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Abstract—Applications based on synergistic integration of opti-
cal imagery and LiDAR data are receiving a growing interest from
the remote sensing community. However, a misaligned integration
of these datasets fails to fully profit from the potential of both
sensors. An optimum fusion of optical imagery and LiDAR data
requires an accurate registration. This is a complex problem since
a versatile solution is still missing, especially when data are collected
at different times, from different platforms, under different acqui-
sition configurations. This article presents a coarse-to-fine registra-
tion method of optical imagery with airborne LiDAR data acquired
in such context. First, a coarse registration involves processes of ex-
traction and matching of building candidates from the two datasets.
Then, a mutual-information-based fine registration is carried out.
It involves a superresolution approach applied to LiDAR data to
generate images with the same resolution as the optical image,
and a local approach of transformation model estimation. The
proposed method succeeds at overcoming the challenges associated
with this difficult context. For instance, considering the experi-
mented airborne LiDAR (2011) and orthorectified aerial imagery
(2016) datasets, their spatial shift is reduced by 48.15% after the
proposed coarse registration. Moreover, the incompatibility of size
and spatial resolution is well addressed by the superresolution.
Finally, a high accuracy of dataset alignment is also achieved,
highlighted by a 40-cm error based on a check-point assessment
and a 64-cm error based on a check-pair-line assessment. These
promising results enable further researches for a complete fusion
methodology between these datasets in this challenging context.

Index Terms—Aerial imagery, airborne LiDAR, building
extraction, coarse-to-fine, heterogeneous sensors, mutual
information (MI), optical imagery, registration, satellite imagery,
superresolution (SR), urban scenes.

I. INTRODUCTION

THE PERCEPTION of an environment on the Earth’s sur-
face and follow-up exploitations require using multiple
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sensors to capture specific and complementary characteristics
of this environment [1]. In many areas of remote sensing, ob-
servations from heterogeneous sources are coupled and jointly
analyzed to achieve a richer description of a scene. This ap-
proach allows to mutually benefit from their strengths, as well
as reducing the data uncertainty and incompleteness relating to
each sensor [2]–[4]. As a matter of fact, the fusion of multisource
data has become one of the mainstream research topics in the
remote sensing community nowadays [1], [5].

Light detection and ranging (LiDAR) and photogrammetry
systems are major sources for fast and reliable spatial data acqui-
sition. They provide data that are complementary to each other
while the two systems differ fundamentally in their operation and
data collection principles. The first one is an active sensor while
the second is passive. On the one hand, airborne LiDAR systems
are widely used for providing accurate three-dimensional (3-D)
surface information and 3-D geometry of objects and ground
elements, in the modality of scattered point clouds (recorded
according to range detection principle). On the other hand, aerial
and satellite photogrammetry supplies rich semantic and texture
information, in the form of multispectral images. By integrating
the two technologies, many applications have been enabled such
as building extraction [3], [6], city digital twin construction [7],
land use and land cover classification [8], and so on [9], [10].

A. Motivation

Over the years, existing works in the domain of data fusion
between optical imagery and airborne LiDAR data have ad-
dressed dedicated acquisition contexts, in which the respective
image and the LiDAR point cloud are already registered and/or
they are acquired from the same platform at identical or very
close dates. For instance, solutions submitted to the 2013 Data
Fusion Contest of the IEEE Geoscience and Remote Sensing
Society [11] focused on the fusion between LiDAR data and
hyperspectral imagery with the same spatial resolution, acquired
on two consecutive days. The same contest in 2015 [12], [13]
involved extremely high resolution LiDAR data and RGB im-
agery collected from the same aircraft with the sensors being
rigidly fixed to the same platform. In other words, the solutions
submitted to these contests, as well as many others [14]–[16],
have not intended to cope with the inherent obstacles of the
context where datasets are collected from different platforms
with different acquisition configuration (i.e., different flying
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TABLE I
SENSOR AND PLATFORM SPECIFICATIONS

The boldface rows highlight the differences between datasets notably concentrated in this article.
1Classification of LiDAR point cloud: unclassified (U), ground (G), low vegetation (LV), medium vegetation (MV), high vegetation (HV), and building (B).

track, height, orientation, and so on) at different moments and
even in different seasons, with different spatial resolutions and
levels of detail.

This article aims to propose a relevant registration method in
this unresolved context. Table I summarizes the specifications
of the sensors and their platforms considered in this work.
The need for a relevant registration in such a crucial context
is exemplified in the work undertaken by Cura et al. [17].
It also relates to the rise of the availability of data captured
by different heterogeneous sensors that requires an efficient
integration [5]. However, a solution that is versatile enough to
overcome this difficult context still remains an unsolved research
problem [18].

B. Challenges

The development of a relevant registration approach in this
unresolved context faces many challenges.

1) Spatial Shift Between Datasets: The first challenge relates
to the differences between the dataset point of view and field of
view, which lead to a significant spatial shift between them.
For instance, a spatial shift exists approximately 1-2 m between
the orthorectified airborne image (2016) and the LiDAR data
(2011), or up to 40 m between the Pléiades image and the
LiDAR data (2011). According to our literature review, a coarse
registration, which is necessary to reposition the two datasets,

has not been rigorously studied by existing works. This step
is often inadvertently bypassed using the dataset geospatial
coordinates provided by a GPS/IMU system [7], [16], [19].

2) Uncertainty, Imprecision, and Incompleteness: Distor-
tions in the information extracted from optical images can be
caused by radiometric errors like sensor sensibility, illumination
changes, atmospheric effects, and geometric errors such as relief
displacement, occlusions, or shadows [20]. On the other hand,
points may be missing in the LiDAR data due to occlusion or
presence of water [21]. These errors, distortions and missing
data from each of the two datasets induce incompleteness,
imprecisions, and uncertainties within the registration and fusion
processes of these data [22].

3) Spatial Resolution and Level of Detail: There are signifi-
cant differences in spatial resolution and level of detail between
the airborne or satellite imagery and LiDAR data. For example,
as highlighted in Table I, the considered LiDAR datasets in 2011
and 2017, respectively, have a point spacing 70 cm and 35.4 cm.
On the other hand, the aerial image (2016) has a ground sampling
distance of 15 cm, whereas that of the Pléiades panchromatic
(PAN) and multispectral (MS) images are 50 cm and 2 m,
respectively. Such differences affect the appearance of the same
scene elements to be different on the two datasets, making it
difficult to determine and extract the corresponding features
between them [23]. This issue has not always been addressed by
existing multisource registration works. For instance, Li et al.
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[24] and [25] proposed a registration framework between LiDAR
image and optical image in a context where the datasets always
have the same spatial resolution. Among the proposed solutions
to overcome the spatial resolution and level of detail differences
between the datasets, some involve a multiresolution approach
[9], [26] or a resampling step [20], [27].

4) Relevance of Registration Features: The nature of a scene,
either in urban or natural environment, conditions strongly the
entities within the datasets that would be relevant to perform the
registration [28].

5) Accuracy of Dataset Registration: When performing the
fusion of airborne LiDAR data and optical imagery, even a
small misalignment between them can lead to an unfavorable
impact on the quality of the integrated product, or a significant
reduction of data information content [29]. Thus, an accuracy
level of 1-pixel is recommended for the dataset registration
[15]. As a matter of fact, a subpixel level of accuracy, assessed
by measuring the distances between control points, is usually
preferred for a good registration. However, such a qualitative
criterion is difficult to achieve because the image pixel resolution
can vary from several dozens of centimeters to several meters de-
pending on the platform (i.e., airborne versus satellite). Current
works in the literature involve resulting discrepancies between
the registered datasets ranging from 45 to 50 cm [14], [30].
They state that such discrepancies are a decent and desirable
registration accuracy.

C. Contribution

This article addresses the need for a versatile and relevant
registration approach able to overcome the aforementioned
challenges. The versatility of our proposed method is reflected
through its capability of registering the datasets that are not
acquired simultaneously, nor from the same platform and same
acquisition configuration, nor having same spatial resolution.
These assumptions are crucial to the existing works [14]–[16],
[24], [25]. It should be noted that the proposed method does not
aim to address every scene possible, as we focus on a registration
on urban scenes. In this regard, we propose a coarse-to-fine
registration approach.

1) First, a coarse registration is performed to reposition the
datasets closer to each other. It addresses the challenge of
spatial shifts between datasets which is problematic but
usually overlooked [7], [16], [19], [30]. In this article, we
present a coarse registration relying on the primitives that
are buildings.

2) Second, a fine registration is carried out based on a lo-
cal transformation model estimation. It is enabled by a
superresolution (SR) approach applied to LiDAR data
in order to generate images with the same resolution as
the optical image. This approach is devoted to overcome
the hindering caused by the spatial resolution difference
between datasets.

