.g., almost 100% classification accuracy on the most popular
UC-Merced dataset [14] with deep ConvNets features [15]).

Due to the high intraclass diversity and low interclass variation
of remote sensing scenes, RESISC is still a challenging task.
As reported in [16]–[19], since large-scale datasets have rich
image variations, deep-learning methods that directly fine-tune
the existing CNNs on RESISC dataset suffered an accuracy
degradation. This is mainly because they only utilize the feature
from the last layer of CNN to classify images and ignore the
features from different hierarchical layers of CNN. To enhance
the performance, multilayer convolutional features of CNN are
adopted [20], [21]. These methods treat the multilayer convolu-
tional features as equally important, which may also bring some
interference information, such as feature redundancy and mutual
exclusion among the convolutional features.

The above-mentioned CNN methods [16]–[21] tend to
generate a global representation of image with the same
contribution of each part, in spite of the negative effects of
redundant regions. It is obvious that not all regions of the
image are useful for the scene classification. To this end, we
investigate utilizing class-specific signature objects to guide

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9353-8373
mailto:yangxiaoliang@nint.ac.cn


2674 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

scene classification. A novel RESISC method based on the joint
use of a deep-learning classifier and a detector is proposed.
The idea behind our method is to focus on the critical parts of
images and abandon the useless ones.

To realize this idea, we first create an initial judgment of the
scene class for the image by using an individual CNN classifier to
predict the probability order of possible scene classes. Then, the
scene class is determined based on the signature objects detected
by a deep-learning detector. To solve the issue that how to alle-
viate the performance degradation arising from false positives
when using the detected signature objects to help classification,
a classification strategy that jointly utilizes the results of the
initial classification and the detection is also designed.

The main advantage of our method is that it can achieve
high classification accuracy with a conciseness implementation.
The proposed method is actually a combination of two existing
CNNs. Implementing the combination of two existing networks
is much easier than designing complicated CNN architectures.
In addition, the proposed method has high extendibility. Both
the classifier and the detector in our method are not fixed, and
therefore they can be replaced by other better CNN architectures
whenever necessary. Extensive experiments demonstrate that
the proposed method obtains state-of-the-art results on three
RESISC benchmark datasets (NWPU-RESISC45, AID, and
OPTIMAL-31).

The remainder of this article is organized as follows. Section II
reviews the related studies of scene classification methods. A
brief review of deep-learning detection methods is also given.
In Section III, the proposed scene classification method is pre-
sented. Section IV presents the experimental results and analy-
sis. Finally, we draw conclusion for this article in Section V.

II. RELATED WORK

According to the type of used features, the existing
RESISC methods can be divided into two categories, methods
with human-engineering features and methods with machine
learning.

A. Scene Classification Methods With
Human-Engineering Features

For this kind of methods, local or global low-level features
such as color [22], texture [23], and structure information or their
combination are mainly used [6], [24]. Among these features, the
scale-invariant feature transform [25] (SIFT) is the most widely
used feature. It is a local feature that describes the local variations
of complex structures in remote sensing images. Based on the
comparison of SIFT and Gabor texture features for classifying
the IKONOS satellite images, Yang and Newsam [4] found that
SIFT performs better. Using combinations of complementary
features is another effective way to improve the scene classi-
fication results. For instance, Luo et al. [6] jointly used six
different kinds of feature descriptors (i.e., simple radiometric
features, Gaussian wavelet features, Gray level co-occurrence
matrix, Gabor filters, shape features, and SIFT) for indexing
remote sensing images and the experimental results indicate that
multiple features can give a better description of images. Yu et al.

[26] proposed a color-texture-structure descriptor which con-
tains the spectral, textural, and structural information. Although
these methods are effective on some scenes with uniform spatial
distributions, it is difficult for them to properly describe complex
remote sensing images.

