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Virtual Dimensionality of Hyperspectral Data: Use of
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Abstract—Estimating the number of materials present in a scene
is the fundamental step in many hyperspectral remote sensing
applications. The virtual dimensionality (VD) estimates the num-
ber of spectrally distinct materials in the hyperspectral data. The
VD is generally considered as the number of signal sources un-
der binary hypothesis, based on the Neyman—Pearson detection
criteria. We observe that the hypothesis testing procedure used in
many approaches is prone to inflated Type-I (false positive) error.
This is due to carrying out the binary hypothesis test individually
on each band image, i.e., more than 200 images in hyperspectral
data. In this article, we propose multiple hypothesis testing to
control the expected proportion of falsely rejected null hypotheses,
i.e., false discovery rate (FDR), and in turn, improve the prob-
ability of better performance in estimating the VD. To this end,
we employ Benjamini and Hochberg procedure that controls the
FDR. We provide multiple hypothesis testing-based algorithms to
estimate VD wherein the hypothesis can be formulated according
to eigenanalysis, the target specified by statistical approach, and
by geometric analysis. The efficacies of the proposed algorithms
are evaluated by estimating the number of endmembers for the
spectral unmixing application. We conduct experiments on four
synthetic hyperspectral data sets at different noise levels as well as
on two well-known real hyperspectral datasets. Time complexity
and execution time are discussed to study the algorithmic aspects
while sensitivity analyses of parameters are carried out for better
performance analysis of the proposed approach. We found that the
use of multiple hypothesis testing improves estimation of number
of endmembers in hyperspectral data.

Index Terms—False discovery rate (FDR), hyperspectral
remote sensing, multiple hypothesis testing, Type-I error, virtual
dimensionality (VD).

I. INTRODUCTION

YPERSPECTRAL imaging is an unprecedented re-
mote sensing technology with an ambitious goal to de-
velop/update the spectral library of materials on the Earth [1].
Hyperspectral sensors can vary from the visible (400 nm) to near-
infrared (NIR) (780 nm) up to the shortwave-infrared bands
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(2500 nm) and provide a set of coregistered images (>200).
Each image captures the reflection from a narrow contiguous
(10 nm) wavelength range (spectral resolution). The set of
high spectral resolution images forms a three-dimensional (3-D)
hyperspectral data cube. Hence, all pixel vectors in the data cube
contain contiguous spectra and can be used to identify/quantify
materials in the scene with high precision. The materials present
in the scene have their unique signature values (across the bands)
called endmembers and corresponding fractional abundances
that indicate the proportion of each endmember at every loca-
tions in the scene [2], [3].

Virtual dimensionality (VD) is defined as the number of spec-
trally distinct signatures present in the hyperspectral imagery
[4]. The VD can be illustrated using the pigeon-hole principle,
i.e., signal source and a spectral band are represented by pigeon
and pigeon hole, respectively [5]. It is found that a far smaller
number of signal sources are (generally) present than the number
of spectral bands in a hyperspectral data cube. For instance, a
portion of 224-band Cuprite mining site (USA) data has esti-
mated to have upto 30 distinct materials [4], [6]-[9], and Urban
data (USA) has four to five materials [10]—-[12] spread over 210
bands. Further, many unknown materials may be uncovered with
the help of finer spectral resolution of the data. On the other
hand, it is often difficult to acquire the ground truth, especially
in many physically inaccessible sites. Hence, estimating the VD
from hyperspectral data is a challenging task.

We observe that majority of state-of-the-art methods for esti-
mating VD rely on binary hypothesis testing procedure on every
band images. However, the binary hypothesis testing procedure
inherently inflates overall Type-I error rate [13]. Recently, we
employed a multiple hypothesis (MH) testing procedure to re-
duce the expected proportion of falsely rejected null hypotheses,
i.e., false discovery rate (FDR), while estimating the VD in
hyperspectral data [14]. In this article, we extend our work [14]
and show its effectiveness over three broad categories of ap-
proaches, i.e., eigenanalysis-based, target specified hypothesis-
based testing approach, and geometry-based approaches. To
this end, we choose representative state-of-the-art approaches
in each of the category, and propose our MH testing algorithms
for the each case. In particular, HFC [15] and NWHFC [4]
from eigenanalysis based, ATGP-NPD [16] from target spec-
ified hypothesis testing approach based, and GENE-CH [6] and
GENE-AH [6] from geometry-based approaches are chosen.
We provide the motivation to use MH testing approach while
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estimating the VD as well as discuss how the proposed MH
testing algorithms reduce the overall Type-I error. Considering
spectral unmixing application, we have validated our algorithms
on four different synthetic hyperspectral datasets as well as on
the two well-known real hyperspectral datasets, i.e., Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite, and
HYperspectral Digital Imagery Collection Experiment (HY-
DICE) Urban.

The main contribution of this article is the needed statis-
tical correction in the state-of-the-art approaches in order to
control the FDR and in turn avoid false estimation of VD in
the hyperspectral data. To the best of our knowledge, this is
the first attempt in the remote sensing community for control-
ling the FDR while estimating VD. It is much needed since
many applications in hyperspectral data rely on correctness of
this dimensionality for further analysis as well as generating
various remote sensing data products, say generating material
(abundance) maps using the spectral unmixing. To this end,
we propose MH testing that effectively avoids Type-1 error
and restricts the expected proportion of falsely rejected null
hypotheses to a level of significance.

The rest of the article is organized as follows. In Section II,
we begin by providing a brief literature review on virtual di-
mensionality. The problem formulation, motivation, and the
three proposed algorithms are then discussed in Section III.
Section IV validates our approaches by conducting experiments
on synthetic and real hyperspectral datasets. We discuss time
complexity (Big-O), execution time, and parameter sensitivity
analysis to better assess the performance of the proposed ap-
proach. Finally, Section V concludes this article.

II. LITERATURE REVIEW

Earlier, Malinowski’s error theory was popular for estimating
the data dimensionality by means of a factor analysis [17].
Malinowski derived an empirical indicator function (EIF) that
determines the number of factors in a data matrix and finds a
threshold that can separate the first and secondary eigenvalues
of data. Recently, a similar idea to the Malinowski’s error theory
is explored in random matrix theory (RMT) [18] that also uses
eigenvalues decomposition to estimate data dimensionality for
hyperspectral images. The only difference between EIF and
RMT is how they interpret the two sets of eigenvalues, i.e., first
and secondary eigenvalue set for EIF [17] while signal and noise
eigenvalues for RMT [18]. However, such approaches require a
judicious selection of threshold to determine the dimensionality
of data.

