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Abstract—Land surface temperature (LST) is a key parame-
ter in numerous thermal environmental studies. Due to technical
constraints, satellite thermal sensors are unable to supply thermal
infrared images with simultaneous high spatial and temporal res-
olution. LST downscaling algorithms can alleviate this problem
and improve the spatiotemporal resolution of LST data. Spatial
nonstationary and spatial autocorrelation coexist in most spatial
variables. The spatial characteristics of the LST should be fully
considered as a spatial variable in the downscaling process. How-
ever, previous studies on LST downscaling considered only spatial
nonstationary, and spatial autocorrelation was neglected. In this
article, we propose a new algorithm based on the geographically
weighted autoregressive (GWAR) model for LST spatial downscal-
ing. The digital elevation model and normalized difference build-up
index were chosen as explanatory variables to downscale the spatial
resolution of the moderate resolution imaging spectroradiometer
LST data from 1000 to 100 m, and Lanzhou and Beijing were
taken as the study areas. The performance of the GWAR model
was compared with that of the thermal data sharpening (TsHARP)
model and the geographically weighted regression (GWR) model.
The Landsat 8 LST was used to verify the downscaled LST.
The results indicate that the GWAR-based algorithm outperforms
the TsHARP- and GWR-based algorithms with lower root mean
square error (Beijing: 1.37 °C, Lanzhou: 1.76 °C) and mean abso-
lute error (Beijing: 0.86 °C, Lanzhou: 1.33 °C).

Index Terms—Geographically weighted autoregressive
(GWAR), land surface temperature (LST), Landsat 8, moderate
resolution imaging spectroradiometer (MODIS), spatial
downscaling.

I. INTRODUCTION

LAND surface temperature (LST) is one of the key parame-
ters that influences the environment and ecological systems
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and is involved in many land surface processes [1]. LST is widely
used in soil moisture studies [2], surface urban heat island and
environment monitoring [3], [4], environmental biogeochemical
process simulation [5], and climate change assessment [6]. In re-
cent years, greater attention has been focused on the importance
of LST.

It is difficult to obtain the spatial and temporal distributions
of LST at regional and global scales using conventional ground
observation. Thermal infrared remote sensing can detect and de-
scribe the spatial differences and diversities of LST dynamically
and macroscopically [7]. Research study on the urban thermal
environment requires LST data with high spatial and temporal
resolutions. Because the spatial and temporal resolutions of the
thermal infrared data are inconsistent, it is difficult to obtain data
with both high spatiotemporal resolution, i.e., high temporal
resolution is connected with low spatial resolution and vice
versa. For example, the spatial resolutions of the Advance Space-
borne Thermal Emission and Reflection Radiometer, Thematic
Mapper, Enhanced Thematic Mapper Plus, and Operational
Land Imager (OLI) are much higher (30 m and 15 m), but
their imaging frequency is much lower at 16 days [8]–[12].
Furthermore, the impact of clouds also reduces the probability of
acquiring clear data. Other types of thermal infrared data with
a lower spatial resolution and higher temporal resolution are
available, such as moderate resolution imaging spectroradiome-
ter (MODIS) and advanced very high-resolution radiometer.
These satellite systems can image the entire earth every 1–2
days, but the spatial resolution is limited to 250 m [13]–[16].
To obtain high-resolution spatiotemporal data, it is necessary to
process thermal infrared data using selected methods, and LST
downscaling is one of these effective methods [17], [18]. LST
downscaling combines the images obtained from the same or
different sensors to obtain LST images with finer spatiotemporal
resolution [16], [19].

Zhan et al. divided the disaggregated LST into two sub-
branches, including thermal sharpening and temperature un-
mixing. Among these, LST downscaling belongs to the thermal
sharpening type [16]. According to the physical significances of
keeping images or not, the downscaling models can be roughly
divided into image fusion and relationship invariant models.
The image fusion model fuses the high-resolution data with
coarse- and medium-resolution thermal infrared data to obtain
data with high resolution. Two types of fusion methods exist.
One type of model is the linear model. In the linear model, the
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reflectance of the high-resolution image is calculated from the
linear model, which is generated in the low-resolution image
to obtain a reflectance image with finer resolution [20]. Gao
et al. [21] proposed a spatial and temporal adaptive reflectance
fusion model (STARFM) for fusion of the MODIS and Landsat
images with the assumption that the reflectance values of high-
and low-resolution images do not change if the land cover types
are not changed over time. Weng et al. [22] applied the STARFM
model proposed by Gao et al. to the thermal infrared band
and fused MODIS and Landsat data to obtain LST data with
the same spatial resolution as Landsat. Mingquan et al. [23]
proposed an improved spatial and temporal data fusion approach
to generate the synthetic daily normalized difference vegetation
index (NDVI) and validated the results of this method using the
veritable MODIS NDVI time series. The second model is the
unmixing model, which is based on the linear mixing theory.
This model assumes that the mixed responses of each land
cover type combine the reflectivity of each low-resolution spatial
pixel to disaggregate the coarse resolution images via a linear
mixed model [24], [25]. Zhukov et al. [26] used the moving
window to find similar pixels and fused multisensor image data
with different resolutions using the unmixing model. Maselli
[27] used the Euclidean distance to calculate the weights of
different coarse-resolution image pixels, subsequently estimated
the average of the reflectivity of each land cover type in the entire
image, and finally analyzed the obtained images.