To fill up the semantic gap, the Bag-of-words (BoW) model,
which is originally developed for text analysis, is applied into
RESISC. The BoW model constructs a holistic scene represen-
tation with three steps. First, the local features of the image
are extracted. Second, the visual codebook is generated through
encoding each extracted feature to its nearest visual word with
a clustering method (e.g., k-means clustering). Third, the image
is represented by a BoW vector which can be regarded as a
histogram counting the occurrences of each visual word. The
BoW provides a discriminative representation of image, and
it is a leading strategy in the last decade [8]–[10], [14]. To
achieve more discriminative feature representation of the BoW
model, extensive studies have been carried out. Chen and Tian
[9] proposed a translation and rotation-invariant pyramid-of-
spatial-relations model to describe both relative and absolute
spatial relationships of local features. Researchers in [27] used
a soft-assignment to smoothly distribute the features to the
codewords. To overcome the limitation that the BoW model
lacks spatial information, Lazebnik et al. proposed the spatial
pyramid matching (SPM) scheme [28]. The SPM uses multiscale
spatial average pooling to form the image feature vector and
brings a substantial gain in classification accuracy.

To achieve better classification performance, probabilistic
topic models are also employed in RESISC [29], [30]. They
model each image as a mixture of topics and determine the scene
label to an image based on its topic distribution. In [31], LDA is
used to model each geo-category in a supervised framework.
Yi et al. [32] presented a semantic clustering algorithm for
high-resolution remote sensing images based on the PLSA. In
[33], an automatic framework that combines a probabilistic topic
model with a multiscale image representation is proposed for
semantic clustering of geo-objects.

The methods with human-engineering features have made
significant improvements on the scene classification accuracy.
However, due to the limit representative ability, the human-
engineering features are difficult to depict the high-diversity
and the nonhomogeneous spatial distributions in remote sensing
images.

B. Scene Classification Methods With Machine Learning

Instead of using human-engineering features, scene classi-
fication methods with machine learning use features that are
automatically learned from the image dataset. Autoencoder [34]
is a representative method that has been successfully applied
to RESISC. It is an unsupervised feature learning method that
can automatically learn features from unlabeled samples. A
typical autoencoder achieves feature representation of the image
through minimizing the reconstruction error between the input
data at the encoding layer and its reconstruction at the decoding
layer. Zhang et al. [35] improved the classification performance
through training a sparse autoencoder on the image patches
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sampled by their saliency degree. Othman et al. [36] also used
a sparse autoencoder for feature representation. These autoen-
coders do not make full use of semantic information contained
in category labels, and therefore, the performance improvement
of the autoencoder is limited.

In recent years, deep learning has attracted great attention of
the remote sensing community. Deep convolutional networks,
which are designed to process data that come in form of multiple
arrays, have dramatically improved the state-of-the-art in natural
image classification [37]–[39]. Deep convolutional networks
can learn high-level features using a general-purpose learning
procedure. For classification tasks, high-level features amplify
aspects of the input that are important for discrimination and
suppress irrelevant variations. Due to the success, researchers
have transferred CNNs to RESISC.

A direct way to utilize CNNs is to fine-tune the existing
CNNs for RESICSC [16]–[19]. In [16] and [17], researchers
fine-tuned the existing AlexNet, GoogLeNet, and VGGNet on
large-scale datasets NWPU-RESISC45 and AID, respectively.
Liang et al. [19] proposed a transfer learning scheme to fine-tune
the existing CNNs. However, these methods ignored the features
from different hierarchical layers.

Taking the pretrained CNNs as fixed feature extractor is also
effective. Penatti et al. in [15] achieved the state-of-the-art scene
classification result by using CNN features from fully connected
(FC) layers. In contrast to [15], Hu et al. [20] evaluated the
CNN features from FC layers but also from convolutional layers.
Researchers in [21] demonstrated that incorporating different
levels’ convolutional features can improve the classification
accuracy. In [40], a novel feature representation method, named
Bag of Convolutional Features (BoCF), was proposed for RE-
SISC. To make the visual words have more semantic properties,
BoCF generates visual words with deep convolutional features.
Researchers in [41] incorporated the CNN features of top layers
into features of bottom layers to improve the representation for
small objects.