Binary hypothesis tests have been traditionally used in sta-
tistical signal processing and communications to address the
problem of signal detection in the presence of noise. The null and
alternative hypotheses are typically formed representing signal
presence and absence, respectively. Inspired by this, researchers
in hyperspectral imaging have devised various algorithms to
estimate the VD using binary hypothesis formulation. The VD
is typically estimated as signal sources under binary hypotheses
characterized according to the following broad aspects, viz.,
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eigenanalysis with eigenvalues [4], [15], eigenvectors [7], the
target specified by statistical analysis [19], and by the geometric
analysis [6].

Several techniques have been developed to estimate VD based
on formulating the binary hypothesis. A very first detection
technique called Harsanyi-Farrand-Chang (HFC) [15] is de-
veloped by formulating binary hypothesis testing to separate
signal eigenvalues from noise eigenvalues as a detection prob-
lem, unlike [17], [18]. The HFC method casts the signal/noise
decomposition problem as a binary hypothesis testing problem.
Neyman—Pearson detector (NPD) is used to determine how
many signal sources are present in the data, subject to a false
alarm probability. In particular, the HFC method uses the NPD
for binary hypothesis testing, built on the differences in eigen-
values of the sample correlation and sample covariance matrices
over the bands. Note that the method runs binary hypothesis
test independently on each band image. The HFC method has
been improved by incorporating the noise prewhitening step and
named as noise-whitened HFC (NWHFC) [4]. This follows the
same process as in [15] and formulates the null and alternative
hypotheses representing the absence and presence of a signal
source, respectively, for a particular spectral band. Subsequently,
maximal orthogonal complement algorithm (MOCA) [20] made
use of eigenvectors/singular vectors, and followed the similar
idea, however, using Bayes detector in contrast to HFC and
NWHEC that use the NPD. The assumption made for the MOCA
is that both null and alternative hypotheses are equally likely, and
the costs for making correct and incorrect decisions are uniform.

The use of eigenanalysis for estimation of VD seems to be
underestimated since they do not completely reflect the sig-
nal sources, i.e., the eigenvalues and eigenvectors are derived
from correlation/covariance matrices [8]. Therefore, maximum
orthogonal subspace projection (MOSP) [7] has been introduced
that estimates the VD by interpreting spectrally distinct signa-
tures with two important differences when compared to MOCA
[20]. One is that MOSP considers the VD problem as an NPD
problem with binary hypothesis formulation, where estimated
VD varies with false alarm probability and not a single value
as in the MOCA. The other is that MOSP uses real targets,
i.e., signatures generated by automatic target generation process
(ATGP) [21], instead of eigenvectors as in MOCA. The idea
paves the way for the later development of higher order statistics
based VD (HOS-VD) [22]. This uses HOS generated targets by
the NPD, and the VD estimation is varied by using false alarm
probability.

The VD estimation techniques are integrated under interband
spectral information statistics called target specified VD (TSVD)
using spectral target statistics of the kth order developed in
[16], [19], and [23]. The TSVD [23] uses the HFC [15] and
the endmembers generated by suitable endmember extraction
algorithm (EEA) [24]. Extreme value theory has been used
for defining probability density functions for the hypothesis
formulation. The signal sources generated are tested via binary
hypothesis to find the number of endmembers.

Meanwhile, geometry-based approaches named estimation of
number of endmembers convex hull (GENE-CH) and geometry
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based estimation of number of endmembers affine hull (GENE-
AH) are developed in [6]. These algorithms are based on the
linear mixing model (LMM) with both nonnegativity and sum-
to-one constraints on the abundances. Therefore, they consider
that all the observed pixel vectors present in the convex hull
or affine hull of the endmember signatures. Note that the GENE
algorithms iteratively estimate the number of endmembers again
by using the NPD-based binary hypothesis testing over the
endmembers. In this case, their probability distributions under
both hypotheses are found by Chi-square distributions with the
degree of freedom as maximum number of endmembers.

There are a few LMM fitting error based techniques developed
for the VD estimation, and demonstrated for determining the
number of endmembers in the hyperspectral data. It includes
signal subspace estimate (SSE) [25], which later improved and
called hyperspectral signal identification by minimum error
(HySime) [26]. An attempt is made to recover a number of
endmembers, their signature values as well as abundances using
multitemporal hyperspectral data in an iterative optimization
framework [27]. The methods optimize the mean-squared error
(MSE) resulting from the LMM as the criterion. However, such
MSE-based approaches generally require a reliable estimation
of the noise covariance matrix.

III. METHODS

In this section, we first formulate the problem of MH testing
to estimate VD, then clarify the reasons behind Type-I error
in binary hypothesis testing procedure, discuss the motivation
to employ MH approach, and finally provide details of the
proposed three algorithms for estimating VD using the MH
testing algorithms.

A. Problem Formulation

The hyperspectral data are considered as a data cube, z X y X
L, where x and y represent spatial dimensions, and L represents
the spectral dimension of the remotely acquired scene. Given
N such hyperspectral data vectors, our objective is to estimate
VD in the scene by employing Benjamini and Hochberg MH
testing procedure; within the eigenanalysis based approaches,
the target specified hypothesis testing approach, and geometry-
based approaches.

B. Motivation

In binary hypothesis (null/ alternative) testing, Type-I error
(false positive) occurs when one rejects the null hypothesis when
itis true. If one conducts binary hypothesis test multiple times, as
done in [4], [6], [8], and [16] for estimation of VD, and follows
the same rejection rule independently for each test; then the
resulting probability of committing at least one Type-I error is
substantially higher than the nominal level. We substantiate more
on this below.

