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Deep Learning for Automatic Colorization of Legacy
Grayscale Aerial Photographs

Quentin Poterek , Pierre-Alexis Herrault , Grzegorz Skupinski, and David Sheeren

Abstract—Legacy grayscale aerial photographs represent one
of the main available sources for studying the past state of the
environment and its relationship to the present. However, these
photographs lack spectral information thereby hindering their use
in current remote sensing approaches that rely on spectral data for
characterizing surfaces. This article proposes a conditional gener-
ative adversarial network, a deep learning model, to enrich legacy
photographs by predicting color channels for an input grayscale
image. The technique was used to colorize two orthophotographs
(taken in 1956 and 1978) covering the entire Eurométropole de
Strasbourg. To assess the model’s performances, two strategies
were proposed: first, colorized photographs were evaluated with
metrics such as peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM); second, random forest classifications
were performed to extract land cover classes from grayscale and
colorized photographs, respectively. The results revealed strong
performances, with PSNR= 25.56± 2.20 and SSIM= 0.93± 0.06
indicating that the model successfully learned the mapping between
grayscale and color photographs over a large territory. Moreover,
land cover classifications performed on colorized data showed
significant improvements over grayscale photographs, respectively,
+6% and +17% for 1956 and 1978. Finally, the plausibility of
outputs images was evaluated visually. We conclude that deep
learning models are powerful tools for improving radiometric
properties of old aerial grayscale photographs and land cover
mapping. We also argue that the proposed approach could serve
as a basis for further developments aiming to promote the use of
aerial photographs archives for landscapes reconstruction.

Index Terms—Colorization, deep learning, generative
adversarial network (GAN), grayscale imagery, historical aerial
photograph, remote sensing.

I. INTRODUCTION

H ISTORICAL aerial photographs provide crucial data for
efficient long-term environmental monitoring and change

detection [1]–[4]. They offer unique background information at
a very high spatial resolution [2], [5]. However, reproducible
works based on these data can be challenging due to their
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inherent and heterogeneous properties, such as their spatial
and radiometric resolution [6], [7]. Until the late 1930s, aerial
photography was solely monochromatic, with sensors limited
to the visible and near-infrared ranges [6], [7]. Thereafter, color
photography rapidly superseded the use of grayscale shots [6].
Despite the current prominence of color aerial photographs,
there remain many aerial photograph libraries that consist
mainly of grayscale products. For instance, the French National
Mapping Agency (IGN) distributes aerial photographs collected
since 1919. Of 20 345 flights, 18 054 were completed using
panchromatic sensors. The first IGN color photographs were
only made available in 1959 [8].

Although grayscale photographs contain valuable historical
information, they remain poorly exploited due to their hetero-
geneous specifications and quality, e.g., scale, lens properties,
spectral sensitivity, and film development [6]. However, these
products can still serve diverse purposes, including cartography,
landscape dynamics analysis, and photogrammetry [6], [9]. Such
applications usually rely on digital processing, such as feature
extraction techniques, to supplement the available information
and analysis potential provided by grayscale imagery and pho-
tography. The contribution of color, texture, and lightness fea-
tures for land monitoring using remote sensing is well known,
for example, Heller et al. [10] highlight the importance of color
for identifying tree species from aerial photographs by show-
ing that identification accuracy improved by up to 27% when
foresters used photographs obtained with RGB films compared
to panchromatic stills. The integration of infrared film further
enhances interpretation from aerial photographs and highlights
the importance of providing the widest possible range of spectral
information for analyzing spatial data. Palsson et al. [11] and
Cavallaro et al. [12] pointed out that without ancillary data,
RGB channels alone improved classification results in urban
areas by more than 40% in some cases when compared to the
use of panchromatic stills. Attempts to provide the models with
other discriminating features, such as texture, do not necessarily
improve results. Feng et al. [13] compared the performances
of two random forest classifiers trained on UAV imagery for
urban vegetation mapping. The first was trained using RGB
data only, whereas the second benefited from Haralick textures,
computed from panchromatic pictures and provided as ancillary
data. The authors reported an improvement in overall accuracy
due to additional texture features, with a 23% increase for their
first test site, and a 13% increase for the second one. Hence,
insufficient spectral information in legacy aerial photographs
would prove to be a disincentive to their use in the current remote
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sensing landscape, where fully automated workflows prevail and
profit from rich datasets. Therefore, standard remote sensing
techniques may benefit from colorized legacy aerial pho-
tographs, which would help improve their spectral resolution.

Photography and movie industries, facing similar issues, were
the first to develop colorization techniques, which allow super-
imposing color to grayscale stills [14]. While the process highly
benefited from computer science, it is still mainly restricted to
conventional photography, rather than remote sensing products,
despite being of fundamental heritage and scientific interests.

A. Traditional Colorization Techniques

In the context of this article, techniques are considered tradi-
tional if they are unrelated to deep learning. Hand coloring was
not investigated, as the process is time-consuming, and most
legacy aerial photographs are digitally distributed.

Until the mid-2010s, various approaches tackled computer-
based colorization mainly in a semiautomatic manner. These
methods were either based on color transfer or color scribbles.
On the one hand, transfer-based techniques—first proposed by
Reinhard et al. [15] and developed further by various authors—
require a human operator to select a source color image. Chro-
matic information is then transferred to a grayscale picture
by matching various attributes, such as lightness and texture
[16]–[21]. On the other hand, scribble-based techniques rely on
the placement of color scribbles on a grayscale image. Chromatic
information is then passed to nearby and similar pixels, using
various optimization algorithms and attributes [22]–[25]. In
both cases, input from an external operator is not a concern
in the case of a single simple task. However, these techniques
become inappropriate when dealing with vast spatial data, such
as city-scale orthoimagery, due to the quantity and spatial extent
of the images. The continued dependence on human operators
encouraged the use of traditional learning-based techniques in
the early-2010s [26], [27]. Despite tailored solutions, these
methods require upstream consideration. A set of features must
be selected, computed from a panchromatic picture and fed
into a model during training. In turn, this produces a mapping
from grayscale to color. Therefore, expertise is still required and
remains a crucial step in this process.