Such a coarse-to-fine approach is necessary in order to register
an airborne LiDAR dataset with an optical image. The mentioned
coarse registration aims to reposition the two datasets in a fast
but reliable manner. As a result, a global transformation model,

composed of a set of coarsely estimated camera pose parameters,
is determined. Even though the global transformation does not
permit the dataset to be precisely registered, it narrows down
the search space for optimal camera pose parameters from an
initial set of values during the fine registration. However, the
main drawback of this feature-based coarse registration is that
the building primitives are not distributed evenly throughout
the datasets. Hence, the global transformation has the tendency
to prioritize a region exhibiting more primitives than others.
Therefore, we propose a subsequent fine registration that focuses
on determining the optimal parameters for each local region of
the considered urban area. Such a local approach brings two
benefits, namely a higher registration accuracy and a reduced
computational cost of this fine registration. Then, we also pro-
pose a refinement of locally optimized transformation models,
in order to avoid conflicts between them. Finally, the pro-
posed method relies on tailored series of well-known processes
and algorithms while avoiding complicated and labor-intensive
processes.

The remainder of this article is organized as follows. A brief
review of existing works related to the registration of optical
imagery and airborne LiDAR data is provided in Section II.
Then, Section III presents the proposed methodological ap-
proach, consisting of two parts: coarse registration, then fine
registration. Then, multiple quantitative assessments involving
different datasets are presented and discussed in Section IV.
Finally, Section V concludes this article.

II. LITERATURE REVIEW

Accurate registration of LiDAR data and optical imagery is the
crucial prerequisite to any data fusion applications using them
[14]. The majority of automatic methods for registering such
datasets can be classified into two categories, namely area-based
and feature-based methods. On the one hand, area-based meth-
ods determine the optimal pose of the camera by maximizing a
statistical similarity, e.g., mutual information (MI), between the
values of optical image pixels and LiDAR-derived image pixels
[7], [15], [26]. The LiDAR-derived image is either a digital
surface model (DSM), an intensity image, or an image of pdet
(probability of detection) attributes derived from the LiDAR
point cloud [7]. Their main drawbacks, in addition to the high
computational cost, are the necessities for the datasets to be spa-
tially close to each other, as well as to have the same resolution
and display similar intensity characteristics. For instance, the
similarity of characteristics between 2-D images and normals to
a 3-D surface has been shown to be of paramount importance
for area-based registration methods [31].

On the other hand, feature-based methods establish corre-
spondence between the datasets based on available distinguish-
able features. They involve feature extraction algorithms and
feature matching strategy [32]–[35]. The employed features
can be either from built environment, such as corner points,
break lines, and planar surfaces found in man-made objects, or
natural features like trees, bushes, and ground surface features.
In general, features from built environment usually yield higher
registration accuracy result than natural features [32].
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Wong and Orchard [34] proposed a registration method be-
tween LiDAR data and optical image, assuming that they are
two images of the same resolution. From the LiDAR data, it
is an image of laser return intensity data. This method consists
in using a modified Harris corner detector to extract control
points from the two images. Then, an exhaustive search for
correspondences, accelerated by the Fast Fourier Transform,
among all extracted control points is carried out. However, this
method fails to produce accurate registration result in the case
of very high resolution images [28]. Palenichka and Zaremba
[35] proposed a registration method between LiDAR-derived
DSM and optical imagery. It involves an automatic extraction
of salient points from both the DSM and the optical image
that allows the discrimination of the objects of interest from
the background. This method facilitates the automatic selection
of control points that also works on natural scenes. According
to [28], the high computational cost and the lack of concern
for the relief displacement are the drawbacks of this method.
Liu et al. [30] proposed a registration method between airborne
LiDAR data and UAV (unmanned aerial vehicle) remote sensing
imagery, based on 3-D and 2-D line segments extracted, respec-
tively, from the LiDAR point cloud and the image. For each
3-D line segment, a number of 2-D line segments are extracted
from the same location on the image. Then, a manual selection
is carried out to yield the correspondences (i.e., the conjugated
line segments). Such a manual approach is prone to human bias.
Also, this method does not account for the potential spatial shift
between the datasets. Therefore, it could work on the datasets
with a small spatial shift, but fails for large spatial shifts.

Many studies have proposed to use different features to in-
crease the registration accuracy. For example, Huang et al. [36]
proposed a registration method using two different features at
two scales, i.e., a line network of roads extracted using k-means
clustering at the first scale, and building corners at the finer
scale. However, the use ofk-means clustering as an unsupervised
classification on aerial images is seemingly too simple to extract
roads effectively. Ding et al. [33] performed a coarse-to-fine ap-
proach to register oblique aerial image and LiDAR data based on
vanishing points estimated from parallel vertical building edges
at the coarse level, and then based on building corners at the fine
level. While the vertical vanishing points can be estimated using
oblique images, this can hardly be done using vertical aerial
and satellite images, as well as orthorectified images. A similar
coarse-to-fine approach is also proposed by Brell et al. [14] to
register hyperspectral image and LiDAR data simultaneously
acquired from the same aircraft. First, scale-invariant feature
transform [37] keypoint detector is used to determine tie points
between the LiDAR data and the hyperspectral image. Then, an
area-based optimization is carried out to find optimal camera
pose parameters. Within a small range from the values coarsely
estimated using the tie points, these parameters are then refined
based on the minimization of a cost function. Such cost function
is the zero-mean sum squared distances calculated between the
pixels of the hyperspectral image and the image generated from
LiDAR intensity data using a ray-tracing module. However, this
method does not address the registration between the datasets
acquired separately, in which the spatial shift between the two

datasets can be problematic to the tie-point-based registration.
Also, there is a potential issue due to the spatial resolution of the
LiDAR data for generating a suitable image for the area-based
optimization. This issue was not addressed in their work.

In conclusion, all the methods reviewed in this section either
assume that the airborne LiDAR data and the optical imagery
data are spatially close to each other, have been recorded simulta-
neously (or on very close dates), and/or have similar spatial reso-
lution and level of detail. These constraints have been previously
discussed (see Section I-B) to be challenging to a registration
method in the considered context. To the best of our knowledge,
a method explicitly devoted to the registration of LiDAR and
image datasets acquired from two different platforms, with
different configurations at different times and even seasons, has
not yet been proposed. In what follows, we present how our
method is able to achieve such purposes.

III. PROPOSED METHOD

Fig. 1 presents the full flowchart of the proposed method.
First, the coarse registration approach is presented. It aims to
reposition the two datasets based on the extraction and matching
of building candidates. Based on these primitives, a global
transformation model is estimated, which is represented by a
set of camera pose parameters, denoted by θglobal. Second, a fine
registration based on an SR of LiDAR values and an area-based
optimization is carried out. Such SR process takes into account
a transformation model (i.e., θglobal at the first iteration) and
generates high-resolution LiDAR-based images. Next, a statis-
tical similarity measure, namely MI or NCMI, between these
super-resolved images and the optical image is estimated. Thus,
the estimated MI (or NCMI) value can be considered as a func-
tion of the transformation model. The maximum value of such
measures is expected to be achieved when the involved images
(i.e., the optical image and the super-resolved LiDAR-based
images) are geometrically aligned [15]. As a result, an opti-
mal transformation model associated to this maximum MI (or
NCMI) value is determined. We describe the two registrations
in the two following sections.

A. Coarse Registration

Fig. 2 sums up the proposed coarse registration, which has
been originally introduced in our previous work [38]. Man-made
structures in urban scenes like buildings are more suitable for
accurate registration, compared to natural features [32]. In addi-
tion, they remain unchanged through a relatively long period of
time (e.g., several years). However, in airborne LiDAR datasets,
the point density around vertical surfaces like building facades
can be low. Hence, the localization accuracy of features like
building corners and edges is deficient. Therefore, our coarse
registration method relies on region-based primitives namely
buildings.

Different series of processing steps are carried out on the
LiDAR and optical image datasets respectively in order to extract
buildings. On the one hand, we apply a series of processing steps
starting with an elevation thresholding on LiDAR point cloud.
On the other hand, mean shift segmentation [39] is performed
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Fig. 1. Flowchart of the registration of optical imagery and airborne LiDAR data (NCMI: Normalized Combined Mutual Information). A parenthesis below each
procedure block denotes their respective descriptive subsection.

Fig. 2. Flowchart of the building-based coarse registration between optical
image and LiDAR point cloud. A parenthesis next to each procedure block
denotes their respective descriptive subsection.

on the optical image with a contextually chosen bandwidth pa-
rameter. Further processing is then applied to remove unwanted
segments and preserve building-like ones. The respective pro-
cess of building extraction from the LiDAR point cloud and the
optical image are described in Section III-A1 and III-A2. Then,
the building candidates from each dataset are matched and yield
a set of correspondences (Section III-A3), which are then used
to estimate the global transformation model (Section III-A4).