In case of hyperspectral data, suppose there are L (number of
bands) independent tests which we wish to test simultaneously.
Let ¢ is the nominal level for each p-value, where p-value is prob-
ability of observing the value of test statistic which is extreme
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Fig. 1. Illustration of Type-I error: ¢ = 0.05; L = 200.
TABLE I
NUMBER OF ERRORS COMMITTED WHEN TESTING
m NULL HYPOTHESES

Declared non-significant | Declared significant | Total

True null hypotheses U N m,
Non-true null hypotheses T S m-m,

m-B B m

or more extreme than observed. The first idea that might come
to mind is to test each hypothesis separately, using same level
of significance q. If each hypothesis is tested separately, at say ¢
level, then overall Type-I error is scaled to Lq, which is more than
q. Note that this may mislead the estimation of VD. Additionally,
we know that Probability (at least one Type-I error in L hypothe-
ses) = 1—Probability (no Type-I error for all L hypotheses)
[28]. Now the probability of making zero Type-I error becomes
(1 —q)t. Since 0 < g < 1, it follows that (1 — ¢)t < (1 —¢)
and so the probability of not making Type-I errors in L > 1 tests
is much smaller than in the case of a single test. As an example,
let us consider the probability of atleast one Type-I error when
we perform 200 binary hypothesis tests with ¢ = 0.05. See that
if the probability of making an error is g, then probability of
not making an error is (1 — ¢). Therefore, the probability of
not making an error in our example is (1 — 0.05)2%0. Therefore,
the probability of making at least one Type-I error in 200 tests
is 1 — (1 —0.05)2° = 0.99996 referring to Fig. 1. Since the
hypotheses are statistically independent with each other even if
all the hypotheses are insignificant (worst-case scenario) still the
probability of making at least one Type-I error is 0.9999. Since
the number of tests for hyperspectral data increases to more than
200, the probability of at least one false positive increases at a
rapid rate (as depicted in Fig. 1). In order to address this issue, we
propose to use Benjamini and Hochberg method of controlling
the false discovery rate (FDR) to estimate VD. The FDR works
by estimating some rejection region such that FDR < q.
Table I summarizes the number of errors committed when
testing m null hypotheses. The specific m hypotheses are as-
sumed to be known in advance. B is an observable random
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variable; U, V, S and T are unobservable random variables.
We use the equivalent lower case alphabets for their realized
values. Consider the problem of testing simultaneously m (null)
hypotheses, of which m,, are true. 7" is the number of rejected
hypotheses. The proportion of errors committed by falsely
rejecting null hypotheses can be viewed through the random
variable Q = V/(V +95), i.e., the proportion of the rejected
null hypotheses which are erroneously rejected. Naturally, we
define = Owhen V + S = 0, as no error of false rejection can
be committed. @ is an unobserved (unknown) random variable,
as we do not know v or s, and thus ¢ = v/(v + s), even after
experimentation and data analysis. We define the FDR to be the
expectation of )

E(Q) = E{(V/(V + )} = P(B > 0)E(V/B|B > 0) (1)

where E(-) is the expectation operator.

We now describe how the Type-I error is incurred in the three
broad category of approaches to estimate the VD. The HFC
[15] and NWHEFC [4] are state-of-the-art methods categorized
under the eigenvalues based approaches that estimate VD. The
methods assume that the hyperspectral signatures are unknown
but deterministic signal sources, and the noise in the data are
white with zero mean. Under the assumptions, the signatures
of interest (giving rise to VD) are those that contribute to the
first-order statistics, i.e., sample mean of data. The methods
formulate binary hypothesis test using eigenvalues of correlation
and covariance matrices of the data. Since the test applies on each
band image, it is sensitive to false positives (Type-I) as illustrated
in Fig. 1, and that may leads to false identification of VD.

The concept of using real target pixels to estimate the value
of VD is first explored in [23] and further investigated in [29] to
extend the HFC method to HOS-based HFC [22] methods. Such
an approach is useful to unify various VD estimation techniques
under the same problem setting and formulation. ATGP [21]
generated real targets or signal sources are used, in place of
eigenvalues used in HFC [15] and NWHEFC [4] or eigenvectors
used in MOSP [7], and the method is named as ATGP-HFC [16].
The details of ATGP are found in [21] that finds a set of targets
by performing successive orthogonal subspace projections. In
such approaches also, Type-I error increases (see Fig. 1) due
to independent run of binary hypothesis testing to check for
intended signal source in each band.

The GENE-CH [6] and GENE-AH [6] algorithms are devised
based on the data geometry that all the observed pixel vectors
should lie in the convex hull (CH) and affine hull (AH) of the
endmember signatures, respectively. The algorithms exploit the
successive estimation property of a pure-pixel-based endmem-
ber estimation algorithm until the estimate of the number of
endmembers is obtained. In the noisy scenario, the decision
of whether the current endmember estimate is in the CH/AH
of the previously found endmembers is formulated as a binary
hypothesis testing problem, which is solved using the NPD
theory. The number of binary hypothesis tests in the estimation
of VD for hyperspectral data is large, i.e., typically more than
200. Hence, as depicted in Fig. 1, these data geometry based
algorithms are also prone to inflated Type-I error.
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We have seen that the three broad state-of-the-art categories of
approaches involve larger binary hypothesis tests (> 200) and
use the NPD theory. The number of hypotheses tests is very large,
and prone to inflated Type-I error. Hence, in the proposed article,
our motivation is to control the FDR. The FDR is defined as an
expected proportion of Type-I errors. A Type-I error is where
we incorrectly reject the null hypothesis; in other words, we get
a false positive. We use the Benjamini and Hochberg approach,
which controls the FDR by sequentially comparing the observed
p-value for each of a family of multiple test statistics, in order
from largest to smallest, to a list of computed p-values. The
procedure controls the FDR at a certain level, say ¢, for any
configuration of false null hypotheses, assuming independent
test statistics.

C. Proposed Approaches

In this section, we propose three algorithms based on the MH
testing procedure to control the FDR and improve the estima-
tion of VD in the hyperspectral data. The proposed approach
improves the estimation of VD for eigenanalysis, for target spec-
ified hypothesis testing, and for geometry-based approaches.