Recently, a mass of works focus on designing new CNN
architectures [42]–[45]. In [42], researchers created an ensemble
of CNNs (named Hydra) for RESISC. Their method improved
the classification accuracy by fine-tuning hydra’s heads multiple
times. Through exploring the attention mechanism, Wang et al.
[43] designed a recurrent attention structure and proposed an
attention recurrent convolutional network (ARCNet) for scene
classification. Researchers in [44] proposed a gated bidirectional
network (GBNet) to hierarchically aggregate multilayer convo-
lutional features and enhance the complementary information.
To boost the performance of RESISC, Cheng et al. [45] learned
discriminative CNNs (D-CNNs) through adding a metric learn-
ing regularization term on the objective function. These methods
usually need a lot of network designing skills.

C. Deep-Learning Detection Methods

The development of deep learning promotes the breakthrough
on the task of object detection. Currently, most object detectors
are based on deep learning. Apart from its standalone utility,
deep-learning detector also provides a useful building block for

larger systems that employ an object detection component. In
this article, we introduce a deep-learning detector into scene
classification to detect class-specific signature objects in remote
sensing images. The details of our method will be presented in
Section III. Here we briefly review the existing deep-learning
detection methods.

Generally there are two types of deep-learning detection
frameworks. The first type is the two-stage framework, which
generates the region proposals first and then classifies each pro-
posal to different object classes. R-CNN [46], SPP-net [47], Fast
R-CNN [48], Faster R-CNN [49], R-FCN [50], FPN [51], and
MASK R-CNN [52] are the representative two-stage detectors.
Especially R-CNN, which obtained a mean average precision
(mAP) of 53.3% with more than 30% improvement over the
previous best result (DPM [53]) on PASCAL VOC 2012 [54],
has epoch-making significance in the field of object detection.
The flowchart of R-CNN mainly has three steps: region proposal
generation based on selective search [55], CNN-based deep
feature extraction, classification and localization. The reason for
the success of R-CNN lies in that it turns the object detection
into classification of region proposals. In R-CNN, SPP-net, and
Fast R-CNN, region proposal computation is a bottleneck in
improving efficiency. To solve this problem, Ren et al. [49]
proposed Faster R-CNN, which utilizes a region proposal net-
work. With the proposal of Faster R-CNN, the two-stage de-
tection frameworks can really be trained in an end-to-end way.
Compared to Faster RCNN, FPN [51] modifies the backbone
network by adding top-down and lateral connections to build
a feature pyramid that facilitates end to end learning across
different scales.

To overcome the speed limit of the two-stage framework, the
one-stage framework, which maps straightly from image pixels
to bounding box coordinates and class probabilities based on
global regression, has been proposed. YOLO [56] is one of the
representative one-stage detectors. It uses the whole topmost
feature map to predict both confidences for multiple categories
and bounding boxes. However, the detection accuracy of YOLO
is not high because of its difficulty in dealing with small objects
in groups. To achieve better detection accuracy and speed, Liu
et al. [57] proposed a Single Shot MultiBox Detector (SSD) for
multiple categories, whose key feature is the use of multiscale
convolutional bounding box outputs attached to multiple feature
maps at the top of the network. Compared to YOLO, SSD is
significantly more accurate on PASCAL VOC and Microsoft
COCO [58]. By adopting better feature extractor backbone (e.g.,
ResNet101), adding deconvolution layers with skip connections
to introduce additional large-scale context [59], and designing
better network structure (e.g. Stem Block and Dense Block) [60],
the problem that SSD is not skilled at dealing with small objects
can be relieved.

III. PROPOSED METHOD

According to the results reported in [43]–[45], although
CNN-based methods have achieved high accuracies on the UC-
Merced and WHU-RS19 datasets, their overall accuracies on
large-scale remote sensing scene classification datasets, such as
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Fig. 1. Overall framework of the proposed method.

NWPU-RESISC45, and AID, are still not saturated. To further
improve scene classification accuracy, we investigate utilizing
class-specific signature objects to guide scene classification and
develop an object-guided method based on using the off-the-
shelf deep CNN models. Fig. 1 illustrates the overall framework
of the proposed method.

As can be seen from Fig. 1, we first create an initial judgment
of the scene class for the image, which is conducted by using
an individual CNN classifier to predict the probability order
of possible scene classes. Then, the scene class is determined
based on the class-specific signature objects detected by a deep-
learning detector. The proposed framework is mainly composed
of three stages: deep-learning classifier training, deep-learning
detector training, and scene classification based on a designed
classification strategy.