1) Building Extraction From LiDAR Data: The extraction
of buildings from LiDAR point cloud is carried out through a
series of steps. They are depicted in Fig. 3, whereas the input
point cloud is shown by Fig. 3(a). First, non-ground points are
separated from ground points using an elevation thresholding.
This thresholding is proposed by many existing works as a
necessary initial step [40]. The threshold Te is set as follows,
Te = Hg + Trf , whereHg denotes the ground elevation andTrf
is a relief factor. The first value Hg , as proposed by [40], can be
determined from a Digital Terrain Model (DTM) generated from
the LiDAR point cloud data, e.g., by performing [41]. This DTM
generation method allows us to handle complex terrains, such

Fig. 3. Illustration of different steps of the building extraction from LiDAR
data. (a) LiDAR 3-D point cloud (visualized by CloudCompare 2.9.1, GPL
software). (b) Grid of non-ground points (color-coded by elevation). (c) Binary
grid of non-ground points. (d) Labeled segments (distinguished by color).
(e) Extracted building regions (overlapped on optical image).

as combination of hills, steep slopes, and plateaus. Also, since
the LiDAR point cloud can be classified as described in Table I,
e.g., by using [42], we can measureHg by the average elevation
of ground points, i.e., Hg = mean(zg) where zg represents the
elevation of ground points. The second value Trf is empirically
set to Trf = 2.5 m (usual minimum height of a building).

All non-ground points are then vertically projected onto the
plane z = 0. A raster grid representing these projected points is
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created [see Fig. 3(b)]. The resolution of the grid is set according
to the LiDAR point cloud density, in order to avoid null-valued
pixels. For instance, for the LiDAR data 2011 with a point
spacing of 70 cm, the resolution of the grid is set to 1 m. A
binary grid of the same resolution is also generated, shown
by Fig. 3(c). Its cell value is set to 1 or 0 according to the
presence or absence of projected non-ground points in the cell
(“1”: presence, “0”: absence). Then, a morphological opening
operator is applied in order to remove small artifacts on the
binary grid. Remaining grid cells with value set to 1 are grouped
into labeled segments based on their connectivity. Next, small
segments (e.g., smaller than 10 square meters) are removed. The
resulting grid consists of a number of relatively large labeled
segments related to buildings [see Fig. 3(d)]. These segments are
then used to select the building points in the LiDAR point cloud.
A convex hull is calculated on each set of these 3-D building
points, yielding a set of boundary points for each building. In
Fig. 3(e), these building boundaries are shown overlapping on
the orthorectified aerial image for visual assessment purpose.

2) Building Extraction From Optical Image: First, the opti-
cal visible image is converted into the CIE L*a*b* color space,
since this color space allows a better distinction of objects than
RGB color space [43]. In this article, we propose to use mean
shift to segment building regions from optical image of an urban
area. This technique is more efficient than a k-means clustering
since the color of building roofs can vary a lot and some roofs
have similar color with the surrounding areas or streets. There
exist many other segmentation methods, for example methods
based on graph-cut which require different priors, such as con-
nectivity prior [44], shape prior [45], or priors about color of
background and foreground pixels given by several brush strokes
on an image. As a matter of fact, the graph-cut-based image
segmentation methods require a high amount of user inputs in
order to yield accurate results [46]. On the other hand, mean
shift requires only a value of bandwidth corresponding to the
image color range and size of objects to be segmented. This
technique has been extensively used for many years in the field
of computer vision and image processing. However, its relevance
cannot yet be dismissed. Nevertheless, determining the best
bandwidth parameter for mean shift still remains difficult despite
many investigated approaches [47]. This parameter can be set
adaptively according to the type of urban area (either residential,
industrial, mixed, etc.), and the size of objects of interest. In
other words, a contextualization is needed to set up the mean
shift parameter. Such a contextualization is carried out based
on the meaningful information in the observed area, such as an
estimated number of buildings and their relative distance—this
knowledge is derived from the building extraction process using
LiDAR data—as well as the resolution and the color range of
the optical image. Future works will investigate the automation
of this step.

Once the mean shift segmentation is performed, a refinement
of the extracted segments is carried out. First, we compute
the size of the segments, and remove the small ones, since
they usually correspond to trees and cars. Large segments
corresponding to street regions are similarly removed. This
filtering is simple and efficient [48], but depends on the image

Fig. 4. Comparison of the MBR filling percentage between a tree segment
versus building segments. The segment pixels are in cyan, whereas the MBR
of each segment is in red. (a) On a tree segment. (b) On building segments.
(c) MBR filling percentage.

resolution. Therefore, it needs a manual intervention to be set
correctly. In this article, we propose to remove segments whose
actual area is smaller than 20 square meters or larger than
2000 square meters, which are not the typical area of buildings.
Second, we identify the minimal bounding rectangle (MBR) [49]
of each of the remaining segments and calculate, using (1), the
percentage of their area over the area of the MBR

%MBR_filling =
area(segment)

area(MBR)
× 100. (1)

This filling percentage aims to eliminate coarsely the irregular
segments such as trees and grass, while retaining highly regular
shape building segments. Fig. 4 depicts a comparison between
the MBR filling percentages of two building segments and a tree
segment, from which a clear margin between the two types of
segment can be observed. In this article, a threshold of 50% for
the MBR filling percentages is typically applied. However, on
a scene with numerous irregular shape buildings, this threshold
can be relaxed. It is worth noting here that this MBR-based
refinement only acts as a preliminary filter. Although it cannot
remove every non-building segment, it allows to effectively
eliminate coarsely the irregular segments. Then, these extracted
and refined segments, even with a number of potential outliers,
will be fed into the graph-based matching step.

3) Graph-Based Matching of Extracted Segments: The two
sets of building candidates extracted from the LiDAR and op-
tical image datasets are taken into consideration and matched.
Regarding the optical image, only the segments having a higher
percentage than the fixed threshold are considered as stated in the
previous point. On the other hand, all building regions extracted
from the LiDAR point cloud are taken into consideration. The
comparison and matching of these segments can be difficult
due to several issues. First, several tree and grass segments
wrongly extracted as buildings still remain after the MBR-based
segment refinement. In addition, the datasets can be relatively
distant to each other (as mentioned in Section I-B1), making
a direct matching of segments based on their location is not
suitable. Therefore, a matching of segments based on their
relative position with respect to their neighbors is more relevant
than comparing their individual values, such as location, area,
shape similarity, and so on.

A common pattern connecting the centers of neighbor-
ing building segments representing their relative spatial ar-
rangement on both datasets is determined using the graph
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Fig. 5. Matching of building segment centers by considering their relative position. The green and red rectangles represent the MBR of the segments extracted
from, respectively, optical image and LiDAR point cloud. The yellow lines connect the centers of the matched segments. (a) Initial matching. (b) GTM result.
(c) RANSAC result. (d) GTM + Area and direction validation.

transformation matching (GTM) algorithm [50]. GTM is a
graph-based point matching algorithm designed for nonrigid
registration between images. Compared to a conventional
method like RANSAC [51], this algorithm performs a better
removal of outliers, i.e., wrongly paired buildings in this work.

In practice, both GTM and RANSAC require an initial one-
to-one matching of segment centers, which can be carried out
based on the positions of vertically projected 3-D building region
centers onto the plane z = 0 and the centers of 2-D segments
extracted by mean shift segmentation. In the specific case of
satellite imagery and LiDAR data where the relative shifts are
large (i.e., approximately up to 40 m), this initial matching is
guided by a translation vector. It is calculated based on the shift of
the largest segment in the area. The largest segment is determined
relying on the segment absolute area value and its relative area
value with respect to other segments.

Result of the segment matching is shown in Fig. 5, whereas
Fig. 5(a) depicts the initial matching. As we could expect, a
number of wrongly paired buildings (i.e., outliers) result from
the initial matching. They are originated from the tree and
grass segments extracted as buildings, or from the buildings that
exist on one dataset but not on the other one. These outliers
are then removed using GTM. Fig. 5(b) depicts the result of
GTM, whereas Fig. 5(c) presents the result of RANSAC. As we
have been considering only the relative position of the segment
centers, a refinement of false positives from GTM result is
carried out based on the area value and the direction of segments.
Here, we allow some tolerance for the area value (i.e., a 15%

difference) and direction (i.e., a 2◦ difference) between paired
segments provided by GTM. Such tolerance values are chosen
empirically. Only the pairs of segments having area and direction
differences smaller than the tolerances are preserved. With the
selected tolerance values, we consider that only reasonable
correspondences of buildings will remain. The result of this
refinement is presented by Fig. 5(d).