B. Deep Learning Based Colorization Techniques

The advent of deep learning has enabled new opportunities
for automated colorization. The operating process of the cor-
responding algorithms allows automatic learning of an entire
set of high-level features before producing the desired output
[28]. Thus, it helps reducing the emphasis on data engineering
and preparation. Architectures developed in artificial vision are
diverse and increasingly applied to remote sensing applications.
Included among these applications are photogrammetry [29],
classification and segmentation of images [30], [31], and super-
resolution [32].

Recent years have witnessed an increase in automated col-
orization techniques that are deployed using various implemen-
tations and deep learning backends (see Table I).

TABLE I
OVERVIEW OF DEEP LEARNING TECHNIQUES DEVELOPED FOR

AUTOMATING GRAYSCALE IMAGE COLORIZATION

The first-ever category of models being used for colorizing
grayscale images corresponds to simple deep neural networks
(DNNs), organized around fully connected layers of artificial
neurons. Cheng et al. [33] deployed a DNN, trained with color
images, their grayscale counterparts, and a set of features com-
puted at different scales to learn the intended mapping. DNNs
were not pursued further on account of their lack of flexibility
and the computational resources required for working on raster
datasets.

Convolutional neural networks (CNNs) were proposed as an
alternative for image processing. Convolutions allow retrieval
of information from an image, using a sliding window defined
by a kernel size and weights associated with each of its cells.
More than half of the currently proposed colorization techniques
use CNNs for 1) classification [34], [36], [38], [40], [41], [47],
[49], [50] and 2) regression [34], [36], [39], [44]. However,
regression loss functions, mostly based on Euclidean distance,
produce blurry and unsaturated outputs as they tend to minimize
the prediction error. While the classification setting offers crisp
colors, authors usually must tweak the corresponding losses to
conform to colorization requirements [37].

Generative adversarial networks (GAN) are a more recent
category of deep learning models proposed by Goodfellow et al.
[51]. They rely on a pair of entities, a generatorG and a discrimi-
nator D, both trained in an adversarial framework. G learns how
to generate new samples by capturing a reference distribution,
whereas D learns to differentiate between real and generated
samples. It outputs the probability of belonging to a reference
distribution, which is used as a feedback mechanism to help
G improve its performances during training. In their original
setting, GANs take a noise vector z as an input, and generate
data close to ground truth samples [51]. In the framework of
colorization, grayscale-to-color mapping must be learned. Thus,
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Fig. 1. Example of a generated distribution, compared to the reference used
for training. Note the mode collapse effect, represented by the prominence of a
pair of modes and a lack of low frequencies within the generated distribution.

the noise vector can be replaced by a panchromatic sample to
condition the input, preserve spatial information, and learn the
grayscale-to-color mapping only. Such workflow can be carried
out by conditional generative adversarial networks (cGAN),
derived from GANs and designed to handle mapping operations
[52]. Authors who used generative models as a base framework
for colorization all relied on a conditional setting [37], [42]–[45],
[48]. However, generative models are known for being unstable
during training. They also sometimes learn only a part of the
target distribution, a phenomenon called mode collapse (see
Fig. 1). In this setting, G learns only part of the modal values
of the reference data, and thus outputs very similar samples.
Various algorithm variations were created to tackle these prob-
lems, including BEGANs [53], DRAGANs [54], and WGANs
[55]. They provide the user with regularization techniques to
allow learning more diverse distributions and low-frequency
samples. Hence, regularization techniques help generating crisp
and plausible colors without the hassle of developing a loss
function suited for colorization, such as for classification-based
CNN.

Furthermore, only a very limited number of works have
tackled the problem of colorizing spatial products [47], [50], let
alone historical ones. Song et al. [47] used a pretrained VGG-16
network to extract high-level features from single-polarization
SAR satellite images and reconstruct their full-polarization
counterparts. Liu et al. [50] trained a multitask autoencoder
to perform colorization and superresolution on VHR optical
satellite imagery. Although both approaches present novel tech-
niques for processing spatial products, they focused on current
satellite imagery only, and they are not ideally suited for legacy
aerial photographs due to the various domain gaps and the
inherent characteristics of these data. Some research teams freely
distribute their models and learned parameters. However, their
training datasets differ greatly from those required for coloriz-
ing legacy aerial photographs. Spatial semantics learned from
horizontal and oblique pictures do not match those of vertical
imagery, as shown in Fig. 2.

Taking all of these points into account, we can therefore
see that most shallow and deep techniques do not quite fit the
requirements for an easy and automatic processing of legacy
aerial photographs. As shallow techniques remain semiauto-
matic for the most part, they are unfit for managing photographs

Fig. 2. Colorization examples, using the model trained by Zhang et al. [41]
with ImageNet data. Note that the model did not manage to properly predict
chrominance over grayscale shots.

taken at different dates, with ever-evolving sensors and platform
parameters. Indeed, they would require adaptations based on
photographs and mosaics specifications. Regarding deep tech-
niques, GANs appeared to be interesting models as they allow
the use of fully convolutional networks, and do not require
to develop tailored loss functions, unlike standard CNN-based
classification methods. Moreover, deep learning allows to better
take into account variability within a series, thanks to data
augmentation techniques that are better integrated than with
traditional techniques.

Given the lack of literature addressing the colorization of
legacy aerial photographs, we propose a novel methodology
to provide new spatial products, suitable for better integration
within current remote sensing workflows (e.g., classification).
We deploy deep learning techniques to learn grayscale-to-color
mapping based on current photographs using 1) a custom photo
library and 2) a conditional DRAGAN architecture that requires
virtually little to no prior knowledge. To assess the quality of
generated samples, both at train- and test-time, we propose
3) various metrics at the pixel and land cover class levels.
Moreover, even though the specifications of current-day images
used for learning this mapping function do not necessarily match
those of legacy photographs, especially due to pixel size, noise,
illumination and capture date, we explore various solutions for
taking into account such heterogeneity.

II. METHODOLOGY

A simplified version of the proposed methodology appears in
Fig. 3. These points are covered in the following sections.
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Fig. 3. Graphical abstract of the proposed methodology.

Fig. 4. Study site location and surroundings.