1) MH Testing for Eigenanalysis Based Approaches: In this
category of approaches [4], [15], the VD is estimated as the
number of alternate hypotheses under the following binary hy-
pothesis formulation:

HOlZZl:)ul,—)LlZOVSHU:Zl:)nl/—)ul>0 2)

forl =1,2,..., L. z is considered as the observed value for
the Ith hypothesis, (A" > Ao’ >,...,> 1)) and (A > Ao >
,...,> AL), respectively, be the eigenvalues of interband sam-
ple correlation matrix R

N
R = Z I'iI‘iT (3)
i=1
and interband sample covariance matrix K

K= Z(ri —p)(ri— )T )

for given data vectors r with L bands, and p is the mean vector of
hyperspectral data cube. In (1), when H; is true, i.e., H fails, it
implies that there is signal energy contributing to the correlation
eigenvalue, in addition to the noise. In HFC [15] and NWHFC
[4], the number of times Neyman—Pearson test fails gives an
estimation of VD for various false alarm probabilities (Pg). The
binary hypothesis test as shown in (2) runs independently on
each band and, hence, sensitive to the Type-I error since the test
applies L times where L > 200 for estimating the VD in the
case of hyperspectral data. Recall that FDR is defined as the
expected proportion of false rejections. The false rejection in
this problem is identifying the number of signal sources, which
is not present in the hyperspectral data. Hence, it can lead to
false identification of the signal sources.

To address this issue, we propose MH testing approach within
the HFC [15] and the NWHFC [4] frameworks for estimating
VD. It controls the FDR and restricts the Type-I error at a given
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Pseudocode 1: Proposed Multiple Hypothesis Testing in
Eigenanalysis-based Approaches.

Input Hyperspectral data r,
Step 1 Calculate the eigen values of R and K as
M/ > ko' >, > M) and (o > Ao >, > Ap),
respectively, where R is an interband correlation matrix
and K is a sample covariance matrix of the given data.
Step 2 Consider the test statistic for the /th hypothesis as
21 = A/ — A, where z; denotes the observed value.
Step 3 Calculate p-value for the [th spectral band as,

1 Zl
=—|l—er ,forl=1,2,...,L, (5
b 2[ f<\@01)] ©)

where o, is the standard deviation in the /th spectral band
and er f(+) is an error function.

Step 4 Test L independent null hypotheses,

Hyi, Hyo, . .., Hyor, with corresponding p-values
P1,p2;---,PL.

Step 5 Order the p-values p; < ps <,...,<pp,ie.,
arrange the p-values starting from the most likely
hypothesis.

Step 6 To control FDR (Type-I error at level ¢ [28]), reject
all null hypothesis, i.e., reject Ho1, Hoo, . . . , Ho, where
k is calculated as

k=max(l:p; < (I/L)q), forl=1,2,...,L.  (6)

Output The retained, i.e., not rejected, number of
hypotheses is the proposed VD.

level of ¢, unlike Lq as in [4] and [15]. The pseudocode for
the proposed MH testing in eigenanalysis-based approaches is
listed in pseudocode 1.

In step 2 of pseudocode 1, under null hypothesis, the test
statistic z; is assumed to be normally distributed with zero mean
and /20, standard deviation for respective band. L p-values are
calculated by integrating the respective the [th distribution from
the calculated threshold to infinity in step 3 of pseudocode 1.
Note that we assume normal distribution of the test statistic under
null hypotheses while calculating p-values. For L hypotheses,
we sort and then arrange the p-values starting from the most
likely hypothesis in step 5. For a specified level ¢, suppose i is
the largest number for whichp; < (i/L)q, fori =1,2,..., Las
in step 6. Then, we reject ¢ null hypotheses whose correspond-
ing p-values are given by p1,po, ..., p;. Hence, the statistical
procedure employed restricts the expected proportion of falsely
rejected null hypotheses to chosen level of significance (q). For
more details one may refer to [13], [28].

2) MH Testing for Target Specified Hypothesis Testing Ap-
proaches: Binary hypothesis test in target specified hypothesis
testing approaches, such as in [16], is formulated as

Hoy = ~ p(m|Ho) vs Hoy =y ~ p(mu|Hy) @)

forl =1,2,..., L. The null hypothesis H represents the maxi-
mum residual from the background signal sources, and the alter-
native hypothesis [{; represents the maximum residual from the
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target signal sources. Here, 7; is the maximum of complement
subspace projections belonging to the two classes, one for target
signal class I (1), and the other is background class I (1)

2
max ||P§rl||2} (3)

2
= Pty
m max{ max || r1||2,iEIB(l) X

ielr(l) | St
where Psll r; = (S§S1) 1S r;. More specifically for each [,
define

tLSVD = arg max ||Pslln||g ©)]

where t;5VP is the eigenvector after singular value decompo-
sition (SVD) on data and Pé; maps the observed pixel vector
r into the orthogonal complement of S; denoted by Sll. Sy is
the space linearly spanned by signal vectors found by the SVD.
The orthogonal complement subspace projections of data sample
vectors P§-L r; under H are the noise sample vectors. Hence, it
is reasonable for MOCA [20] to assume that the vector Pé} T
under H, behaves as independent and identically distributed
(IID) Gaussian random variables. Moreover, 7; is the maximum
residuals from orthogonal projection obtained in S lJ- under H.
Using extreme value theory [30], 7; under Hy is modeled as a
Gumbel distribution, i.e., F}, (1) is the cumulative distribution
function (cdf) of v; as in [7]. Now, if 5V in (9) is replaced
with ;TGP for each band, where #;*TCF is a spectral signature
generated by ATGP, then problem turns to be target specified
approach and a new hypothesis testing problem is formulated as
follows :

Ho; : my ~ po(mi) versus Hyy : my ~ p1(m) (10)

where 7, = ||tlATGP||§ for ! =1,2,..., L. The signal sources
under the hypotheses are now real target signal sources rather
than eigenvectors in (9) or eigenvalues in (2). Hence, ATGP-
specified VD is now defined as

arg min £, (m) <1— Pp =VDATCP(Pp). an
The signal source 1, = ||, ATEP ||§ is a random variable repre-
senting the signal energy of real target signal source t;*T P Fur-
ther if one chooses signal strength rather than signal energy then
the problem can be reformulated as the signal-strength-based
hypothesis testing problem with 1, = ||¢;ATGF ||§ replaced by

v = [[tATEF | given by

Ho 2 /M ~ po(v/mi) versus Hyy : /i ~ pi(vm)  (12)
forl =1,2,..., L. ATGP-specified VD is now defined as
arg min F, (vm) <1 Pp = VDVATSP(Pry.  (13)

In both the cases of ATGP-specified VD, i.e., (10) and (12),
Type-I error is inflated due to independent run of binary hypoth-
esis testing on each [ and give rise to total of Lg Type-I error.
We propose to estimate the VD using MH testing to control the
FDR and bring it down to q. The pseudocode for the proposed
MH testing in such target specified approaches is listed in
pseudocode 2.