Another proposed method obtains the spectral characteristics
and physical meaning between the downscaled LST and the
original LST. This method includes three types: spectral meth-
ods, modulation method, and statistical regression. The methods
assume that there are many invariant spatial relationships in
the process of downscaling [28]. Kustas et al. [29] proposed
the DisTrad algorithm, which assumed that the relationship
between LST and NDVI is scale invariant. To downscale LST,
Agam et al. proposed the thermal data sharpening (TsHARP)
algorithm, which is generated based on the DisTrad algorithm.
The TsHARP method added different regression relationships
to improve the downscaling results [30], [31]. Qiu et al. [32]
proposed a refinement spectral index in the DisTrad model,
which showed that the LST downscaling model is more robust by
the performance of enhanced vegetation index for LST subpixel
mapping. Pan et al. proposed a new model to downscale the
LST, which used the normalized difference water index (NDWI),
normalized difference sand index, and normalized difference
build-up index (NDBI) to downscale the LST. The model can
be further applied in middle-high and middle-low spatial reso-
lutions [33]. To improve the downscaled performance, certain
studies have considered nonlinear regression methods between
LST and other explanatory variables. Bindhu et al. proposed
the nonlinear disaggregated model (NL-DisTrad) and added an
artificial neural network model to generate the residual at coarse
resolution to downscale the LST and estimate evapotranspiration
[34]. Hutengs and Vohland [35] and Yang et al. [36] used the
random forest model to describe the relationship between the
LST and explanatory variables to downscale the LST.

The above-mentioned methods are based on global charac-
teristics. In recent years, selected scholars have studied the

local characteristics between variables and began to consider the
spatial nonstationary between the LST and auxiliary parameters
[37], [38]. Zakšek and Oštir [4] used a moving window method
to improve the spatial resolution of SEVIRI-LST data to 1000 m.
Duan and Li introduced the geographically weighted regression
(GWR) model into LST downscaling and compared it with
the TsHARP-based global model. The results showed that the
GWR model performed better than the traditional global model
[39]. Pereira et al. [40] used ASTER thermal infrared data,
multispectral data, and NDVI data to perform LST downscaling
using the geographically weighted regression kriging (GWRK)
method and achieved better downscaling results. Peng et al. used
a method based on the geographically and temporally weighted
regression (GTWR) model to downscale the MODIS LST data
from 1000 to 100 m and compared it with the GWR model. The
results of the GTWR-based algorithm were superior to those
of the GWR-based algorithm [41]. The current local models
for LST downscaling mainly consider the spatial nonstationary,
whereas the spatial autocorrelation of LST is ignored.

Based on the abovementioned problems and with considera-
tion of both spatial nonstationary and spatial autocorrelation, we
proposed a new algorithm based on the geographically weighted
autoregressive (GWAR) model for LST spatial downscaling.
First, we analyzed the spatial autocorrelation of LST. Second, by
comparing the results of the digital elevation model (DEM) and
NDBI as the explanatory variables and the DEM and NDVI as
the explanatory variables, we chose the DEM and NDBI as the
explanatory variables and downscaled the MODIS LST spatial
resolution from 1000 to 100 m. Finally, the downscaling results
of the GWAR-based algorithm was compared with the down-
scaling results of the TsHARP and GWR-based algorithms, and
the Landsat 8 LST to verify the downscaling LSTs.

II. STUDY AREA AND DATASETS

A. Study Area

This study selected two Chinese cities with different topo-
graphical features as the study areas. Fig. 1 shows the geograph-
ical location of two study areas and two false-color images of
Landsat 8 images over the study areas.

Study area A belongs to the Beijing municipality of China.
The longitude and latitude range from 116°0′18′′ to 116°41′14′′E
and from 39°45′01′′to 40°14′17′′N, respectively. The annual
temperature, annual precipitation, and meaning elevation of this
area are approximately 12 °C, 700 mm, and 80 m, respectively,
in study area A. Area A is mainly characterized by an impervious
surface, vegetation, water, and bare soil.