A. Study Area

The proposed method was tested on aerial photographs of the
city of Strasbourg (France) and its surroundings (see Fig. 4).
With an estimated population of 550 000 in 2015, the Eu-
rométropole de Strasbourg (EMS) is the sixth most populated
city in France. Located in the Upper Rhine Graben, it covers
a surface of 340 km2 and is bordered by the Rhine River
and the Vosges Mountains. Due to its history, topography, and
hydrography, Strasbourg and nearby cities have a dense urban
landscape and an open-field agricultural system.

B. Available Data and Preprocessing

The colorization model developed in this article relied on
an extensive historical spatial database designed by the Zone
Atelier Environnementale Urbaine that is part of the French
Long-Term Ecosystem Research network. The database consists
of numerous orthophotos, which cover the entire EMS, from

TABLE II
OVERVIEW OF PHOTOGRAPHS AVAILABLE IN THE DATABASE

1932 to 2013 (see Table II). Four dates were candidates for the
colorization process as they were the only ones with available
grayscale photographs: 1932, 1956, 1964, and 1978. Due to
deterioration (1932) and spectral incompatibility with the other
stills (1932 and 1964), we focused this research only on the 1956
and 1978 aerial photographs.

To learn the semantics suitable for aerial photography, we
designed a custom dataset based on the available photographs
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TABLE III
SOURCES OF SAMPLE IMAGES CONTAINED IN THE

TRAINING PHOTOGRAPHIC LIBRARY

series. Learning the mapping from grayscale to color required
the following photographic library: Δ = {C,P}, C and P cor-
responding to pairs of images taken from the chromatic and
panchromatic sets, respectively.

To create the chromatic set C, we used a color orthoimage
taken in 2013 (see Table I) as a baseline. It was downsampled
to 30 and 50 cm to learn a multiscale model that was capable of
processing both the 1956 and 1978 photographs. We applied a
stratified sampling scheme to extract 17 100 128× 128 spatially
independent color images at random. Stratification was based on
the following four major land cover classes defined by the level-1
CIGAL dataset:

1) artificial surfaces;
2) agricultural areas;
3) forest and seminatural areas;
4) water bodies.
These ancillary data were digitized on top of an aerial photo-

graph acquired in 2012 over Alsace, a historical French region.
It is meant for use at scales inferior or equal to 1/250 000 for
the first level of the nomenclature [56]. We also added 3800
images from a variety of older aerial sources to the photo library
after a manual selection. This step was required to learn rare
spatial semantics, such as historical buildings and geometric
distortions induced by the photographic process, e.g., camera
tilt and topographic displacement in urban areas [4]. All sources
are described in Table III and amount to a total of 20 900 samples.

The panchromatic set P was created by converting all color
images to grayscale, leading to the desired {C,P} pairs.
Conversion was conducted using the following formula from
Scikit-Image [58]:

P = 0.2125×R+ 0.7154×G+ 0.0721×B. (1)

Hence, panchromatic aerial photographs were not used in the
process, but they were replaced by pseudopanchromatic coun-
terparts. Such a choice was fundamental, as perfectly similar
and coregistered pairs are required to learn the desired spectral
mapping. Otherwise, a slight change in elevation, illumina-
tion or position would disturb the model, due to geometric or
radiometric discrepancies.

We converted color images to the CIE Lab color space,
as recommended by numerous authors [34], [36], [37], [41],
[44]–[46], [50], using Scikit-Image. Chroma is denoted by
both a and b. These channels are uncorrelated, unlike those of
RGB-based color spaces. This strategy allowed the learning of
only two channels rather than three, as L refers to lightness and
corresponds actually to the (pseudo) panchromatic image [59].
Separating lightness and chrominance could also allow to fix

any potential deterioration that may affect legacy photographs,
such as vignetting, noise, and scuffs.

We finally created an independent validation dataset Δval =
{Cval, Pval}, following the same methodology. In addition to the
20 900 training samples, 512 color images of 128× 128 pixels
each were extracted randomly from the 2013 orthophoto, 128
for each of the four CIGAL land cover classes. We also applied
conversion to grayscale and the CIE Lab color space to this
dataset.

C. Grayscale-to-Color Mapping Using Deep Learning

Due to the unstable nature of GANs in their vanilla setting, a
conditional DRAGAN was trained to learn the panchromatic-
to-color mapping. Initially proposed by Kodali et al. [54],
DRAGANs, a subcategory of GANs, were developed from the
assumption that mode collapse and instability can be explained
by the model converging toward a nonoptimal local equilibrium.
Therefore, tweaking the objective functions by penalizing the
discriminator’s gradients can help avoid such a situation [54].
In the case of colorization, this technique helps learn a proper
color distribution, including low-frequency samples, and avoids
similar color generation over inherently different land covers
and spatial semantics.

1) Objective: In the conditional setting of a DRAGAN for
image colorization, the objective functions can be expressed as

LG = E [log(D(G(p), p))] (2)

LD = E [log(D(c, p))]

+ E [log(1−D(G(p), p))]

+ αE
[
(|∇D| − 1)2

]
. (3)

Here, both p and c represent panchromatic P and color C sam-
ples from the training dataset Δ = {C,P}. Colorized samples
Ĉ are described by G(p), the generated images obtained after
passing p to the generator G. We followed the recommendations
provided by Kodali et al. [54] by having the discriminator’s
gradients ∇ weighted by α = 10 in order to stabilize the model.
On the one hand, G attempts to minimize its objective function
LG. This is done by fooling the discriminator D into believing
G(p) is truly part of the reference distribution c. On the other
hand, D tries to minimize its objective function LD, to better
differentiate between the actual and generated samples, c and
G(p), respectively. We also conditioned both networks via the
panchromatic still p that contains both lightness and spatial
information, and is represented by the second parameter in
D(c, p) and D(G(p), p).

As suggested by Isola et al. [37], we also supplemented
the generator objective with a Euclidean-based L1 distance,
weighted by a factor λ = 100. The end function used to optimize
G can be noted as

LG∗ = LG + λ ×
n∑

i=1

|ci −G(pi)| . (4)

This regularization technique helped to model low-frequency
colors, whereas the usual adversarial objective was used to
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Fig. 5. Architectures of the generator and discriminator networks, both part of the conditional DRAGAN used for learning the grayscale-to-color mapping.

capture the overall distribution, represented by high frequencies
[37].

2) Network Architecture: The architecture of the proposed
model (see Fig. 5) followed numerous recommendations from
[37] and [42].