A. Deep-Learning Classifier Training

In the first stage, a deep-learning classifier is trained to create
an initial judgment of the scene class for the image. As shown in
Fig. 1, the deep-learning classifier plays a foundation role in our
framework. On one hand, it helps to select scene classes that need
participation in the second stage: deep-learning detector train-
ing. According to the classification accuracy of the deep-learning
classifier on the validation set, we set a threshold of classification
accuracy and select the scene classes whose accuracies are
smaller than the threshold. In general, if a scene class obtains
high classification accuracy, it will not easily confuse with other
scene classes. Therefore, scene classes with high classification
accuracy are not selected to train the detector. Since fewer scene
classes participate in the second stage, the burden of labeling
images for training the detector can be alleviated.

On the other hand, the deep-learning classifier will directly
determine the overall accuracy of the proposed method: 1) for the
scene classes that do not participate in training the detector, their

Fig. 2. Architecture of VGGNet-16.

classification accuracies are only determined by the classifier;
2) for the classes participated in training the detector, assigning
scene labels also depends on the probabilities predicted by the
classifier.

In the proposed framework, a variety of CNNs (such as
AlexNet, VGGNet, and DenseNet, etc.) can be adopted as the
classifier. To illustrate this issue, VGGNet-16 is first tested. The
reason for choosing VGGNet-16 is that fine-tuned VGGNet-16
has achieved good performance on NWPU-RESISC45 and AID.

As shown in Fig. 2, VGGNet-16 is a deep CNN model that
consists of 13 convolutional layers and 3 FC layers. The first
few stages of VGGNet-16 are composed of two types of layers:
convolutional layers and pooling layers. The following stages
are composed of FC layers, and the last FC layer is a softmax
layer that computes the scores for each defined class.

To further enhance the classification performance, we also
test DenseNet, as it outperformed other individual CNN archi-
tectures (such as VGGNet and ResNet) on NWPU-RESISC45
[42]. As shown in Fig. 3, DenseNet builds a dense block to
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Fig. 3. Architecture of a dense block.

introduce direct connections between any two layers with the
same feature-map size. Through using the dense block, the
feature propagation is strengthened.

When training the classifier, the online data augmentation is
applied. It randomly transforms the samples every epoch during
training. Following work [42], we also use random flips in
vertical and horizontal directions, random zooming and random
shifts over different image crops.

B. Deep-Learning Detector Training

In the second stage, we train a deep-learning detector to
detect class-specific signature objects in remote sensing images.
Although the deep-learning classifiers have strong classification
capabilities, they would still get undesirable results when most
of regions of the two images are similar whereas class-specific
signature objects occupy only a small region.

For example, Fig. 4 shows three groups of remote sensing
images from AID dataset. Due to high intraclass diversity and
low interclass variation of the scene images, a deep-learning
classifier may confuse the two images in each group. However,
most humans would easily classify each image into correct
scene class according to the class-specific signature objects in
the image. This example suggests that class-specific signature
objects are helpful for scene classification. Motivated by this, we
train a deep-learning detector to detect class-specific signature
objects.

In the proposed framework, which objects can be defined
as the signature objects are determined based on human ex-
perience. Compared to designing human-engineering features,
determination of signature objects for a scene class is easier and
does not require considerable domain expertise. This is because
determination of signature objects takes advantage of human
ingenuity and makes full use of semantic information contained
in scene labels. For example, if a person is required to label
airport images, it would be a natural thought to find airplanes
and runways in the images. However, it is difficult for a machine
to imitate this determination process.

Choosing an appropriate deep-learning detector is important
to achieve good detection performance. When choosing the
detector, the following two features of remote sensing images
should be taken into consideration. First, the background may
occupy a large area in a remote sensing image, whereas the
class-specific signature objects occupy only a small portion of
the entire image. Second, class-specific signature objects will
exhibit different characteristics at different scales.

Fig. 4. Spatial and structural complexity of remote sensing images. (a) Similar
objects between different scenes. (b) Similar textures between different scenes.
(c) Similar structural distributions between different scenes.