The capability of GTM to cope with high amount of outliers—
theoretically up to three times more numerous than the correct
pairs [50]—is advantageous when handling the potential high
number of outliers among the extracted segments from the
optical image using mean shift. It is also anticipated to handle
well the registration of datasets that were acquired within a large
timespan, e.g., several years. This temporal variability can lead
to significant changes in urban area, such as construction or
deconstruction of buildings.

4) Global Transformation Model Estimation: Next, the co-
ordinates of the matched building segment centers are used to
determine the transformation model between the LiDAR and
the imagery datasets. It involves in estimating the camera pose
internal and external parameters. The internal parameters are
consisted of the scale factors in thex- and y-coordinate direction,
respectivelyαx andαy , the skew parameter s and the coordinates
of the principal point (px, py) in terms of pixel dimensions.
On the other hand, the external parameters are the position
(X0, Y0, Z0) and the orientation (ω, φ, κ) of the camera when
the image was acquired. The set of all these parameters of the
camera pose is denoted by a vector θ henceforth.
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Even though the camera pose external parameters can be mea-
sured by a GPS/IMU system, it is still necessary to reestimate
them, since the image can suffer from radiometric and geometric
errors as well as undergone an orthorectification process. Based
on the coordinates of the resulting matched building segment
centers, a transformation model is estimated using the Gold Stan-
dard algorithm for finite projective camera model [52, p.187].
We denote the set of parameters associated with this estimated
global transformation model by θglobal.

The transformation from 3-D homogeneous coordinates to
2-D homogeneous coordinates is given by the following 3× 4
camera matrix

P = KR [I| − C] (2)

where K is the camera calibration matrix, R stands for the
rotation matrix describing the orientation of the camera, I is
the identity matrix, andC denotes the coordinates of the camera
center. The matrices from (2) are defined as follows:

K =

⎡
⎣
αx s px
0 αy py
0 0 1

⎤
⎦ (3a)

C =
[
X0 Y0 Z0

]T
(3b)

R = Rz(κ)Ry(φ)Rx(ω) (3c)

where Rx, Ry, and Rz are the rotation matrices for rotations
around x-, y- and z-axis. As presented by (3), the transformation
model involves 11 degrees of freedom, related to the camera
internal and external parameters.

B. Fine Registration

After coarsely repositioning the datasets, the next step is
dedicated to register them precisely. An area-based optimization
approach is relevant in the present context, in order to determine
the optimal set of parameters that enables the most accurate
registration [14], [15]. However, this approach involves several
constraints, such as the datasets need to be spatially close to each
other, as well as to have the same resolution and display similar
intensity characteristics. As a result of the presented coarse
registration and the SR process elaborated in the Section III-B1,
these constraints are fulfilled.

We propose a fine registration method, summarized by Fig. 6,
which involves an SR applied on the LiDAR data. Then, an
estimation of local transformation models (Section III-B2) is
performed based on the maximization of the NCMI or MI
measured between the optical image and the high-resolution
LiDAR-based images, resulted from the SR. The high-resolution
term means that these images have the same resolution and size
as the optical image. NCMI achieves its maximum values when
the images are geometrically aligned [15], yielding an optimal
set of camera pose parameters, denoted by θ∗. We describe these
points in what follows.

1) SR of LiDAR Data: LiDAR point cloud is usually signif-
icantly subsampled compared to optical image. This subsample
problem is usually addressed by a sparse reconstruction (e.g.,
for pansharpening [53]) or an SR of low-resolution depth maps

Fig. 6. Flowchart of the proposed fine registration between optical image and
LiDAR point cloud.

[54]. Thus, we propose a process of transferring and propagating
values from LiDAR point cloud onto the frame of the optical
image. Such process is to generate a rasterized dataset with
the same size and spatial resolution as the optical image, thus
it is called SR. Pixels of the super-resolved image contain the
values derived from the LiDAR 3-D points, i.e., altitude values
or laser return intensity values. The super-resolved image of
LiDAR-derived altitude values is called the z-image, whereas
the image of intensity values is called i-image. The purpose of
the SR is also to provide an approach to neutralize the sampling
density difference between the two datasets, thus facilitate the
area-based fine registration of them.

a) Mathematical notation: The inputs of the SR process
are the LiDAR point cloud, a transformation model, the frame of
reference, and the size of the optical image. We denote the optical
image by u ∈ Rnx×ny×3, where nx and ny are, respectively,
the number of rows and columns. The LiDAR point cloud is
represented by ψ ∈ Rm×4, where m is the number of LiDAR
points. Each point contains three spatial coordinates (x, y, z) and
a laser return intensity value i. We also use ψz ∈ Rm

+ to denote
the column of altitude values of the LiDAR points; whereas
ψi ∈ {0, 1, ..., 255}m stands for the intensity value of LiDAR
points. For the sake of simplicity, we use the same notation φ to
denote the result of the SR, i.e., the z-image and i-image. During
the process,φ is vectorized into a column vector ofn = nx × ny
elements. Fig. 7 describes the principle of the proposed SR.

b) Transfer of LiDAR values: First, LiDAR values, i.e.,
altitude and laser return intensity values, are projected onto the
optical image space using the transformation model associated
with camera pose parameters θ. At the first iteration of the
fine registration, θ is given by θglobal obtained from the coarse
registration. Mathematically, the value transfer is presented by
the following equation:

φΩ∗ = HΩ∗ψ
z or φΩ∗ = HΩ∗ψ

i (4)

where Ω∗ and Ω denote, respectively, the subsets containing the
indices of pixels from φ, having or not an associated altitude
value (or intensity value) transferred from ψ. Thus, φΩ∗ and φΩ,
respectively, denote the subvector containing the pixels with and
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Fig. 7. Overview of the SR process, to generate a high-resolution LiDAR-
based image (z- or i-image).

without a transferred altitude value; whereasφdenotes the vector
containing all pixels. The dimension ofφΩ∗ andφΩ, respectively,
are m× 1 and (n−m)× 1. The matrix HΩ∗ associated to the
camera pose parameters θ, is an index matrix allowing selecting
only the pixels whose values are transferred from the LiDAR
point cloud. It is computed based on the projection related to θ
of the LiDAR 3-D point cloud onto the 2-D optical image space.
Next, the transferred values are propagated to their neighboring
pixels.

c) Propagation of transferred LiDAR values: The propa-
gation of transferred values is carried out through the minimiza-
tion of a cost function F(φ), defined by (5). It is composed of
the sum of squared directional gradients (SSDG) of φ, and an
L1-norm term to promote the sparsity of φ, subjecting to the
values transferred from the point cloud [described by (4)].

φ̂ = argmin
φ

F(φ)

with F(φ) = ‖∇xφ‖22 + ‖∇yφ‖22︸ ︷︷ ︸
fSSDG(φ)

+λ ‖φ‖1

subject to φΩ∗ = HΩ∗ψ
z or φΩ∗ = HΩ∗ψ

i

(5)

where ‖ · ‖p stands for the Lp-norm, ∇x and ∇y represent the
directional gradient operators along the x- and y-axis, whereas
the parameter λ controls the amount of the L1-regularization.

Our SR approach is inspired by the work of Castorena et al.
[55]. However, they proposed a cost function that is solely
defined by SSDG for the fusion of terrestrial LiDAR data with
optical imagery. It is based on hypothetical characteristics of a
depth map, namely that the magnitude and occurrence of depth
discontinuities inside such depth map should be minimum. The
advantage of using this cost function is its convexity and ease
to compute. Castorena’s method showed good results in prop-
agating depth values across homogeneous regions. However,
the mentioned hypothetical characteristics are not suitable in an
airborne context, where off-terrain objects like buildings or trees
always exhibit strong elevation discontinuities. By iteratively
minimizing the SSDGs, these discontinuities will be gradually
flattened, hence resulting in inaccurately estimated z-image
at these elevation-transitioning regions. Such discontinuities
should be preserved during the SR process. Thus, an L1-norm

Algorithm 1 Solving (5) by FISTA Algorithm With Con-
stant Step Size γ.

input:
- sparse image φspa (φspa

Ω∗ = HΩ∗ψ
z or φspa

Ω∗ = HΩ∗ψ
i,

φspa
Ω = 0)

- a maximum number of iterations kmax

- step size γ > 0
- soft thresholding parameter λ > 0
- a tolerance value ε for stopping criterion

set: k ← 1, t0 ← 1, y(0) ← φspa

repeat
x
(k)
Ω = Tλγ(y

(k−1)
Ω − γHΩ∇fSSDG(y

(k−1)))

tk =
1

2
(1 +

√
1 + 4t2k−1)

y
(k)
Ω = x

(k)
Ω + (

tk−1 − 1

tk
)× (x

(k)
Ω − x(k−1)Ω )

k ← k + 1
until k > kmax or |y(k) − y(k−1)| < ε

set: φ̂Ω∗ ← φspa
Ω∗ and φ̂Ω ← y

(k)
Ω

output: dense image φ̂

term is additionally proposed in our approach to promote spar-
sity of the z-image, i.e., to preserve the elevation discontinuities
stemming from buildings and trees.

d) Propagation algorithm: The optimization problem de-
scribed by (5), containing the term ‖φ‖1, is solved iteratively.
Each iteration involves calculating the gradient descent of
the SSDG term (i.e., ∇fSSDG) followed by a shrinkage/soft-
threshold step. The shrinkage operatorTα : Rn → Rn is defined
as follows:

Tα(x) = (|x| − α)+ × sign(x) (6)

where (|x| − α)+ = max(|x| − α, 0), and α is a threshold
value, which is set to α = λγ in Algorithm 1.