The generator G of our DRAGAN was based on a UNet-
like architecture [60] that helped capture spatial semantics.
Composed solely of convolutional layers, G consisted of the
following:

1) a downsampling section in which sets of feature maps
were learned for different scales;

2) a bottleneck;
3) an upsampling section in which spatial information was

restored and combined with previously learned features.
Unlike [37], we did not use skip-connections when combining

features from the downsampling and upsampling sections. Due
to technical limitations, we simply summed features from both
portions in a symmetric fashion.

Our discriminator D was based on a PatchGAN architecture
[37]. A series of convolutions evaluated whether or not each
colorized patch belonged to a real distribution. We applied spec-
tral normalization to each layer of the discriminator to stabilize
training and generate higher quality samples [61], [62].

In addition, both G and D were fully conditioned by P , from
top to bottom. Inspired by Cao et al. [42], panchromatic samples
were automatically resampled and stacked to each layer inG and

D during each pass. This design was proposed to enforce spatial
consistency at each scale, and in generated images.

3) Optimization and Training: In addition to the DRAGAN
objective functions and spectral normalization, we implemented
other regularization techniques, such as label smoothing [63].
We also initialized both networks’ parameters with values sam-
pled randomly from a Gaussian distribution [51].

The generator and discriminator were trained alternately, each
at one step at a time, using a batch size of 256. We used different
optimizers to update both networks. For the discriminator, we
used SGD as it works best with spectral normalization [61].
Learning rate lr and momentum were set at 2× 10−4 and 0.9,
respectively. For the generator, Adam was preferred, having
a learning rate of 2× 10−4, and momentum parameters of
β1 = 0.9 and β2 = 0.999. Different values for the hyperpa-
rameters have been empirically tested. We did not observe any
particular instability, improvement or deterioration of the results
in these tests. Thus, we ended up using the hyperparameters
proposed by Isola et al. [37] for the generator, and by Miyato
et al. [61] and Zhang et al. [62] for the discriminator.

The overall training scheme is presented in Algorithm 1. We
also implemented fully random data augmentation techniques
to obtain more samples artificially, such as rotations, as well as
vertical and horizontal flips. A random Gaussian blur was also
proposed, withσ ∈ [1.0, 1.25], to mimic the appearance of some
of the legacy photographs.
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Once the model was trained, the discriminator served no other
further purpose. From then on, it was possible to pass new
panchromatic images to the generator, which in turn produced
colorized samples. The entire colorization process was imple-
mented as part of a sliding window, convenient when processing
large mosaic datasets. The fully convolutional architecture also
avoided being forced into using a single size of image at test
time.

D. Evaluating the Colorization

Numerous metrics are already available for evaluating outputs
produced by regular machine learning techniques, e.g., classifi-
cation and regression. Despite their increased use over the last
few years, generative models still lack a proper means of assess-
ing the quality of their generated outputs [64]. Therefore, we
proposed more traditional metrics to evaluate the performances
of the colorization system.

It also must be noted that the generator’s outputs are in CIE
Lab color space. However, visualization and part of the metrics
used for evaluating the colorization process require working in
the RGB color space. Thus, among the evaluation techniques
proposed below, only the analysis of bivariate distributions re-
mained in CIE Lab. All other steps were fulfilled after converting
the colorized samples back to RGB.

It is important to note that most articles on colorization include
a comparison with the results obtained through the works of
other authors, particularly in deep learning. However, most
research teams work with public datasets (see Table I), such
as ImageNet [38], [41], [45], CIFAR-10 [34], [46], and SUN
[38], [40], [42], [49], which allow for comparison. At the time
of writing this article, all models available online were based
on parameters learned from nonaerial images. Comparison with
outputs generated through such networks would not yield mean-
ingful results, as shown in Fig. 2. Another solution would be to
train the models proposed by authors from scratch, by reusing the
suggested hyperparameters. However, hyperparameters can be
specific to certain datasets, and would require further fine-tuning
in order to properly account for spatial semantics extracted from
aerial photographs. The same issue can be raised for traditional
techniques, that would require tinkering with hyperparameters
for each mosaic, or even possibly each picture. Thus, we do not

propose a comparison with other colorization techniques, as we
considered it would not yield meaningful information regarding
aerial photographs colorization.

1) Statistical Evaluation: As noted previously, generative
models require consideration of samples’ plausibility rather than
raw accuracy. Although we suspected a generic evaluation would
not be able to capture such an abstract concept, it was conducted
nonetheless for exploratory purposes.

Based on the validation dataset Δval = {Cval, Pval}, Pval was
passed to the generator G, which in turn produced colorized
samples Ĉval. First, we compared the bivariate distributions
of the a and b color channels, by randomly sampling joint
pixels from Cval and Ĉval. This specific step is the only part of
the evaluation process where colorized and reference samples
remained in the CIE Lab color space.

The second part of this evaluation compared Cval and Ĉval

using mean squared error (MSE), peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM), averaged over
all color channels. For a simpler analysis of all three metrics, we
converted Cval and Ĉval samples back to RGB beforehand.

MSE measures the dissimilarity between the real and pre-
dicted samples. Its values range from 0 (similar) to +∞ (not
similar). MSE can be defined as

MSE(c, ĉ) =
1

n
×

n∑

i=1

(ci − ĉi)
2. (5)

PSNR measures the similarity between real and predicted
samples, and is usually used to assess the quality of a recon-
structed signal. PSNR values range from 0 (not similar) to +∞
(similar) and can be defined as

PSNR(c, ĉ) = 10log10 × (2552/MSE(c, ĉ)). (6)

SSIM measures the similarity between real and predicted
samples, based on structure, lightness and contrast [65]. Images
are processed at kernel-level, using convolution. SSIM values
range from 0 (not similar) to 1 (similar). SSIM—having three
constants c1, c2, and c3 that depend on bit depth—can be defined
as

SSIM(c, ĉ) =
(2μcμĉ + c1)(2σcσĉ + c2)(2covcĉ + c3)

(μ2
c + μ2

ĉ + c1)(σ2
c + σ2

ĉ + c2)(σcσĉ + c3)
.