Compared to the one-stage detectors, the two-stage detec-
tors usually perform better [61]. In this article, we adopt FPN
(ResNet101) [51] as the deep-learning detector because it is
robust to scale changes and has higher detection quality (mAP)
than Faster R-CNN and R-FCN. The architecture of this de-
tector is shown in Fig. 5. FPN uses a pyramidal represen-
tation and combines features of shallow layers with deeper
layers to extract rich semantics from all levels. It can obtain
state-of-the-art representation without sacrificing speed and
memory.

As is known, the scene classification dataset only provides
image-level supervision information, whereas training the detec-
tor requires the instance-level supervision information. There-
fore, we manually label the signature objects for training the
detector. In the proposed scheme, the image-level supervision
information is employed to help us label the signature ob-
jects, and the label of each class-specific object is named as
SceneClass_ObjectName.
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Fig. 5. Architecture of FPN.

Through using the end-to-end detector, we transform scene
classification task from feature engineering to sample engi-
neering, so that researchers can get rid of the complex feature
design and focus on determining which objects can be defined
as class-specific signature objects for a scene class.

C. Scene Classification Based on the Designed
Classification Strategy

In the third stage of the proposed framework, we propose a
new classification strategy to determine the scene label of a test
image. The basic idea for the proposed classification strategy
is that the detected class-specific signature objects should be
consistent with the classification result. For example, if a test
image is classified to basketball court, then it is very possible to
detect basketball courts from the image.

A simple classification strategy is to determine the scene label
as the category with the biggest number of class-specific signa-
ture objects. A drawback of this strategy is that it does not take
the false positives produced by the detector into consideration.
Due to the limited training samples, the detector may produce a
few false positive, which would significantly degrade the scene
classification accuracy of this strategy. To alleviate the problem
arising from the false positives, we propose to jointly use the
initial classification result of the deep-learning classifier and the
detection result to determine the scene class of an image.

In the proposed strategy, we consider three situations of
the detection result. First, if the detected objects all belong to
one scene class, then the test image is assigned to the label
of that scene class. The second situation is that the detected
objects belong to multiple scene classes. In this situation, we use
the deep-learning classifier to predict the probability for every
scene class. According to the probability order, we search for
class-specific signature objects belonging to each scene class in
turn. Once the class-specific signature objects of a scene class
are found, the search is stopped and the test image is classified
into that scene class. Through utilizing the probability order,
the wrong classifications caused by the false-positives can be
alleviated. Third, if there are no class-specific signature objects
detected, then the test image is assigned to the label of the
deep-learning classifier with the highest response.

The scheme of the proposed classification strategy can be
summarized as follows.

1) Assume that the probability order of the scene classes
predicted by the deep-learning classifier is x1 > x2 > x3
… > xM, where M is the number of scene classes selected
to train the deep-learning detector.

2) Count the number of class-specific signature objects be-
longing to each scene class. Assume these numbers are
n1, n2, n3, …, nM, respectively.

3) If n1 + n2 + n3 + … + nM = 0, which means that there
is no class-specific signature objects detected in the test
image, then the image is assigned to the label of the deep-
learning classifier with the highest response.

4) If detected objects all belong to one scene class, which
means only one of the {n1, n2, n3, …, nM} is greater than
0, assume it is nk, k � {1, 2, 3, …,M}, then the test image
is assigned to the label of the kth scene class.

5) If detected objects belong to multiple scene classes, from
n1 to nM, assume nk is the first number greater than 0,
then the test image is assigned to the label of the kth scene
class.

From this scheme, we can see that the key feature of this
strategy is that it imitates the classification procedure of human
vision system to some extent. It first uses a classifier to give a
coarse classification for the image, and then the scene class of the
image is finally determined based on the detected class-specific
signature objects. Moreover, this classification strategy can be
used without training, which reduces the computational burden
of the proposed classification method.

IV. EXPERIMENT AND ANALYSIS

In this section, we evaluate the proposed method on three chal-
lenging datasets: NWPU-RESISC45, AID, and OPTIMAL-31.