Algorithm 1 presents the process of solving (5), using the fast
iterative shrinkage-thresholding algorithm (FISTA) [56] with a
constant step size. In this Algorithm, the superscript (k) of a
vector denotes its state at the kth iteration. The subvector xΩ∗
(and yΩ∗) contains only the values of pixels indexed by Ω∗,
i.e., the pixels having a LiDAR transferred value. They remain
unchanged during the propagation process. On the other hand,
xΩ (and yΩ) represents the subvector containing the values of
pixels indexed by Ω, i.e., the null-valued pixels before the value
propagation. The vector φ without an index subscript is the
vector contains all pixels, i.e., φ = φΩ∪Ω∗ . For instance, φspa

represents the sparse image where pixels of index in Ω∗ are
transferred from LiDAR data, while other pixels (i.e., the one of
index from Ω) are null-valued.

FISTA with its computational simplicity is adequate for solv-
ing large-scale problems. It also converges more quickly than
ISTA, with a rate of O(1/k2) [56]. The convergence rate of the
SRs is depicted in Fig. 8. Indeed, Fig. 8(a) and (c), respectively,
depict the errors between the estimated z-images and i-images
at two consecutive iterations, i.e., ‖φ(k+1) − φ(k)‖2. The values
of the cost function F(φ(k)) through iterations are also shown
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Fig. 8. Errors ‖φ(k+1) − φ(k)‖2 and the cost values F(φ(k)) plotted as a function of iterations. The vertical red-dashed lines indicate the first iteration where
every pixel of the estimated image is filled. First row: the plots from the SR process of generating the z-image; second row: the plots from the SR process of
generating the i-image. (a) Error ‖φ(k+1) − φ(k)‖2. (b) Function value F(φ(k)) (in log-scale). (c) Error ‖φ(k+1) − φ(k)‖2. (d) Function value F(φ(k)) (in
log-scale).

Fig. 9. Illustration of the SR results. First column: the sparse z-image and i-image from the value transfer process; second column: the dense z-image and
i-image from the value transfer and propagation process; third column: the optical image of the same scene shown for the sake of comparison. (a) Sparse z-image.
(b) Sparse i-image. (c) Dense z-image. (d) Dense i-image. (e) Optical image.

in Fig. 8(b) and (d). We can remark that after approximately
600 iterations, the estimated z-image and i-image have nearly
converged into stable solutions.

Finally, Fig. 9 shows the results of a transfer and propagation
of altitude and intensity values from the LiDAR data onto the

frame of the optical image. The value transfer results are depicted
through the sparse images [see Fig. 9(a) and (b)], while the
value propagation results are shown by the dense images [see
Fig. 9(c) and (d)]. On the z-images, the pixel color represents
the altitude in meters. In contrast, the pixel color on the i-images
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represents the intensity value between 0 and 255. The reference
optical image on the same urban scene [see Fig. 9(e)] allows
a visual quality assessment of the superresolved images. On
the one hand, we can observe that the elevation of buildings
and other off-terrain objects (e.g., trees, power lines), as well
as the relief of the urban scene are well presented on the dense
z-image [see Fig. 9(c)], and correspond with the information
in the optical image. On the other hand, different elements of
the scene like buildings, grasses, or roads can be discriminated
on the i-image, similarly on the optical image. For example,
several regions with distinctive elements are highlighted by the
red ellipses on Fig. 9(d) and (e).

2) Estimation of Local Transformation Model: As afore-
mentioned, an MI-based registration method involves many
constraints. One of them is that the to-be-registered datasets
must have the same resolution. The solution to this problem is
to use high-resolution LiDAR-based images generated by the
presented SR approach.

a) Proposed approach: This article presents an MI-based
registration method that relies on the MI measured between
the optical image and the i-image. An NCMI-based registra-
tion method is also proposed. It involves measuring the NCMI
between the optical image and both the z-image and i-image.
Both similarity measures, MI and NCMI, are expected to achieve
their maximum value when the images (i.e., the optical image
and the LiDAR-based images) are geometrically aligned.

Moreover, the proposed fine registration also consists in a
local approach of transformation model estimation. It involves
dividing the study area into many patches of same size and
estimating a local transformation model for each patch. Such a
patch-based approach allows accelerating the MI maximization
process. For each patch of the optical image ut and the LiDAR
data ψt (1 ≤ t ≤ T , with T is the total number of patches), the
determination of the optimal set of camera pose parameters,
denoted by θ∗t , is carried out based on the maximization of MI
or NCMI, as follows:

θ∗t = argmax
θ∈Θ

MI(f iSR(θ, ψt);ut) (7)

θ∗t = argmax
θ∈Θ

NCMI((f iSR(θ, ψt), f
z
SR(θ, ψt));ut) (8)

Equations (7) and (8) present the maximizations based on, re-
spectively, MI and NCMI. f iSR and fzSR represent the SR process
that generates, respectively, the i-image and z-image (denoted
by φ from the previous Section III-B1), given the camera pose
parameters θ and the LiDAR data ψt.

Given two random variables A and B with marginal prob-
ability distribution functions (pdf), pA(a) and pB(b) and joint
pdf pAB(a, b), the MI betweenA andB, denoted by MI(A;B),
measures the degree of dependence of A and B by the distance
between the joint pdf pAB(a, b) and the pdf associated with
the case of complete independence pA(a).pB(b). This entropic
distance is expressed by the means of the Kullback–Leibler

divergence measure [57], given by

MI(A;B) =
∑
a,b

pAB(a, b) log
pAB(a, b)

pA(a).pB(b)

= H(A) +H(B)−H(A,B)

(9)

whereH(X) = −
∑

x pX(x) log pX(x) is the Shannon entropy
of random variableX . Its estimation is proposed by Mokkadem
[58]. The registration method based on the maximization of MI is
originally introduced by [59]. Since then it has been extensively
studied in many research areas, particularly to register an optical
image with an image derived from LiDAR data. This image is
either the LiDAR-derived DSM or the intensity image, which
has the same resolution with the optical image [7], [19].

Another statistical similarity measurement used for the reg-
istration between LiDAR data and optical imagery (8) is the
NCMI [15], given by

NCMI((A,B);C) =
H(A;B) +H(C)

H(A;B;C)
(10)

NCMI-based registration method relies on the similarity be-
tween the optical image and both LiDAR images, i.e., DSM and
intensity image which are inherently registered. This combined
similarity measurement is shown to be more informative than
the conventional MI [60].

Mastin et al. [7] compared the three usages of LiDAR-derived
images in the MI-based registration involving measuring its/their
similarity with the optical image, i.e., first, using only the DSM
image, second, using only the intensity image, third, using both
images. They demonstrate that the usage of the intensity image
yields more accurate registration result than using the DSM
image. The usage of both images is also shown to yield more
accurate result than the two individual usages [15].

b) Implementation: To resolve (7) and (8), we use Nelder–
Mead simplex algorithm [61]. Such algorithm is derivative-free
and also straightforward in terms of implementation. The initial
values for the optimization are given by the θglobal, resulted from
the coarse registration. In this article, the considered urban area
is divided into equal patches, of which the size is chosen as
500 × 550 pixels. This patch size for the fine registration has
been selected based on the study of [62]. It is not related to the
building size. It only aims at reducing the computational cost
while maintaining a sizable patch for a reliable MI calculation.
The division of the area into equal patches is irrespective of the
distribution of buildings, or in other words, independent of the
distribution of correspondences used in the coarse registration.