For L hypotheses, we sort the p-values calculated in step 4
from each of the hypotheses as p; < py <,...,<pr. For a
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Pseudocode 2: Proposed MH Testing Algorithm in Target
Specified Approaches.

Input Hyperspectral data r.

Step 2 Compute ATGP generated signal sources ¢;
forl=1,2,..., L.

Step 3 Consider the test statistic for the /th hypothesis as
m = ||, ATEP ||2, where 7, is the observed value.

Step 4 p-value for the /th observed value is calculated from
the cumulative distribution function (cdf) of Gumbel
distribution [7] as follows,

Plzlme(nl)» fOfl:1,2,...,L.

ATGP

(14)

Step 5 Test L independent null hypothesis,

Hoyi1, Hoo, . .., Hyr, with corresponding p-values
P1,P2;---5PL.

Step 6 Order the p-values p; < ps <,...,<pp,lie,
arrange the p-values starting from the most likely
hypothesis.

Step 7 To control FDR at level g, reject all null hypothesis,
i.e., reject Hoq, Hos, - . ., Hok, where k is calculated as

k=max(l:p;, < (I/L)q), forl =1,2,..., L. (15)

Output The retained i.e., not rejected number of
hypotheses is the proposed VD.

specified level g, 7 is the largest number for which p; < (i/L)q.
Then, we reject ¢ null hypotheses whose corresponding p-values
are given by pi,ps,...,p; as in step 7. For independent test
statistics and for configuration of false null hypothesis, pseu-
docode 2 controls the FDR at chosen level of significance q.
Thus, Type-I error is effectively avoided and in turn the accuracy
of VD estimation is improved.

3) MH Testing for Geometry-Based Approaches: Under
LMM, the geometry-based approaches such as [6] assume that
the data are corrupted with IID zero-mean Gaussian noise.
Estimation of the number of endmembers (e) is carried out from
the given IV hyperspectral data vectors. The binary decision rule
for geometric approaches is to decide Hy, if ¢ > Pp and decide
H, if ¢ < Pg, where

H()j(f[lj} S COIIV(F[ll], A ,’F[ljfl]) 105~ sz (7", €max — ].)
(16)
versus

Hlj (’F[ZJ] ¢ COIlV(’F[ll}, . ,F[ljfl])

: Oj ~ fNXQ(T7 €max — 15“]) (17)

where 7 is the dimensionally reduced vector of data vector 7,
f2(+) is the probability density function of central Chi-square
distribution, fx,2(:) is the noncentral Chi-square probability
density function, v/ is the cumulative distribution function of cen-
tral Chi-square distribution with mean vector g, and conv(-) is
the convex hull of a set of vectors. Given the hyperspectral datar,
maximum number o/f endmembers (e, ) and estimate of noise
covariance matrix D, it obtains an affine set fitting parameter
(C,d) € RE¥(emax=1) x R a5 in [6]. Here e — 1 is the affine

2979

dimension of aff(my, . .., m.), where aff(-) is affine hull of a
set of endmembers (mq, ..., m.). The first pixel index I; is
computed by the successive EEA and obtain the jth pixel index
l; using the successive EEA and compute dimensionally reduced
vector for it. Keep accumulating dimensionally reduced vectors
for pixel indices from 1 to (j — 1) and form matrix A;_;. The
constrained least squares 6* is then solved for GENE-CH and
GENE-AH as in [6] and calculate €; = T[l;] — A;_16*. Now,
we can compute 0; = €] (£*)0) ", where &* =1 + 6*" 6* and

= CTDC. Calculate cdf 1) using the probability density
function of the central Chi-square distribution fy2 (7, emax—1)-
Then by Neyman—Pearson lemma, the optimal threshold « for
the hypothesis testing problem satisfies

(18)

where Pr is the preassigned acceptable false alarm rate. The
binary testing procedure for the total number of endmembers
with varying Pr is sensitive to the Type-I error since the test
applies k times for estimating the VD. We propose MH testing
approach to control FDR as available in pseudocode 3.

As shown in pseudocode 3, step 7, p-values are calculated
using the probability density function of central Chi-square
distribution. Then we reject K null hypotheses whose corre-
sponding p-values are given by p1, ps, ..., px as shown in step
10 of the pseudocode 3.

It is clear that use of proposed three algorithms effectively
avoids Type-I error. Referring to Table I, the expectation of
falsely rejected null hypotheses is controlled to g with the
hypothesis correction procedure used. It is more realistic to see
the data at hand as part of the evidence that was and will be
accumulated about these hypotheses. This is a major reason why
presenting the result of the test as a p-value is more helpful to
research than presenting only the “significant-nonsignificant”
dichotomy.

IV. RESULTS

In this section, we discuss the results obtained for the esti-
mation of number of endmembers using proposed algorithms
on different hyperspectral datasets. The signatures of interest
in hyperspectral image analysis are materials substances, which
generally cannot be identified a a priori or by visual inspection
such as endmembers, anomalies, or man-made objects. In this
article, we demonstrate efficacies of our algorithms to estimate
VD for identifying the number of endmembers in hyperspectral
unmixing application. Note that since our problem in this article
is to improve VD, we show detail results and analysis for
estimating number of endmembers in the synthetic as well as
real hyperspectral datasets. We refrain performing endmember
extraction and abundance estimation similar to many state-of-
the-art approaches for VD estimation [6], [8], [25], [26], [31].

We first conduct experiments on four synthesized hyperspec-
tral data cubes using two sets of five spectral signatures of the
United States Geological Survey (USGS) digital spectral library
[32]. To assess the noise sensitivity of the proposed algorithms,
we have added different levels of white Gaussian noises in
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Pseudocode 3: Proposed Multiple Hypothesis Testing
Algorithm in Geometry-Based Approaches.