(7)
2) Evaluating Land Cover Classification: To assess the con-

tribution of predicted colors, we complemented the quantitative
analysis of the results by comparing land cover classifications
between the grayscale P and colorized photographs Ĉ. To
meet present-day standards in remote sensing, we developed
a simple but standard workflow, with a traditional sampling
scheme and the computation of ancillary features. This step
was not meant to indicate whether or not colorization produced
plausible results, but rather to shed light on the contribution
of generated chrominance to a very common task in remote
sensing. Reference data were obtained by digitizing six generic
land use and land cover (LULC) classes using the panchromatic
photographs P from 1956 and 1978 to serve as references. The
selected classes were: artificial surfaces, roadway, agricultural
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TABLE IV
PERCENTAGE OF PIXELS FOR THE DIGITIZED LAND COVER

CLASSES FOR THE 1956 AND 1978 PHOTOGRAPHS

areas, herbaceous vegetation, tree vegetation, and other surfaces
(see Table IV).

We produced a straightforward and readily reproducible clas-
sification scheme for assessing both the 1956 and 1978 pho-
tographs. First, we computed two sets of textures using P : 1)
default and uniform local binary patterns [66] and 2) simple
Haralick textures [67] computed with a kernel size of 5. These
texture features were then stacked to both P and Ĉ. Two ran-
dom forest classifiers [68] were trained, one for each of the
two stacks—grayscale and colorized—after a fine-tuning of the
hyperparameters using a random grid search. We then validated
the model using stratified fivefold cross-validation (80%/20%
training/validation split) for both years. Finally, we compared
F1 scores obtained for the classified P and Ĉ pictures, at the
scene and land cover class levels.

III. RESULTS

Before investigating the colorization results provided by the
proposed model, an analysis of the effects of various parameters
was carried out with a 20% sample of the training set. Among the
available parameters, three were tested: batch size, learning rate,
and lambda (see Sections II-C1 and II-C3 for more information).
Visual results and quality metrics (SSIM and PSNR) obtained
with different values for each parameter are presented in Fig. 6
for the full validation set.

Changes in batch size (bs) did not result in major vari-
ations, be it qualitatively or quantitatively. Larger batch
sizes resulted in slightly better quality metrics, going from
PSNR = 25.11± 4.41 and SSIM = 0.92± 0.05 for bs = 64, to
PSNR = 25.44± 4.61 and SSIM = 0.93± 0.04 for bs = 256.
However, with lower batch sizes, one can note more plausible
colors for bare soils, while colorization mistakes appeared to
be reinforced over green surfaces, which, for some, turned navy
blue. Overall, the best results were obtained for bs = 256. Such
observations do not necessarily match those of the available
literature. Indeed, larger batch sizes are usually responsible for a
larger generalization gap during test time, which was not the case
here [69], [70]. However, it could be argued that the differences
in bs were not large enough to expose such phenomenon.

Changes in learning rate (lr) for both the generator and the
discriminator had a strong effect on the predicted colors. With
lr = 2e−7, the model gave a colorization with magenta artifacts
for bare soils and artificial surfaces. Vegetated surfaces showed
better results, despite hue being not quite right. With lr = 2e−1,
colorization results were not plausible and turned various shades
of red, which resulted in the lowest values for the quality metrics
with PSNR = 5.04± 1.18 and SSIM = 0.083± 0.06. Overall,

Fig. 6. Qualitative and quantitative results obtained for three parameters set
with different values. For each test, the model was trained for 500 epochs with
only 20% of the full training set, due to hardware limitations. SSIM and PSNR
were computed for the validation set. Gray panels correspond to the baseline
values proposed in this article for each parameter. For each test, one parameter
was tested, whereas the other two were set to their baseline value.

the best results were obtained for lr = 2e−4. The learning rate
controls the speed at which the model moves toward a hypothet-
ical global optima [28]. A low learning rate may result in slow
convergence, as seen here with lr = 2e−7, or sometimes even in
an improper solution. A high learning rate may result in higher
training error and in the model passing the global optima. Too
much of an update in the weights of the model may have led to
an improper solution, which could explain the result obtained
with lr = 2e−1.

Changes in the generator’s loss function through the λ pa-
rameter had consequences on the distribution and saturation
of the predicted colors. With λ = 0, colors were too saturated,
even though the greens were properly placed over vegetated
surfaces. It resulted in low values for the quality metrics, with
PSNR = 8.26± 3.02 and SSIM = 0.36± 0.11. When setting
λ = 0, Isola et al. [37] obtained results of much better quality
with crisp colors, which may be due to the low number of epochs



POTEREK et al.: DEEP LEARNING FOR AUTOMATIC COLORIZATION OF LEGACY GRAYSCALE AERIAL PHOTOGRAPHS 2907

Fig. 7. Adversarial and L1 losses during training.

Fig. 8. Example of colorization results for the validation dataset (2013).
Generated samples were randomly selected.

that we used for testing the effects of parameters. With λ = 200,
the colorization results were less saturated than with λ = 100,
but there were no artifacts such as the navy blue spots that
were previously observed. This effect was illustrated by Isola
et al. [37], who showed how weighting the generator’s loss with
λ helped reduce the number of artifacts, at the cost of color
saturation. Overall, the best results were obtained for λ = 100,
even though λ = 200 was close in terms of color and quality
metrics, with PSNR = 24.79± 4.71 and SSIM = 0.91± 0.06.

The proposed model was trained for 950 iterations with the
parameters for which the best results were obtained, as described
in Section II-C. Each epoch required about an hour, the full
training step being over after 40 days. It was not possible to
train more due to technical limitations. Indeed, this article was
carried out on a paid Google Cloud virtual machine instance,
with a half-K80 GPU (12 GB video memory). However, the
outputs generated using this number of epochs were good and
encouraging. Values for the adversarial and L1 losses are shown
in Fig. 7.

Results for the validation set Δval are presented in Fig. 8. As
a reminder, they correspond to the colorizations obtained for
the year 2013, for which we have a color reference. Coloriza-
tion results for legacy photographs, without any reference, are
presented later in this section.