A. Datasets Descriptions

1) NWPU-RESISC45: The NWPU-RESISC45 dataset is a
publicly available benchmark, which contains 31 500
images, covering 45 scene classes. Each class includes
700 images with a size of each 256 × 256 pixels in the
red-green-blue (RGB) color space. The spatial resolution
varies from about 30 to 0.2 m per pixel. Fig. 6 shows two
samples of each class from this dataset. For each scene
class in the NWPU-RESISC45 dataset, image variations
in translation, spatial resolution, viewpoint, object pose,
illumination, background, occlusion, etc., are big. This
dataset has high within-class diversity and between-class
similarity, which makes it rather challenging for scene
classification.

2) AID: The AID dataset is another publicly available large-
scale dataset for RESISC, which contains 10 000 images
collected from Google Earth imagery, covering 30 scene
classes. The numbers of sample images vary from 220 to
420 with a fixed size of 600 × 600 pixels. The spatial
resolution varies from about 8 to 0.5 m per pixel. As
same as NWPU-RESISC45 dataset, the images in AID
are multisource, as Google Earth images are from different
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Fig. 6. Samples of NWPU-RESISC45: two examples of each semantic scene class are shown. There are 31500 images within 45 classes.

remote imaging sensors. This brings more challenges for
scene classification than the single-source images like
UC-Merced dataset.

3) OPTIMAL-31: The OPTIMAL-31 dataset is a recently
constructed dataset for RESISC, which contains 1860
images also collected from Google Earth, covering 31
scene classes. Each class includes 60 sample images with
a fixed size of 256 × 256 pixels in the RGB color space.
Compared to UC-Merced and WHU-RS19, OPTIMAL-
31 contains more classes so that it has a higher degree of
difficulty.

B. Parameter Settings

According to the discussion in Section III-A, we adopt
VGGNet-16 and DenseNet as the classifier, and named the cor-
responding method as VGGNet16+FPN, and DenseNet+FPN,
respectively. When training the classifier of the proposed frame-
work, we fine-tune VGGNet-16 and DenseNet on each dataset.
The VGGNet-16 pretrained on ImageNet dataset is obtained
from1. The DenseNet-161 pretrained on ImageNet dataset is
obtained from2.

When training the detector of the proposed framework, we
fine-tune FPN (ResNet101) on the images of selected scene
classes. The FPN (ResNet101) pretrained on Microsoft COCO
dataset is obtained from3. The detailed parameters used for
fine-tuning are summarized in Table I. All experiments were
implemented on a PC with 44 2.2 GHz 2core CPUs and 128 GB
memory. In addition, a NVIDIA Quadro P6000 GPU was also
used for acceleration.

C. Evaluation Metrics

In the experiments, the metrics of overall accuracy and confu-
sion matrix are used to evaluate all classification methods. The

1[Online]. Available: https://github.com/BVLC/caffe/wiki/Model-Zoo
2[Online]. Available: https://download.pytorch.org/models
3[Online]. Available: https://github.com/jwyang/fpn.pytorch

TABLE I
PARAMETERS UTILIZED FOR CNN MODEL FINETUNING

overall accuracy is defined as the number of correctly classified
images divided by the total number of test images. It is a direct
measure to reveal the classification performance on the whole
dataset.

The confusion matrix is an informative table used to analyze
all the errors and confusions between different scene classes.
It is generated by counting each type of correct and incorrect
classification of the test images and accumulating the results in
the table. Each item xij denotes the rate of test samples from the
ith class that are classified as the jth class.

To obtain reliable results for the metrics of overall accuracy
and confusion matrix, we repeat the experiment ten times for
each training–testing ratio and report the mean and standard
deviation of the results.

D. Ablation Studies

To validate the contributions of each classification branch,
we conduct ablation studies. In the ablation experiments, 20%
of the images in each RS scene category of NWPU-RESISC45
are randomly selected for training. Since our method mainly
contains three branches (deep-learning classifier, deep-learning
detector, and the designed classification strategy), we divide
ablation experiments into three groups.

The first group is to validate the contribution of the classifier.
In this group, VGGNet-16+FPN and DenseNet+FPN are com-
pared. In the second group, DenseNet and DenseNet+FPN are

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://download.pytorch.org/models
https://github.com/jwyang/fpn.pytorch
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TABLE II
ABLATION EXPERIMENTS ON NWPU-RESISC45

TABLE III
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS ON

NWPU-RESISC45

compared to validate the contribution of the detector. In the third
group, DenseNet+FPN+LDA and DenseNet+FPN are com-
pared to validate the contribution of the designed classification
strategy. DenseNet+FPN+LDA regards the detected objects as
the visual words and uses LDA for scene classification.