3) Smoothing of Patch-Based Registration Results: A po-
tential problem expected from this patch-based registration
approach is the incoherence of local camera pose parameters
θ∗t between patches, especially in transition regions between
patches. For instance, Fig. 10 illustrates two examples where
the difference of transformation models of patches causes a
conflict [see Fig. 10(a)] and a discontinuity [see Fig. 10(b)] of
projected points on the transition regions between patches. In
these regions, there are 3-D points which are spatially neighbor-
ing but they belong to two adjacent patches. Consequently, they
are projected with two different transformation models, hence
causing such conflict or discontinuity. However, this problem
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Fig. 10. Examples of (a) a conflict, and (b) a discontinuity of projected points
between neighboring patches, and the results (c) and (d) on the same regions after
the smoothing using IDW-based interpolation. The red-dashed lines represent
the patch boundaries. The optical images (e) and (f) of the considered areas
are shown for the sake of comparison. As such, the shapes of the exemplified
buildings are well retrieved after the smoothing.

has not yet been addressed by existing work that presented a
similar patch-based approach [19].

In this article, we present a smoothing of camera pose pa-
rameters from the patch-based transformation models. Instead
of using the transformation model of a patch for the projec-
tion of every point in this patch, we propose to compute the
projection of each 3-D point based on a weighted average of
several neighboring local transformation models. We denote the
center of neighboring patches byCi, and the local transformation
model of the patches by θi, i = 1, .., N , where N = 9 is the
number of neighboring patches of a point p. The transformation
model for the point p, denoted by θ(p), is interpolated using the
inverse distance weighting (IDW) [63] average of neighboring
local transformation models, given by

θ(p) =

⎧
⎨
⎩

∑N
i=1 wiθi∑N
i=1wi

, if d(p, Ci) �= 0

θi, if d(p, Ci) = 0.

(11)

The weights wi are computed by the inverse squared Eu-
clidean distance from the considered point p to the neighboring
patch centers Ci, as follows:

wi =
1

d(p, Ci)2
, i = 1, .., N. (12)

Fig. 10(c) and (d) depicts the outcomes of the resolved incoher-
ence problem between patches, using the IDW-based interpola-
tion of patch-based camera pose parameters.

IV. RESULTS AND DISCUSSION

A. Assessment Methodology

Experiments have been carried out to evaluate the quality of
the registration and determine whether it is good enough to be
beneficial for a subsequent data fusion or other applications.
However, the lack of a ground truth, i.e., true values of the
camera pose parameters, makes such an evaluation difficult.
To overcome this problem, Mastin et al. [7] proposed to use
expert-chosen control points to determine these values. Other-
wise, without a ground truth, the registration quality of existing
methods has been assessed in these following manners.

1) Using a subjective quality indicator or by a visual assess-
ment: e.g., a good assignment of 3-D point-to-pixel on the
colorized point cloud [13, Sec. 3], or assessing whether the
images are close enough for the projective texture mapping
[7], or based on how well the representations of objects
(e.g., buildings, vegetation) align.

2) Using the average spatial discrepancy between datasets
measured at manually determined check points, or using
check pair lines.

3) Involving a determination of an optimal set of parameters
that minimizes a cost function or maximizes a statistical
dependence measurement. In other words, a registration
is considered successful when the determined parameters
are optimal. The cost function can be the MI or its variation
between the optical image and the LiDAR intensity image
[7], [15], [19]. It can also be defined by the pixel-wise
distances calculated between the hyperspectral image and
the LiDAR-derived image [14].

Since a thorough quality assessment of a registration method
is still missing, we present multiple evaluations in this article.
First, a visual assessment is carried out based on the alignments
of scene elements. Second, an evaluation of building candidate
extraction and matching steps from the coarse registration is car-
ried out. Third, since our proposed registration method already
involves a maximization of MI between datasets for determining
optimal camera pose parameters, we perform subsequently two
spatial discrepancy evaluations. They are based on first, check
points which are the centroids of manually determined building
roofs, and second, check pair lines manually sketched from the
two datasets.

In this article, we perform and assess the proposed registra-
tion method on four pairs of LiDAR-optical image datasets.
They consist of four datasets on Quebec City (QC, Canada),
namely two optical imagery and two LiDAR datasets. It is worth
reemphasizing that all four datasets were acquired from different
platforms with different acquisition configurations at different
times and have different spatial resolution. Their specifications
have been presented in Table I. On the one hand, the first optical
imagery dataset consists of the 15-cm resolution orthorectified
aerial images acquired in 2016. The second dataset is provided
by the Pléiades satellite involving 50-cm resolution images
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Fig. 11. Two selected urban areas on which we evaluate the registration
method. The first urban area is composed of 28 buildings; whereas the second
urban area is composed of 12 buildings. Particularly in the area 2, there are
two buildings highlighted in red-dashed ellipse which were not built in 2011,
namely the year when one of the LiDAR dataset was recorded. (a) Urban area
1. (b) Urban area 2.

resulted from a pansharpening [64] of 50-cm resolution PAN
images and 2-m resolution MS images acquired in 2015. On
the other hand, the LiDAR datasets involve the airborne LiDAR
point clouds acquired in 2011 and 2017. Their point spacing
are, respectively, 70 cm and 35.4 cm. We specifically measure
the spatial discrepancy between LiDAR and imagery datasets,
before and after carrying out our proposed registration method
on two urban areas of representative characteristics in Quebec
City.

The two selected urban areas are shown in Fig. 11. The first
area is composed of mostly planar roof buildings, which are
relatively near each other. In contrast, the second area is com-
posed of big buildings and gable-roof houses. Particularly in the
second area, there are two buildings located at the top left corner
of Fig. 11(b) (in the red-dashed ellipse) that were not built before
2013, hence they did not exist in the LiDAR dataset recorded in
2011. This absence highlights a temporal variability presented
on this area. As one can see, these two areas are composed of
buildings of various types, sizes, and shapes. Many buildings
have inhomogeneous color rooftops, or even have small objects
on them. Several buildings are also surrounded by trees, or have
casted very contrasting shadow regions (e.g., the gable houses
on the second area). These elements show the complexity of the
selected areas. The versatility of the proposed method can be
demonstrated through such different datasets on these complex
areas. Therefore, we are convinced that they are representative
for the scenes which this research work aims to address.

B. Visual Assessment of the Registration

Fig. 12(a) depicts a pair of images of the first urban area; the
first one is the orthorectified optical image in 2016 (in gray-scale)
and the second one is the i-image from the LiDAR 2011 related
to the proposed registration method. Since the two images are
of the same resolution, we display them in a checkerboard
overlay, in order to assess visually the accuracy of the registration
focusing on the small region encompassed by the red rectangles.

Fig. 12. Visual assessment of the proposed registration method, focusing on
the subimage indicated by the red rectangle on the optical image and the i-
image from LiDAR data. The two subimages are overlaid in a checkerboard-
type display, in order to assess the alignment between multiple elements (green
ellipses) yielded by the registration. (a) Optical image and i-image on the area 1.
(b) Checkerboard overlay (before registration). (c) Checkerboard overlay (after
registration).

Fig. 12(b) shows the checkerboard overlay between the optical
image and the i-image before the registration, whereas Fig. 12(c)
shows the one after the registration. It is worth noting a dif-
ference between these two images concerning the grayscale of
different objects. Indeed, on the optical image roads, pathways
and buildings have bright pixels, whereas the grasses and trees
have darker grayscale. It is the opposite for the i-image where
roads, pathways, and buildings are in darker grayscale than trees
and grasses.

Let us focus on the alignment of multiple elements—
continuous straight lines or curves from pathways and roads—on
the region circled in green. When putting together the two images
that are well registered, these continuous elements should be
visually aligned. Indeed, being mindful of the grayscale dif-
ferences between the two images, we can see that before the
registration these circled elements are misaligned while all of
them are rectified after the registration. It is also shown that
the initial misalignments between the two datasets, even if
relatively small, can still be reduced by the virtue of the proposed
registration.

C. Evaluation of Building Candidate Extraction and Matching
Steps From the Coarse Registration

The results of the building extraction from LiDAR data (2011)
and from aerial optical image (2016) are shown in Fig. 13. Ta-
ble II summarizes the quantitative results of building extraction
and matching on the selected areas. The performance metrics
are based on the number of true positives (TP), false alarms
(FA), and misses (M). In the context of the building extraction,
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Fig. 13. Illustration of building extraction from LiDAR point cloud and from
optical image. First column: LiDAR building segments, overlapped on optical
image for visual comparison; second column: Image building segments with
MBR filling percentage greater than 50%.

TABLE II
PERFORMANCE OF BUILDING EXTRACTIONS AND MATCHING PROCESSES ON

THE SELECTED AREAS

a TP indicates that a building is correctly extracted, whereas
an FA represents a nonbuilding segment incorrectly extracted
as a building, and M means that a building exists but is not
extracted. On the other hand, in the context of segment matching,
a TP indicates a good match, an FA represents an incorrectly
matched pair of segments, whereas M means a pair of segments
that should be matched are not paired. The Precision and Recall
metrics are computed as follows, Precision = TP/(TP + FA)
and Recall = TP/(TP + M).