Input Hyperspectral data 7.

Step 1 Initialize with maximum number of endmembers
€ < emax < L, and estimate of noise co-variance matrix
D.

Step 2 Consider the test statistic for the jth hypothesis as
1), where 1) is the cdf of central Chi-square distribution
defined by fy2(7, €maz—1)-

Step 3 Obtain an affine set fitting parameter (C, d) €
REx(emax—1) x RE as in [6], where (e — 1) is the affine
dimension of af f(m1, ..., m.).

Step 4 Obtain the first pixel index /; by the successive EEA
and compute 'F[ll}:éT(r[ll] — d) € Rémax—1 and set
k = 2. Obtain the kth pixel index I using the successive
EEA and compute F[lk]:éT(r[lk] —d) € Rem»~1 and
form A;_y = [F[ly],...,7[l; 1] € Rlemax—1xG=1) for
i=1,2,... k.

Step 5 The constrained least squares for geometrical
approaches is solved as in [6] and named as 6.

Step 6 Calculate €; = 7[l;] — A;_10*. Compute
0j = ef( *S7)71, where £ =1 + 0*" 6* and
S =CTDC.

Step 7 p-value for j*" index is calculated as,

pj=1—qy, forj=1,2,...k, (19)

where 1), is calculated as in [6].

Step 8 Test & independent null hypothesis,
Ho1,Hos, . .., Hyp, with corresponding p-values
P1,P2,---5 Pk

Step 9 Starting from the most likely hypothesis, arrange
the p-values in order as p1 < po <,..., < pg.

Step 10 To control FDR at level ¢ [28], reject all null
hypothesis, i.e., reject Ho1, Hoz, - .., Hox, where K is

calculated as
K =max(j : p; < (j/k)q), forj=1,2,...,k. (20)

Output The retained, i.e., not rejected, number of
hypotheses is the proposed VD.

the datasets and compare the results with state-of-the-art ap-
proaches. Moreover, we conduct parameters sensitivity analy-
ses, compute time complexities, and compare average execution
times of the algorithms. Next, we show the experiments on
two well-known real hyperspectral data. First is collected by
AVIRIS over the cuprite mining site area, USA [33]-[35]. The
second data are captured by the HYDICE sensor at the location
of Copperas Cove, near Fort Hood, Texas, USA, in October 1995
[33]-[35].

A. Experiments on Four Synthetic Hyperspectral Datasets

The LMM is used to construct the hyperspectral data. A L-
dimensional hyperspectral data vector 7 is considered as linear
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combination of the endmembers, i.e., matrix M, as follows:

r=Moa+n 21
where for e number of endmembers, size of M is L X e, av is
abundance vector of size e x 1, and n represents IID Gaussian
noise vector of size L x 1.

1) Data Generation: We first conduct experiments on four
sets of synthesized hyperspectral data cubes using two different
sets of five spectral signatures from the USGS. Therefore, the
actual number of endmembers for all four synthetic datasets is
five (5) in each. The selected endmembers for constructing first
data are Asphalt (gds317), Brick (gds350), Fiberglass (gds374),
Sheetmetal (gds352), and Vinylplastic (gds372). They form the
M of size 431 x 5. The Gaussian fields with different param-
eters have been considered for generating different abundance
maps. In particular, nonnegative and sum-to-one abundance vec-
torsof size 5 x 1 are randomly generated for every location using
the Gaussian field. The abundance maps are generated using
different Gaussian fields, and hence they contain both smooth
regions and edges with significantly high heterogenous regions
making estimation challenging. Finally, LMM (21) is used to
generate datasets. Using an abundance vector « of size 5 x 1
and endmember matrix M of size 431 x 5, a pixel vector 7 is
constructed as » = M «, generating a 431 x 1 reflectance data
vector. Considering five different abundance maps each of size
128 x 128, a 431-band ground truth data cube is generated, i.e.,
128 x 128 x 431, and we call it synthetic data 1. Now, synthetic
data 2 is constructed (LMM) using another five reflectance
spectra Ammonium Chloride, Cyanide Potassium, Green Slime,
Brucite, and Kerogen Bic while using another random Gaussian
field for abundance patterns. Similarly using the same LMM
process, another two data cubes of size 128 x 128 x 431 are
constructed and we call them synthetic data 3 and synthetic
data 4. The mean images of all synthetic data sets along with
marked endmembers are shown in Fig. 2(a)—(d).

2) Parameters and Sensitivity Analysis: All the algorithms
are implemented in MATLAB (R2019a) platform and run on
a laptop computer with Intel(R) Core(TM) i3-7100 CPU at
2.40 GHz with 4 GB of RAM. IID Gaussian noises have been
added to all the synthetic datasets at different proportions of
signal to noise ratio (SNR). The detailed sensitivity analysis
of parameter Pr for all the state-of-the-art algorithms and
significance level ¢ for the proposed methods are carried out.
Fig. 3 shows the sample sensitivity analysis of parameter P for
all the four synthetic datasets at 60 dB SNR using state-of-the-
algorithms. Fig. 4 shows the sensitivity analysis of parameter ¢
for all the proposed algorithms at 60 dB SNR for every synthetic
dataset. The reliable P values are obtained for all state-of-the-
art methods, e« 18 set to 50, and the true noise covariance
matrix is supplied for each simulated dataset. Note that for the
proposed approaches, ¢ is set to 0.05 in all the experiments.
In all our experiments, we have used optimum values of the
various parameters while implementing different algorithms as
mentioned in the respective papers.