A. Visual Evaluation

For the validation dataset and legacy photographs, the model
produced a crisp color delineation and a consistent spatial dis-
tribution of chrominance (see Figs. 8 and 9). This indicated
a good performance of the proposed model. We observed a
diverse spectrum of colors for vegetation in urban areas. Colors
ranged from light green for the most exposed areas, to dark
green for the most shaded ones. Results for asphalt surfaces
were also good as gray intensities differed between footpaths
and roadways. However, rooftops lacked color diversity, being
mostly gray and brown. This lack of diversity reflected how
instability or mode collapse can still affect generative adversarial
models despite use of the DRAGAN framework. In rural areas,
colorized photographs again highlighted the strong performance
of our approach, especially for agricultural parcels. The variation
in the beige and brown tones for soils distinguished between bare
and cropped areas. In addition, the roughness and overall texture
of fields were more visible, for example, we could identify
furrowed fields traced by plows or other agricultural machinery.
The different intensities of green also helped estimate vegetation
height and the heterogeneity of intraparcel coverage. Finally,
color was well generated for water bodies, and shadows cast
by adjacent trees were properly reconstructed. However, we
did observe some failures cases around areas with specific
semantics. The result was blobs of abnormal color, mostly deep
blues, yellows, and magenta. This is especially true for legacy
photographs, for which entire areas are poorly colorized. This
effect is for the most part observed for tall buildings with visible
facades, or in dense urban areas and narrow crops.

B. Statistical Evaluation

Comparing the joint distributions of the a and b color channels
for the validation dataset Δval (see Fig. 10) provided insight into
how the model generates colors.

For all classes, very low frequency values were not captured
by the model, as shown by the white trims around joint plots
of Ĉ. Although the overall shapes of all distributions were
quite similar between the real and generated samples, many
modes in the generated outputs were missing, displaced, or
possessed higher or lower frequencies. Such phenomena were
markedly noticeable for all land cover classes; the exception
was artificial surfaces that presented very similar distributions
for the colorized and reference samples. These observations
matched the usual drawbacks related to the use of generative
networks.

All three metrics—MSE, PSNR, and SSIM—testified to the
strong performance of the developed model (Fig. 11), with
MSE = 210.29± 166.99, PSNR = 25.56± 2.20, and SSIM =
0.93± 0.06. At a global level, these scores indicated both
a high similarity between the colorized and reference prod-
ucts, and a high quality of image reconstruction relative to
the original samples. Indeed, the SSIM measure indicates
a close structure between reference and generated samples,
withQ1SSIM = 0.907,Q3SSIM = 0.963, and IQRSSIM = 0.055.
Nevertheless, when focusing on LULC classes, a deeper anal-
ysis of the same outputs revealed a more mixed outcome.
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Fig. 9. Colorization results for the 1956 and 1978 panchromatic mosaics covering the western side of Strasbourg. Cases of success and failure are shown for four
different LULC classes.
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Fig. 10. Joint distributions of a and b channels computed for the reference (C) and colorized samples (Ĉ) taken from the validation dataset after training. These
metrics were computed at the LULC class and scene levels.

Fig. 11. Metrics computed for the colorized samples (Ĉ) taken from the validation dataset after training. These metrics were computed at the LULC class and
scene levels.

The best performances were obtained for urban areas, which
exhibited low MSE (MSE = 202.08± 90.31) and high PSNR
and SSIM (PSNR = 25.44± 1.76 and SSIM = 0.94± 0.04).
This is consistent with the joint plots, that showed very
similar chrominance distributions between the colorized and
reference images for built-up areas. Performances then de-
creased for other LULC classes: water (MSE = 263.14±
266.34, PNSR = 25.33± 2.42, SSIM = 0.91± 0.07), tree
vegetation (MSE = 232.42± 149.34, PNSR = 25.18± 2.43,

SSIM = 0.91± 0.06), and agricultural surfaces (MSE = 170±
85.58, PNSR = 26.27± 1.93, SSIM = 0.93± 0.04). Based on
these metrics, higher potential colorization failures could be
expected for these classes.

C. Evaluating Land Cover Classification

The classification results are presented in Table V and Fig. 12.
For the 1978 photograph, the mean F1 score at the scene level
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Fig. 12. Classification results for panchromatic photographs taken in 1956 and 1978, and their colorized counterparts.

TABLE V
F1 SCORES OBTAINED AFTER CLASSIFYING PANCHROMATIC PHOTOGRAPHS

(P ) TAKEN IN 1956 AND 1978, AND THEIR COLORIZED COUNTERPARTS (Ĉ)

(including all classes) improved from 0.58 (P ) to 0.68 (Ĉ)
(17% higher), indicating an improvement due to the colorization
process. Each land cover class investigated in this classification
benefited from chrominance, as F1 scores were higher than
with monochromatic-based features. Artificial areas—roadway,
built-up surfaces, and other surfaces—take full advantage of
generated chromatic information, with gains of 51%, 38%, and
24%, respectively. Agricultural areas, herbaceous vegetation,
and tree vegetation benefited the least from colorization, with
gains of 22%, 12%, and 4%, respectively. Despite a less marked
impact for the 1956 set, the colorization workflow also helped
refine classification, raising the mean F1 score from 0.64 (P )
to 0.68 (Ĉ), an increase of 6.25%. Again, we observed the
best results for artificial surfaces, mainly roads (38% increase),
followed by built-up areas (16%) and other surfaces (12%).
Among seminatural land cover classes, herbaceous surfaces
benefited the most from colorization, with an increase of 50%

for the F1 score, followed far behind by agricultural and tree
surfaces, having, respectively, increases of only 4% and 3%.

Visual inspection of the output LULC maps (see Fig. 12)
also confirmed that the colorization process helped improve
classification. Overall, a higher uniformity was observed in the
color-based results. This was particularly true for rooftops and
agricultural areas, where it was possible to note an important de-
crease in isolated and misclassified pixels. Thus, the colorization
process clearly enhanced the distinction between classes from
the classifier, such as for roads and built-up areas. All these
improvements tended to simplify the interpretation of the image
due to the improved spatial consistency.