The experimental results are shown in Table II. From Table II,
the following can be observed.

1) The deep-learning classifier directly determines the over-
all accuracy of the proposed method. Through replacing
the VGGNet-16 with DenseNet, the classification accu-
racy improves about 3.2%.This is mainly because the
discriminative ability of DenseNet is stronger than that
of VGGNet-16.

2) The proposed method (DenseNet+FPN) makes an in-
crease of 2.23% over the individual DenseNet, which con-
firms that the detection of signature objects actually makes
a great contribution to the promotion of the classification
accuracy.

3) In the third group, the LDA-based method
(DenseNet+FPN+LDA), which regards the detected
objects as the visual words, does not achieve results as
good as expected, and performs much worse than the
proposed method (DenseNet+FPN). A possible explana-
tion is that the false-positives degrade the discriminative
ability of the generated topic model. In contrast, the
proposed classification strategy is more appropriate than
LDA. To reduce the effect of false-positives, it jointly
uses the results of initial classification and the detection
to determine the scene class.

E. Comparison With the State-of-the-Art Methods

In this section, performance comparison between our method
and some state-of-the-art methods are discussed.

Fig. 7. Confusion matrix on NWPU-RESISC45 under the training ratio of
20%.

1) NWPU-RESISC45: Table III presents the experimental
results of the proposed method and the other five compar-
ison methods on NWPU-RESISC45, under the training ra-
tios of 10% and 20%, respectively. It can be observed that
the proposed method achieves the best performance for both
training ratios. In detail, the proposed method achieves a
93.17 ± 0.19% and 95.11 ± 0.14% accuracy under the 10%
and 20% training ratio, respectively. Especially compared to
Hydra [42], which recently achieved the state-of-the-art perfor-
mance for the NWPU-RESISC45, the proposed DenseNet+FPN
can make an increase of 0.6%. It is worth noting that the
proposed DenseNet+FPN outperforms fine-tuned VGGNet-16,
which has been reported as the best scene classification method
in [16], by more than 4.5% in accuracy. Fig. 7 shows the
confusion matrix of the proposed DenseNet+FPN. It can be
seen that the biggest confusion happens between palace and
church, because of their similar global structure and spatial
layout.

The main reason for the good performance is that the pro-
posed method uses class-specific signature objects to help scene
classification. If signature objects of a scene class are detected
in the image, the probability that the image belongs to that class
will be greatly increased.

According to the proposed framework, partial scene classes
are selected to train the deep-learning detector. Table IV shows
the selected classes and the corresponding class-specific signa-
ture objects. It can be observed that the majority of the selected
classes are artificial scene types. This is mainly because the
artificial scene types usually have complex spatial patterns and
thus are hard to be distinguished only using the deep-learning
classifier. Another reason is that the majority of artificial scene
types have class-specific signature objects in their images.

It should be noted that not all artificial scene classes are
selected. The reasons are as follows. First, some artificial scene
types (e.g., parking lot) are with relatively uniform spatial ar-
rangements and structural distributions, which can lead to high
classification accuracies of these classes. Therefore, there is no
need to select these scene classes. Second, a little scene types
are difficult to define their class-specific signature objects due
to their high with-in class diversity. For example, school is not
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TABLE IV
SELECTED CLASSES OF NWPU-RESISC45 AND THE CORRESPONDING CLASS-SPECIFIC SIGNATURE OBJECTS

Fig. 8. Accuracy improvement for the selected classes of NWPU-RESISC45.

selected because it is difficult and time-consuming for a human
with little expertise to find out its class-specific signature objects.

To illustrate the contribution of the deep-learning detector,
we compare the proposed VGGNet-16+FPN with Fine-tuned
VGGNet-16 on NWPU-RESISC45 under the training ratio
of 20%, and list improvements of accuracies for the scene
classes that participated in detection (see Fig. 8). As can be
seen from Fig. 8, compared to fine-tuned VGGNet-16, the

TABLE V
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS ON AID

proposed VGGNet-16+FPN obtains an average 3% accuracy
improvement and significantly improves performance in these
categories: tennis court (90%–>96%), stadium (91%–>96%),
airport (86%–>90%), and lake (89%–>93%).