3) Results Discussion: Table II provides the values of esti-
mated number of endmembers by proposed MH testing based
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(2)

Fig. 2.
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Mean images of synthetic datasets: (a) mean image of synthetic data 1. Endmembers and their respective locations are marked: A-Asphalt, B-Brick,

F-Fiberglass, S-Sheetmetal, V-Vinylplastic, and (b) mean image of synthetic data 2. Endmembers marked are A-Ammonium Chloride, C-Cyanide Potassium,
G-Green Slime, B-Brucite, P-Kerogin Bic. (c) mean image of synthetic data 3, and (d) mean image of synthetic data 4. Endmembers and their respective locations

for synthetic data 3-4 are marked: A-Asphalt, B-Brick, F-Fiberglass, S-Sheetmetal, V-Vinylplastic.
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Fig. 3. Parameter sensitivity analysis for false alarm probability (Pr) for the four synthetic datasets 1—4 (top to bottom) at SNR of 60 dB.
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Fig. 4. Parameter sensitivity analysis for significance level (g) for the four synthetic datasets 1-4 (top to bottom) at SNR of 60 dB.

approaches and compares the results with state-of-the-art meth-

ods. HFC method estimates six endmembers for Pr = 0.001.
HEC overestimates number of endmembers as noise increases in
all the synthetic datasets. Proposed MH-HFC is giving consistent
results for all the synthetic datasets for all the noise levels
except at SNR of 20 dB. NWHFC [4] remove the second-
order statistical correlation such that the noise variance in the

corresponding correlation eigenvalue and covariance eigenvalue
will be the same. On the other hand, the number of endmembers
is more accurately estimated using proposed MH-NWHEC (see
Table II) since the noise variances have now been decorrelated
and this do not affect the subsequent eigenvalue comparison.
It can be observed from Table II that for different SNRs, the
estimation accuracy of the GENE algorithms is considerably
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TABLE II
ESTIMATED NUMBER OF ENDMEMBERS BY VARIOUS ALGORITHMS FOR FOUR SYNTHETIC
HYPERSPECTRAL DATA AT DIFFERENT NOISE LEVELS

Aleorithms Estimated # endmembers
& i SNR in synthetic Data 1 SNR in synthetic Data 2 SNR in synthetic Data 3 SNR in synthetic Data 4
Pr g | 80dB [ 60dB [ 40dB [ 20dB | 80dB | 60dB | 40dB | 20dB | 80dB | 60 dB [ 40dB | 20dB | 80 dB | 60 dB | 40dB | 20 dB
HEC [4] 0.001 | N/A 8 7 8 6 6 10 2 4 6 7 8 6 6 7 9
NWHEC [4] 0.001 | N/A 5 5 5 5 5 6 7 8 5 5 6 7 5 5 5 6
GENE-CH [6] 0.0001 | N/A 6 6 7 9 6 7 8 9 6 6 7 8 6 6 8 9
GENE-AH [6] 0.0001 | N/A 6 7 9 9 6 9 10 il 8 9 10 i}l 7 8 9 10
ATGP-NPD (Energy) [16] 0.0001 | N/A 5 6 7 8 6 7 8 9 6 6 7 8 6 7 8 9
ATGP-NPD (strength) [8] 0.00001 | N/A 5 5 6 7 5 6 7 8 6 7 7 8 6 7 8 9
MH-HFC [14] N/A_[ 005 5 5 5 5 5 5 5 5 5 5 6 6 5 5 5 6
MH-NWHFC [14] N/A_| 0.05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Proposed MH-GENE-CH N/A | 0.05 5 6 6 7 5 6 6 7 5 5 6 7 5 5 5 6
Proposed MH-GENE-AH N/A__| 0.05 5 5 5 5 5 5 5 5 5 6 6 7 6 6 7 3
Proposed MH-ATGP-NPD (Energy) | NA | 0.05 5 5 5 5 5 5 5 5 5 6 6 5 6 6 7 7
Proposed MH-ATGP-NPD (strength) | N/A | 0.05 5 5 5 5 5 5 5 5 5 6 6 7 5 5 5 6
TABLE III
TIME COMPLEXITY AND EXECUTION TIMES OF VARIOUS ALGORITHMS
[ Algorithms [ Time complexity | Average execution time (seconds) |
HFC [4] O(n?) 0.5395
MH-HFC [14] O(n?) 0.4379
NWHEC [4] O(n?) 0.6412
MH-NWHEFC [14] O(n?) 0.5931
GENE-CH [6] O(n%) 30.1407
Proposed MH-GENE-CH O(n?) 23.0464
GENE-AH (6] O(nh) 11.9095
Proposed MH-GENE-AH O(n?T) 8.2432
ATGP-NPD (Energy) [16] O(n?) 2182109
Proposed MH-ATGP-NPD (Energy) O(n°) 218.1049
ATGP-NPD (strength) [8] O(n?) 217.6153
Proposed MH-ATGP-NPD (strength) O(n°) 217.4120
Algorithms are implemented in MATLAB (R2019a) and run on a laptop with Intel(R)
Core(TM) i3-7100 CPU at 2.40 GHz with 4 GB RAM.
robust to the e,,,x values, and the closer the e, value is to the
true e, the better will be the estimation accuracy. ATGP-NPD
(Energy) gives an overestimation because of real targets gen- ) ‘ _
Fig. 5. Mean image of portion of AVIRIS Cuprite data.

erated by ATGP. Table II shows that the proposed approaches
consistently yield five (5) endmembers at all the noise levels
except for MH-GENE-CH. It is evident since the MH-GENE-
CH algorithm is suitable for data with pure pixels. It usually
occurs only for the hyperspectral images taken with a reason-
ably high spatial resolution. Further, MH-GENE-CH gives an
overestimation of endmembers due to the fact that in noise-free
case, any dimensionally reduced pixel vectors lie in the convex
hull of the dimensionally reduced endmember signatures. The
proposed MH-GENE-AH is a better choice when the pure pixel
assumption is violated.

4) Time Complexity and Average Execution Times: The time
complexity and execution time (seconds) over all the scenar-
ios under consideration of each algorithm are now discussed
in Table III. Time complexities of all the algorithms are first
calculated and listed in Table III. It can be observed that the
time complexities of the proposed algorithms are remaining the
same as that of state-of-the art algorithms since we do not require
newer computing resources in our proposed algorithms. We then
compute execution times by all algorithms and shown in the
same Table III. One can see from the table that ATGP-based
target specified VD approaches require much more time than rest
of algorithms. Execution times of the proposed algorithms found
lesser when compared to existing algorithms (see Table III).
Note that the proposed MH testing procedure only requires
calculation of p-values for null hypotheses when compared to

binary hypothesis testing (other approaches) on total number of
bands based on Neyman—Pearson detection criterion.