As shown by Table II, the building extraction from LiDAR
data (both 2011 and 2017) has achieved 100% of precision and

recall thanks to the contribution of 3-D information. Similar
performance of extracting buildings from LiDAR data has been
found consistently, as presented by [6] when conducting tests
on the ISPRS Vaihingen benchmark dataset [65].

On the other hand, the mean shift segmentation and subse-
quent segment refinement have yielded a high number of TPs
but also a high number of FAs (i.e., 21 segments are incorrectly
extracted as buildings). This number is even higher on the
second area, i.e., 37 FAs. However, as one can see, the number
of undetected building (i.e., M) is relatively low, namely four
buildings on the first area and only one building on the second.
This results in the high Recall metric value from mean shift
segmentation on both areas, 85.71% and 91.67%.

Considering the matching step, despite yielding relatively
high precision (i.e., 100% on the first area and 87.5% on the
second one), RANSAC provides a very low number of TPs
and a high number of misses. GTM outperforms RANSAC on
both areas, yielding more correct matches of building segments.
However, on the first area, GTM yields a 95% of recall, with
a relatively high number of FAs (i.e., seven segment pairs
are wrongly matched). These FAs are then eliminated by the
subsequent validation based on segment area and direction (cf.,
Fig. 5).

D. Patch-Based Transformation Model Estimation

The division of a considered urban area into equal patches,
and the local transformation model estimation are shown by
Fig. 14. On each patch, the maximized value of MI between
the optical imagery and LiDAR data is displayed, as well as
the variations of θ∗t compared to θglobal. It should be noted that
there is no relationship between the maximized MI values and
the number of correspondences in each patch. For example, the
patch (2,1) with no correspondence can have a higher maximized
MI value results than the patch (1,3) with four correspondences.
The relative difference among the maximized MI values stems
from the different content of each patch. These variations of
θ∗t compared to θglobal are different from one patch to another
without any noticeable common pattern. Thus, potential inco-
herences between them can be expected. Such incoherences are
resolved as a result of the IDW-based smoothing presented in
Section III-B3.

Table III summarizes the evolution of the resulting MI mea-
surements between the global transformation model (i.e., out-
come of the coarse registration) and the local transformation
model (i.e., outcome of the fine registration) on each individ-
ual patch. Taking into account the number of correspondences
among patches [as shown in Fig. 14(a)], we remark lower MI
gains (not maximized MI values) for the patches with three to
four correspondences than for the patches with fewer correspon-
dences. In fact, the higher MI gains on the patches with few or no
correspondence (the bold rows in Table III) shows the interest
of the fine registration. Indeed, the coarse registration on these
patches is less effective than on the patches with many corre-
spondences, requiring the fine registration step to compensate
for more data misalignment, hence resulting in higher MI gains.
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Fig. 14. Illustration of the local transformation model estimation. (a) Division of a considered urban area into equal patches. The red-dashed lines depict the
patch boundaries, whereas the green “x” represent the correspondences (i.e., matched primitives) from the coarse registration. (b) Values displayed in each patch
are: first row: the maximized MI value; other rows: variation of the camera external parameters (i.e., θ∗t − θglobal).

TABLE III
EVOLUTION OF MI FROM THE COARSE REGISTRATION

TO THE FINE REGISTRATION

E. Spatial Discrepancy Evaluation

The third evaluation focuses on assessing the registration
based on the spatial discrepancy between the datasets. In this
regard, we propose to use manually determined check points
(i.e., centroids of building roofs) and check pair lines (i.e.,
mainly building straight boundaries). They are determined from
the optical image, and from the high-resolution z-image gen-
erated from LiDAR point cloud. Indeed, in order to estimate
the spatial discrepancy of datasets before the registration, a
z-image is generated using the presented SR process with a
vertical projection of LiDAR points. For the coarse registration,
another z-image is generated using the global transformation
model given by θglobal. Finally, in order to assess the spatial
discrepancy after the fine registration (either MI or NCMI), the
smoothed patch-based transformation model is used to generate
the z-image. In the two following assessments, we propose to use
z-image instead of i-image for these assessments, since it allows
a better manual determination of building roofs and building
boundary line segments [cf., Fig. 9(c) and (d)].

1) Based on Centroids of Building Roofs: The first evaluation
is carried out based on check points which are the centroids of
manually delineated building roofs on the two selected areas.

The distance (in meters) between the centroids of each pair are
measured. A smaller distance indicates a more accurate registra-
tion. Each column of Table IV presents the spatial discrepancy
evaluation between one LiDAR dataset and one optical imagery
dataset, among the four datasets described in Table I. The
evaluation is presented by the mean and standard deviation of the
measured distances. Indeed, the assessments on the registration
between the LiDAR data 2011 and then the LiDAR data 2017
with the orthorectified aerial imagery 2016 are given by the
column one and two of Table IV. Then, the ones between these
LiDAR datasets with the Pléiades multispectral imagery data
2015 are provided by the column three and four. The spatial
discrepancy values between the two considered datasets are
averaged on all check points from the two selected areas. An
insignificant difference of approximately 10–15 cm is obtained
between the two areas. The gain values are computed based on
average spatial discrepancy values after registration with respect
to the values before registration.

a) Between orthorectified aerial image and LiDAR data:
Considering the orthorectified aerial image (2016), as a result of
the image orthorectification, the average discrepancy between
this dataset and the airborne LiDAR dataset (both 2011 and
2017) is already relatively small, i.e., respectively 1.08 and 1.05
m. The results summarized by Table IV show that our proposed
registration yields an even smaller discrepancy. Indeed, the pro-
posed coarse registration method results in a reduction of these
values by 48.15%. This reduction highlights the effectiveness of
repositioning the datasets closer to each other. Then, a spatial
discrepancy of 40 cm between the LiDAR data (2011) and the
orthorectified aerial imagery (2016), and of 35 cm between the
LiDAR data (2017) and the orthorectified aerial imagery (2016)
are provided by the NCMI-based fine registration method.

It is worth noting that both the LiDAR datasets acquired in
2011 and 2017 involve a horizontal accuracy of approximately
17 cm; whereas the horizontal accuracy of the orthorectified
aerial imagery is 16.5 cm (cf., Table I). It means that the
resulting discrepancy values, respectively 40 and 35 cm, are only
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TABLE IV
BUILDING REGION CENTROIDS-BASED SPATIAL DISCREPANCY EVALUATION

slightly bigger than the combination of horizontal accuracy of
the considered datasets.

Also, the reported average discrepancy between the LiDAR
data 2011 and the orthorectified aerial imagery 2016 after the
registration (i.e., 40 cm) is slightly bigger than 1/2 of the average
point spacing of the considered LiDAR point cloud (i.e., 70
cm). On the other hand, regarding the registration between
LiDAR data 2017 and the orthorectified aerial imagery 2016,
the resulting average discrepancy (i.e., 35 cm) approximates the
average point spacing of the LiDAR point cloud (i.e., 35.4 cm).

b) Between Pléiades image and LiDAR data: The discrep-
ancy evaluation of the registration between the airborne LiDAR
data (2011 and 2017) and the Pléiades imagery (2015) can be
analyzed similarly from the results presented at the third and
fourth columns of Table IV. The resolution of the Pléiades op-
tical image is 50 cm, and its horizontal accuracy is theoretically
between 1 and 3 m, depending on the usage of ground control
points on the considered area. These two characteristics of the
Pléiades imagery data, especially the horizontal accuracy, are the
major factors causing its registration with the LiDAR data (both
2011 and 2017) to be not as accurate as the registration between
the LiDAR data and the aerial image (2016). When regarding the
resulting average discrepancy (i.e., 0.99 and 0.82 m) and taking
into account the spatial resolution of the datasets (i.e., 50 cm for
the Pléiades imagery data and 70 cm or 35.4 cm for the LiDAR
point spacing), one may interpret that these results are not good
enough. However, as the horizontal accuracy of the Pléiades
imagery dataset varies between 1 to 3 m as aforementioned, we
would argue that such average registration discrepancy results
are highly desirable.

Comparing the MI-based and the NCMI-based fine registra-
tion, a gain averaging approximately 23% is achieved when
using NCMI instead of MI. In other words, as it has already
been highlighted by other studies [7], [15], we also demonstrated
that using both z- and i-images yields more accurate result than
using either one of them. However, it is worth noting the research
context of this article is more complex than those of the previous
works on this topic. Nevertheless, it is worth noting that the
NCMI-based fine registration takes twice as long as the MI-
based, since it involves performing the SR twice, for the z-image
and the i-image. Therefore, the use of both statistical similarity
measurements shows beneficial result but not seamlessly. And
the decision that which one of them should be used is essentially
a compromise between accuracy and computational cost of the
registration method.