IV. DISCUSSION

The proposed model successfully learned the mapping be-
tween grayscale and color aerial photographs. Our approach
produced plausible colorization for legacy stills, thereby pro-
viding a novel solution to access underused data. This important
advance stemmed from a series of choices that were specific to
the initial challenge. First, the conditional DRAGAN framework
that we propose helps to learn an extensive set of modes within
the reference distribution of chrominance. This learning would
likely not have been possible using a standard GAN due to the
prevalence of mode collapse in its standard setting [71]. Second,
the development of a fully convolutional architecture proved to
be efficient when processing the dataset. Indeed, convolutions
are usually faster and more intuitive than their fully connected
counterparts when dealing with multiple dimensions [31]. We
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Fig. 13. Examples of colorized samples after 250 and 950 epochs. Note the
emergence of new rooftop colors after 950 epochs, especially the red and orange
tiles on the right of the image.

also considered the input data, given that aerial photographs
are very heterogeneous in their specifications. The design of
our multiscale photo library allows colorizing stills at spatial
resolutions that range from 30 to 50 cm. In addition, data prepa-
ration techniques provide the model with proper pseudopanchro-
matic photograph, after conversion of the colored original. This
conversion facilitates the learning of a full spectral mapping,
irrespective of radiometric and geometric changes that would
have resulted from the use of a nonhomologous image. The
success of the colorization of two legacy aerial photographs,
taken with actual panchromatic sensors, also implies that the
learned grayscale-to-color mapping depends more on spatial
semantics than pixel values.

However, visual analysis, quantitative metrics, and the evalu-
ation of classification highlight the uneven quality of generated
results, at both global and LULC classes scales. Global per-
formances first should be viewed in relation to the number of
iterations used for training the model. Although the adversarial
objective functions remained stable during the second half of
the training of both networks (see Fig. 7), the model still may
have to find a global optimal solution for the grayscale-to-color
mapping function. Such a phenomena could explain colorization
mistakes, along with the late learning of new rooftop colors, red
and orange in particular (see Fig. 13). Our results are encour-
aging, as they suggest that a longer training time would further
improve the results. Performance at the scale of LULC classes
was also unequal; the unbalanced distribution of spatial features
and objects in the training set may explain the phenomenon.
Indeed, despite a stratified sampling scheme, the mapping func-
tion was still learned using information contained within the
images. However, territories are anisotropic by nature, leaving
us with rare, sometimes even unavailable, semantics that are
poorly perceived and generalized by the model. Furthermore,
various colorization scenarios may be appropriate for the same
object, representing different modes within the distribution of
chrominance, for example, roofing tiles can be gray, black, red,
etc. Despite the use of various regularization techniques, mode
collapse remains a frequent issue with GANs. It explains why
color may be harder to predict for classes or semantics having
multiple possibilities, especially when training is not complete.

Given these previous points, the photo library that was de-
signed for training is another factor that conditions model per-
formance. Indeed, the remote sensing products that we selected
for this article are heterogeneous, as the variability between the

ever-improving sensors involves changes in spatial resolution,
noise, and other degradation. Moreover, the training set was
built around a recent, very high resolution and artifacts-free
orthophoto, acquired during summer. Data preparation and aug-
mentation techniques were proposed to make reference samples
and legacy products compatible. However, not all discrepancies
(e.g., seasonality and surface phenology) could be accounted
for. This could in part explain why the colorized 1956 winter
photograph is of a lesser quality than the one taken during the
summer of 1978. However, from a visual point of view, surfaces
that exhibit periodic life cycle events (natural and seminatural
lands) display the most plausible chrominance values at both
dates, compared to artificial surfaces. As noted above, for both
sets of aerial photographs, spatial semantics surpass radiometric
content (and therefore seasonality) when providing the generator
with meaningful information. This could explain why artificial
surfaces show lower quality results, given that these surfaces
are more complex and require a wider set of spatial semantics to
predict a proper color. Although seasonality could play a major
role, other properties specific to photographs may better explain
the quality of generated samples. For example, the photographic
processing of analog pictures leads to various forms of deteri-
oration, rarely or not at all present in digital photographs (e.g.,
vignetting, noise, blur, smudges) [6]. As the 1956 photograph
was moderately blurred, a portion of the spatial semantics may
differ from what was learned by the model, thus leading to lower
quality results. Further research is required, however, to identify
those factors that influence the mapping process and determine
the impact of these identified factors.

Despite some errors in colorization, predicted chrominance
produced an information gain, as evidenced by LULC clas-
sifications. The performance of the random forest classifier
was improved when compared to the results obtained for the
panchromatic pictures. Rather than requiring perfect coloriza-
tion, our developed classification techniques benefit from a
simple distinction between the desired LULC classes. In this
case, color helps distinguish between pixels, that are otherwise
too similar based on panchromatic and texture features. The
ambiguity between herbaceous vegetation and smooth artificial
surfaces (rooftops, roads) is an obvious example. Also, based
on the F1 scores and visual inspection, the information gain
for the 1956 photographs was less than for the 1978 set. This
observation reinforces our idea of the model being unable or less
able to predict proper chrominance for degraded photographs
or spatial semantics. Classification may be an efficient means
of measuring the quality of generated products, and the infor-
mation gain provided by the model. However, the multimodal
nature of colorization and generative networks properties must
be considered, as better classification results do not necessarily
imply an appropriate prediction of color.

We also demonstrated existing inconsistencies between the
human visual system and quantitative metrics usually suggested
for comparing images. MSE and PSNR only provide pixel-wise
information; they do not take context into account. The SSIM
index—first proposed as an indicator highly correlated to human
vision [65]—was unable to provide more accurate results in
relation to visual evaluation. A possible explanation may be the
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strong relationship between MSE and SSIM, as demonstrated
by Dosselmann and Yang [72]. The phenomenon is particularly
strong for spatial features and objects that possess numerous
plausible colors; urban areas where rooftops often appear brown
or gray, instead of orange, for example, are considered to be
the best outputs according to MSE, PNSR, and SSIM. These
indicators are also unable to assess correctly the quality of other
colorizations, such as for agricultural areas that obtain visually
plausible results with crisp colors (green, brown, and yellow
mostly). Indeed, unsaturated results are likely to be favored
by these metrics, due to a minimization of the global error,
despite visually unsettling colorization. Varga and Sziŕanyi [40]
have drawn similar conclusions when evaluating their results
with QSSIM, another structural index based on SSIM [73].
Despite obtaining an average QSSIM of 0.93, the authors point
out the nonlinearity of the relationship between this metric
and the quality of their outputs, along with inconsistencies of
evaluation. Thus, despite being time-consuming and sensitive
to subjectivity, visual analysis of generated samples currently
remains the most appropriate evaluation technique for colorized
aerial photographs.