2) AID: Table V presents the experimental results of the
proposed method and some state-of-the-art comparison methods
on AID, under the training ratios of 20% and 50%, respectively.
It can be observed that the proposed DenseNet+FPN outper-
forms other scene classification methods in overall accuracy
whether its training ratio is 20% or 50%. Moreover, the proposed
VGGNet-16+FPN can also compete with the state-of-the-art
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Fig. 9. Confusion matrix on AID under the training ratio of 20%.

Fig. 10. Accuracy improvement for the selected classes of AID.

TABLE VI
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS ON

OPTIMAL-31

methods. As AID is less challenging than NWPU-RESISC45,
the results are higher and the improvements are lower.

We also make a confusion matrix to further analyze the effect
of DenseNet+FPN, as shown in Fig. 9. For this dataset, the most
notable confusion of the proposed DenseNet+FPN happens
between school and commercial, which may be caused by the
densely distributed tall buildings in these scenes.

The improvements of accuracies for the scene classes that
participated in detection on this dataset are shown in Fig. 10.
It can be seen that, compared to sine-tuned VGGNet-16, the
proposed VGGNet-16+FPN obtains an average 8% accuracy
improvement and significantly improves performance in these
categories: commercial (82%–>95%), industrial (82%–>94%),
resort (64%–>75%), and storage tanks (83%–>94%).

3) OPTIMAL-31: To further confirm the effectiveness of the
proposed method, we evaluate it on OPTIMAL-31, under the

Fig. 11. Confusion matrix on OPTIMAL-31 under the training ratio of 80%.

TABLE VII
TRAINING AND TESTING TIME OF DIFFERENT METHODS ON THREE DATASETS

training ratio of 80%. As we can be seen in Table VI, in agree-
ment with the results of previous two experiments, the proposed
method has the highest accuracy. The proposed DenseNet+FPN
obtains a 95.23 ± 0.25% classification accuracy, which is
1.46% higher than that of GBNet+global feature. In addition,
the proposed VGGNet-16+FPN takes the second place. This
proves that the detection of signature objects can indeed improve
the classification accuracy in the domain of remote sensing
scene classification. The confusion matrix of DenseNet+FPN
is shown in Fig. 11. It can be seen that, misclassification appears
especially in these two categories: freeway and overpass, whose
land-cover units are very similar.

F. Training and Testing Time

In this section, we analyze the computational efficiency of the
proposed method. The training time and testing time is reported
in Table VII. All networks are trained with 100 epochs on each
dataset. The testing time indicates the average time taken by pro-
cessing one image. To clearly illustrate the time cost induced by
the target detection, we make a comparison between fine-tuned
VGGNet-16 and the proposed method (VGGNet-16+FPN). As
shown in Table VII, the target detection leads to a considerable
increase in time cost, both the training time and the testing time
of our method are more than those of fine-tuned VGGNet-16.
This deficiency may limit its use in real-time classification work.
In our future work, we plan to fuse the deep-learning classifier
and detector together to develop a new classification network,
which will make the method more efficient.
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V. CONCLUSION

In this article, an object-guided RESISC method based on the
joint use of a deep-learning classifier and a detector is proposed.
The framework of this method imitates the classification proce-
dure of human vision system, which first gives a coarse classi-
fication of the image using a deep-learning classifier, and then
determines the scene class of the image based on class-specific
signature objects detected in the image. The proposed method
achieves results comparable to the state-of-the-art on three pub-
licly available RESISC datasets, including NWPU-RESISC45,
AID, and OPTIMAL-31. The main advantage of the proposed
method is its conciseness in implementation. Implementing
this method is much easier than duplicating complicated CNN
architectures.

In the proposed framework, which objects can be defined as
signature objects for a specific class are determined based on
the human experience. To further reduce the manual workload,
we look forward to combining CNNs with RNNs to auto-
matically decide which objects need to be detected in future
studies.
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