Overall, the proposed coarse-to-fine method yields a very
significant reduction of the spatial discrepancy between datasets,

Fig. 15. Illustration of the modified distance measure for the check pair line
evaluation. Note the difference of the resulting distances between the collinear
and the identical cases.

namely 63% to 67% for the registration of LiDAR data and
orthorectified aerial imagery, and 98% for the registration of
LiDAR data and Pléiades imagery.

2) Based on Check Pair Line Segments: Peng et al. [16] pro-
posed an evaluation based on distances between line segments
that are manually sketched from the two datasets. Compared
with check point-based evaluation, this evaluation relies on a
higher geometrical basis (i.e., line segments compared with
points) to assess the registration. The distance proposed in [16]
between two line segments p (with A and B are its end-points)
and q is defined as follows:

d(p, q) =
1

2
(dA + dB) (13)

where dA and dB , respectively, denote the distances from A
and B to the line segment q. However, this distance given by
(13) is not quite relevant, because it yields small values when
the two line segments are far away but collinear. Based on the
literature review of line segment distances [66], the Hausdorff
line segment distance [67] is more suitable for this evaluation.
It measures the longest of all the distances from a point on one
line segment to the other segment, and it equals zero only if the
two line segments are identical, i.e., same two end-points. Thus,
it reflects fairly the discrepancy between two line segments,
even when they intersect or are collinear. Fig. 15 shows such
improvement when using the Hausdorff distances instead of the
Euclidean distances in three typical cases, namely intersection,
collinear, and identical line segments.
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TABLE V
CHECK PAIR LINE-BASED SPATIAL DISCREPANCY EVALUATION

In this assessment, two sets of 72 line segments are manually
sketched on the optical image and on the generated z-image of
the two selected areas. They are then manually matched, yielding
check pair line segments. The source for these line segments are
mainly the building straight boundaries. Then, the Hausdorff
distance between each pair is computed. A smaller distance
indicates a more accurate registration. Table V summarizes the
quantitative results of check pair line-based evaluation of the
registrations between airborne LiDAR data (2011 and 2017)
with orthorectified aerial imagery (2016), and with the Pléiades
multispectral imagery data (2015).

As we can see from Table V, the discrepancy between the
datasets measured based on manually sketched line segments
is significantly reduced after each of the registration, i.e., the
coarse and the fine registration. On the one hand, the proposed
registration method ultimately yields an average discrepancy of
0.63 and 0.64 m between the LiDAR data (2017 and 2011) and
the orthorectified aerial imagery (2016). On the other hand, for
the registration of LiDAR data (2017 and 2011) and the Pléiades
multispectral imagery (2015), the resulting check pair line-based
discrepancy value is 1.21 and 1.47 m. However, it is impor-
tant to remind the principle of Hausdorff distance in order to
evaluate the discrepancy results. For example, we consider two
nearly identical horizontal line segments (i.e., parallel tox-axis),
having same first end-point, and the second end-point of one line
segment is four pixels away from the second end-point of the
other line segment (with a pixel size of 15 cm). Consequently, the
resulting Hausdorff distance between them is 60 cm. Therefore,
it should be noted that the mentioned discrepancy values yielded
by our proposed method are relatively small. Overall, for all
four registrations, the check pair line-based discrepancy varies
between three and four pixels.

A discrepancy reduction of approximately 42% to 46% is
achieved on the registration between the LiDAR data (2011 and
2017) and the orthorectified aerial imagery (2016). Similarly, a
spatial discrepancy reduction of approximately 97% (96.70%
and 97.29%) is benefited from the registration between the
LiDAR data (2011 and 2017) and the Pléiades multispectral
imagery (2015).

Finally, it can be noted that, in the registration between
the LiDAR data and the Pléiades image, the benefit of using
NCMI instead of MI is much more evident than in the regis-
tration between the LiDAR data and the orthorectified aerial
image. Indeed, based on both check point-based and check pair
line-based evaluation result, using NCMI instead of MI results
in average gains of 30.7% and 30.8% of spatial discrepancy

reduction for the registration between the LiDAR data and the
Pléiades image. The first percentage is computed from check
point-based evaluation result (i.e., 29.79% and 31.66% from
Table IV), whereas the second percentage is computed from
check pair line-based evaluation result (i.e., 24.62% and 36.98%
from Table V). On the other hand, for the registration between
the airborne LiDAR data and the orthorectification aerial image,
these average gains are only 15.8% and 4.15%.

Both spatial discrepancy assessments and all these mentioned
elements show that the results yielded by our proposed method
are relevant. These presented assessments have also shown and
validated the versatility of the proposed method, through the
differences between the registered datasets and the complexity
of the test areas. However, it should be noted that it is virtually
impossible for a registration method to perform well on any
other scene without an adaptation or reparametrization. Notwith-
standing, in another context, namely, European urban scenes, the
same registration approach should be applicable without major
difficulties.

V. CONCLUSIONS

This article has presented and evaluated a coarse-to-fine
registration method between airborne LiDAR data and optical
imagery. It is dedicated to overcome the challenges associated
with the difficult context, where the two datasets are not acquired
from the same platform, neither from the same point of view nor
having the same spatial resolution and level of detail. In the
literature, even one or several of these constraints have been
shown problematic for carrying out a registration method (see
Section II). To the best of our knowledge, there is currently
no solution able to achieve the registration between airborne
LiDAR and optical imagery under such constraints altogether.
As a matter of fact, the proposed registration method has been
evaluated according to its own quality, before and after the regis-
tration. Indeed, it is not compared with existing methods because
they were not designed to address the considered context. Nev-
ertheless, we reconsidered the subjective accuracy suggestion
related to a subpixel level of accuracy for a registration (see
Section I-B5). Instead, we rely on an objectively quantitative
accuracy which is that, if the resulting spatial discrepancy less
than 50 cm, then the registration will be considered accurate.
In this regard, the proposed registration method has achieved a
highly desirable accuracy.

The proposed method can be summarized as follows. First,
a coarse feature-based registration is carried out based on the
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extraction and matching of building candidates on the two
datasets, reducing significantly the spatial shift between them.
Here, it should also be noted that this building-based approach
certainly does not limit the usability and versatility of our
method, since urban scenes with buildings (even very sparse)
are available most of the time [68]. Then, a fine registration
based on the maximization of MI or NCMI (both measures
have been performed separately) is carried out to determine
the optimal camera pose, granting the datasets to be precisely
aligned. It involves a process of SR of LiDAR data to generate
high-resolution images of altitude and intensity values. This
approach neutralizes the difference of spatial resolution and
level of detail between datasets, enabling the MI-based and
NCMI-based fine registration. The fine registration also involves
in dividing the considered area into many equal patches. For
each patch a local transformation model is estimated. This
approach allows reducing significantly the computational cost
of the fine registration. Finally, a smoothing of the patch-based
transformation models is carried out to resolve the conflicts and
discontinuities between them. It involves an IDW average of
camera pose parameters from neighboring patches.

As one can realize, many elements of the proposed method
are intended as the solution to the challenges associated with
the considered context. First, in order to address the spatial shift
between datasets caused by the differences of points of view
and fields of view, a coarse registration is carried out. It relies
on using buildings as primitives, which is a relevant choice of
primitive considering the low density of airborne LiDAR point
cloud around vertical surfaces. Then, the differences of spatial
resolution and level of detail between datasets have been dealt
with by the SR approach. An area-based fine registration using
MI or NCMI measurement is carried out to finely tune the opti-
mal local transformation model. Overall, as highlighted by the
comprehensive spatial discrepancy assessments, the proposed
method has achieved a very high registration accuracy. It is
especially desirable when taking into account the difficulties
of the considered context, and the horizontal accuracy of the
datasets.

It is suggested that only one registration approach is not
sufficient to register the data accurately from heterogeneous
sensors, even when they are rigidly fixed to the same platform
[14]. In this article, we proposed a coarse-to-fine registration
method consisting of two steps of registration. It reinforces
the relevance of a coarse-to-fine approach for registering an
optical aerial/satellite imagery with an airborne LiDAR dataset.
Nevertheless, it can be anticipated that the proposed approach
could have limitations to operate in an environment lacking of
man-made objects providing reliable primitives, such as forest
and desert areas. Thus, a study on the relevance and reliability
of primitives found on these environments is necessary for an
effective solution therein. However, if we could carry out the
coarse registration with manual control points, the proposed
subsequent fine registration would not be limited and can be well
carried out on these scenes. Finally, with these promising results,
the reported research has established a basis for a comprehensive
fusion of aerial/satellite optical imagery and airborne LiDAR
data in future researches.
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