It must be stressed that no other work has tackled the problem
of colorizing grayscale aerial photographs in this manner, let
alone legacy stills. However, Song et al. [47] and Liu et al. [50],
who, respectively, colorized radar and optical satellite imagery
using CNN-based classifiers, experienced similar issues and
results. Liu et al. [50] observed the same colorization inconsis-
tencies using present-day satellite images. This may indicate that
the grayscale-to-color mapping does not depend necessarily on
the quality of the grayscale-based products, but rather requires
comprehensible spatial semantics, regardless of the medium.
Song et al. [47] showed that their reconstructed full-polarization
SAR images could be used in various PolSAR applications (e.g.,
Freeman–Durden decomposition) and provide plausible results.
These points thus highlight the potential of reconstructed data
in remote sensing workflows.

Solutions for the colorization of aerial photographs: Differ-
ent solutions can be proposed to improve colorization results
and evaluation techniques. Although we demonstrated that the
DRAGAN framework was efficient enough to produce plausible
outputs, new algorithms are released regularly and could help
reduce undesirable effects, such as mode collapse. Thus, novel
models based on alternative regularization techniques must con-
tinue to be explored.

An operational system must also be able to generate chromi-
nance over much larger territories, beyond the scale of our test
regions (i.e., Strasbourg and Alsace). Due to the specific agri-
cultural landscape (open-field) and urban morphology (dense
habitat) within our study photographs, semantics learned by
the generator may not generalize well when applied to other
landscapes. A solution would be to add many more samples
to the photo library to meet the baseline image number of
current colorization techniques (see Fig. 14). A greater number
of reference photographs would also help reduce colorization
artifacts by providing rare or currently unavailable semantics.

Providing hints to the model, as proposed by Zhu et al. [74],
may further improve the performances. Indeed, various authors

Fig. 14. Number of images used to train colorization models in various deep
learning papers. The dark bar corresponds to the number of training samples
used in this article.

have already managed to successfully train models and obtain
better results with ancillary data. Some existing works used ad-
ditional features maps derived from the grayscale image, such as
multistage features [40], multiscale normalized pyramids [39],
combined patch-descriptors [33] or radiometric and height fea-
tures based on three-dimensional point clouds and orthoimagery
[75]. Other authors have also used classification and semantic
segmentation models for feature extraction. A multipart model,
based on four networks, was trained by Iizuka et al. [36]. In
this model, three out of four networks were dedicated to the
extraction of low-, mid-, and high-level features. All features
were then concatenated and passed to the colorization network.
A two-part model based on an extractor and a translator was also
proposed in [47]. The extractor was tasked with the prediction
of a hypercolumn deep of 1153 descriptors for each pixel. It was
then passed to the translator whose role was similar to that of
a colorization network. These ancillary data give further infor-
mation regarding the nature of each pixel and help learn a more
accurate mapping function [76], [77]. Thus, such techniques may
produce better colorization results by feeding additional features
to the generator. However, due to their unique channel, grayscale
aerial photographs are unfit for the computation of radiometric
indices, such as the vegetation index. Moreover, a colorization
model trained for processing a time series needs to take data
heterogeneity into account, which is particularly challenging
for legacy photographs. Indeed, each air mission and photograph
displays specific characteristics, such as phenology, scale, noise,
vignetting, and sun spots. Features that depend on spatial resolu-
tion, such as texture indices [78], thus vary inside the time series
and may not be compatible with that of the data used for training.
These factors explain why radiometric and texture indices were
not used in this article. Features obtained by the means of
classification or segmentation models could provide meaningful
information. However, the remote sensing community still lacks
large annotated databases such as ImageNet [30]. Moreover,
there is currently no baseline implementation for processing
long-term remotely sensed products with high heterogeneity,
analogous to AlexNet [30], Inception-v4 [79], or VGG-19 [80].
Finally, directly providing a semantic map to the colorization
network might be useful, so as to create a corpus of LULC and
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colors associations. Nevertheless, it would require to have LULC
maps for the entire time series at hand, which we did not.

Apart from the computation of ancillary features, new data
augmentation algorithms could be developed in order to better
account for the various specifications of legacy photographs,
particularly radiometric (e.g., noise, illumination, and holes)
and geometric properties (e.g., scale, camera height, and camera
angle). Finally, other machine learning and image processing
techniques could be developed to restore legacy photographs
prior to colorization.

At the same time, the quantitative evaluation of colorization
remains a crucial step toward establishing an operational sys-
tem. However, classic metrics fail to match human evaluation.
Comparing various quantitative and qualitative measures, Borji
[64] demonstrated the difficulty in evaluating generative models.
There is currently no technique that allows for the simultaneous
evaluation of diversity and fidelity. Other metrics may be more
appropriate, however, they are based on specific deep learning
models. For example, the Inception Score could be used, yet
it relies on an Inception model trained using the ImageNet
dataset that contains images taken at an eye-level camera angle
[63], [81]. Thus, geographic data increases the complexity of
evaluating generative models as the vertical or high-angle shot
domain it belongs to is very specific, revealing an underexplored
problem. Consequently, new indicators must be developed to
assess the quality of generated products, based on remotely
sensed images and photographs.

V. CONCLUSION

This article presents a novel methodology for colorizing
legacy grayscale aerial photographs. The proposed DRAGAN is
fully conditioned by grayscale samples that are derived from cur-
rent color stills. The model achieves a proper grayscale-to-color
mapping, demonstrated by its rather convincing colorization
outputs. Quantitative analysis of the results illustrated that high-
frequency colors are learned accurately, whereas difficulties
arose with lower frequency values. Model performance also
varied among the four studied land categories; this variability
may be related to the complexity of spatial structures and the
semantics that depend on the processed area. Our colorized
samples can then be fed into traditional remote sensing pipelines,
as demonstrated by our pixel-level image classification, con-
firming the utility of color for characterizing land cover. We
also report the lack of studies involving legacy spatial products
in both remote sensing and deep learning; this is particularly
evident for image restoration and quality assessment. Thus,
this preliminary article underscores the importance of research
aimed at maximizing the value of legacy photographs in modern
remote sensing applications.
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