B. Experiment on Real AVIRIS Cuprite Data

In this section, we evaluate the proposed approach on the
well-known hyperspectral data collected by AVIRIS at the
Cuprite mining site, USA [35]. The data are collected in 224
contiguous wavelength bands ranging from 370 to 2480 nm with
a spectral resolution of 10 nm. After the removal of noisy and
water absorption bands, 188 bands are retained, and a region of
250 x 191 is considered [35]. The mean image of the portion of
AVIRIS Cuprite data are shown in Fig. 5. The estimated number
of endmembers by different algorithms are listed in Table IV.
Though the ground truth is not acquired for the Cuprite data,
nevertheless, researchers and practitioners have considered upto
30 endmembers in the scene. It can be seen from Table I'V that the
proposed approaches are showing the improvement in estimation
of number of endmembers. The proposed approaches MH-HFC,
MH-NWHFC, and MH-GENE-AH have shown better perfor-
mance. As with the synthetic datasets, the proposed MH-GENE-
CH gives an overestimation of endmembers in real dataset too.
One may note that the estimate of number of endmembers is
better for NWHFC [4] and the proposed MH-NWHFC with
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TABLE IV
ESTIMATED NUMBER OF ENDMEMBERS BY VARIOUS
ALGORITHMS FOR AVIRIS CUPRITE DATA

Algorithms [ Pr ]| q [ Estimated # endmembers |
HFC [4] 0.01 N/A 23
NWHEC [4] 0.01 N/A 18
GENE-CH [6] 0.00001 | N/A 34
GENE-AH [6] 0.00001 | N/A 31
ATGP-NPD (Energy) [16] 0.0001 N/A 37
ATGP-NPD (strength) [8] 0.0001 N/A 36
MH-HFC [14] N/A | 0.05 21
MH-NWHEC [14] N/A 0.05 18
Proposed MH-GENE-CH N/A 0.05 34
Proposed MH-GENE-AH N/A 0.05 24
Proposed MH-ATGP-NPD (Energy) N/A 0.05 25
Proposed MH-ATGP-NPD (strength) N/A 0.05 25

Fig. 6. Mean image of HYDICE Urban data.

TABLE V
ESTIMATED NUMBER OF ENDMEMBERS BY VARIOUS ALGORITHMS FOR
HYDICE URBAN DATA

Proposed MH-ATGP-NPD (Energy) N/A~ | 0.05
Proposed MH-ATGP-NPD (strength) N/A 0.05

‘ Algorithms [ Pr [ g [ Estimated # endmembers |
HFC [4] 0.0001 | N/A 4
NWHEC [4] 0.0001 N/A 4
GENE-CH [6] 0.0001 | N/A 5
GENE-AH [6] 0.0001 | N/A 4
ATGP-NPD (Energy) [16] 0.0001 | N/A 7
ATGP-NPD (strength) [8] 0.0001 | N/A 6
MH-HEC [14] N/A 0.05 4
MH-NWHEC [14] N/A 0.05 4
Proposed MH-GENE-CH N/A 0.05 5
Proposed MH-GENE-AH N/A 0.05 4
)
)

the fact that the noise variances have been decorrelated and not
affected the eigenvalue comparison.

C. Experiment on Real HYDICE Urban Data

In this section, the proposed approaches are evaluated on
another real data collected by HYDICE. Referring to mean
image of HYDICE Urban data in Fig. 6, there are 307 x 307
pixels, each of which corresponds to a2 x 2 m? area. These data
have 210 bands ranging from 400 to 2500 nm with a spectral
resolution of 10 nm. Some bands are removed due to dense water
vapor and atmospheric effects resulting in 162 band dataset.
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Four land cover types are generally estimated in this dataset viz.
Asphalt, Grass, Tree, and Roof. The estimated number of end-
members obtained by different algorithms are shown in Table V.
As shown in table, the proposed approaches are showing better
and comparable results with respect to state-of-the-art methods.

V. CONCLUSION

In this article, we proposed a novel statistical approach to
control the inflated Type-I error rate and provided statistical cor-
rection to the state-of-the-art approaches while estimating virtual
dimensionality of the hyperspectral data. We have employed
Benjamini and Hochberg MH testing procedure within the HFC,
NWHFC, GENE-CH, GENE-AH, as well as in ATGP-NPD
methods. Note that the proposed approach controls the false
discovery rate at the specified level by incorporating consistency
in the hypothesis testing. We found that the proposed strategy
improves the performance of the state-of-the-art methods under
the three broad approaches, i.e., eigenanalysis, target specified,
and geometry-based approaches, for estimating VD. The ex-
periments validate the efficacies of the proposed algorithms
on estimating the number of endmembers while performing
spectral unmixing of hyperspectral data. Further, the proposed
algorithms have lower execution time while having the same
time complexities as those of state-of-the-art approaches. Hence,
our algorithms are statistically more robust and provide better
estimate of VD.

The hyperspectral data are considered as a data cube of size
x X y x L, where x and y represent spatial dimensions, and L
represents the spectral dimension of the remotely acquired scene.
Now, in most cases L is finite and large (say > 200) whereas
x or y or both may be large. Hence, the number of hypotheses
L is always finite but not extremely very large (say maximum
500). For a hyperspectral data with large « and y (which may be
classified in the bigdata), the discussed inference procedure may
involve new set of challenges including computational power
and time. Similar challenges would be faced while analyzing
multitemporal hyperspectral datasets as well, i.e., another case
of bigdata where z, y, and L would be very large. However,
this would more affect to the binary hypothesis testing (other
approaches) when compared to proposed MH testing algorithms
(see Table III). Nevertheless, one way to deal with the issue is to
apply the usual inference procedure on a representative sample
of the full dataset drawn using coreset sampling which is a type
of importance sampling procedure. For more details on coreset,
interested researchers and practitioners may refer to [36]-[39].

In this article, we control FDR for estimating VD of the hy-
perspectral data, where FDR is defined as in (1). However, [40],
[41] and others gave arguments against including P(B > 0),
where B is the number of hypotheses declared significant while
defining FDR. In such a scenario, one may alternatively use
positive false discovery rate instead of FDR as in [41] to carry
out the inference procedure.

We understand that the current work is a first step toward
addressing the important issue of MH correction in the state-
of-the-art methods for estimating VD. We believe this article
will lead to future research on estimating VD while retaining
statistical correctness.
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