Study area B belongs to the Lanzhou city of Gansu Province,
located in Northwest China. The study area covers 1500 km2

with the latitude from 35°56′14′′ to 36°17′60′′N and the lon-
gitude from 103°32′56′′ to 103°59′18′′E. The annual average
temperature is approximately 10 °C in this area, but the tem-
perature of this area varies greatly between summer and winter.
The average temperature of the coldest month is approximately
−7 °C and that of the hottest month is approximately 30 °C. This
area has a large fluctuation in elevation, from 1500 to 2800 m.
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TABLE I
CHARACTERISTICS OF THE LANDSAT 8 AND MODIS DATA COLLECTED IN THIS STUDY

Fig. 1. Locations of the study areas with false-color images generated from
Landsat 8 data (R: band 5, G: band 4, and B: band 3).

Area B is characterized by bare soil, water, vegetation, and an
impervious surface.

B. Datasets and Preparation

In this study, we chose the Shuttle Rader Topography Mission
(SRTM) DEM images covering Lanzhou and Beijing. Table I
shows the main characteristics of these images in the two study
areas. As shown in Table I, there is approximately half an hour
between the acquisition times of the MODIS and Landsat 8 im-
ages. Because of the short time difference, the solar geometries,
orbital parameters, and the viewing (near-nadir) of the MODIS
Terra platform are highly similar to those of the corresponding
Landsat 8 [41].

1) Landsat 8 Data: Landsat 8 was launched by the National
Aeronautics and Space Administration (NASA). Two sensors
are carried by the Landsat 8 satellite, Thermal Infrared Sensor

(TIRS) and OLI. The website of the Institute of Remote Sensing
and Digital Earth Chinese Academy of Science1 can download
the Landsat 8 data. Preprocessing of downloaded Landsat 8 data
is performed mainly by ENVI 5.1 software. First, radiometric
calibration is used to convert the digital number of images to an
absolute radiance value, with the aim of eliminating the error of
the sensor itself. The next step is an atmospheric correction, a
process that converts the radiance to actual surface reflectivity.
Atmospheric correction eliminates the errors caused by the scat-
tering, absorption, and reflection of the atmosphere. Finally, the
images are cut to obtain the range of study. The Landsat 8 NDVI
and NDBI are the explanatory variables for LST downscaling.
The equations of NDVI and NDBI are written as follows:

NDVI =
RNIR −RRED

RNIR +RRED
(1)

NDBI =
RSWIR1 −RNIR

RSWIR1 +RNIR
(2)

where RNIR, RRED, and RSWIR1 are the reflectance values of
the near-infrared band, red band, and the first shortwave infrared
band, respectively, and these bands correspond to Band 5, Band
4, and Band 6 of Landsat 8, respectively.

In this article, the Landsat 8 LST was used to verify the
downscaled LSTs. Many methods are used to retrieve the LST
from the satellite thermal infrared images. Due to the uncertainty
of the Landsat 8 TIRS Band 11, the TIRS band 10 is used to
estimate the LST through calibration notices published by the
United States Geological Surface [42]. Therefore, we used the
Landsat 8 Band 10 to retrieve the LST via the monowindow
algorithm. Qin et al. [43] proposed the monowindow algorithm
for retrieval of the LST with one thermal band. The monowindow
algorithm is shown in the following equation: (3) shown at the
bottom of this page, where Ts, T10, and Ta represent the LST,
the brightness temperature of Landsat 8 TIRS Band 10, and the
effective mean atmospheric temperature, respectively; and a10
and b10 are the constants, and their values for the Landsat 8 TIRS
Band 10 are given in Table II [43]. The values of C10 and D10

1[Online]. Available: http://www.gscloud.cn

TS =
a10 (1− C10 −D10) + [b10 (1− C10 −D10) + C10 +D10]T10 −D10 Ta

C10
(3)

http://www.gscloud.cn
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TABLE II
DETERMINATION OF COEFFICIENTS a10 and b10[46]

can be calculated by the following equations:

C10 = ε10 τ10 (4)

D10 = (1− τ10) [1 + (1− ε10) τ10] (5)

where ε10 and τ10 represent the land surface emissivity and at-
mospheric transmittance, respectively. Three critical parameters
are used to retrieve LST through the monowindow algorithm: the
effective mean atmospheric temperature, land surface emissiv-
ity, and atmospheric transmittance [44], [45]. Among these, the
effective mean atmospheric temperature is commonly used to
estimate the upwelling atmospheric radiance. The near-surface
temperature is obtained based on 15 local meteorological sta-
tions. The near-surface temperature is used to obtain the effective
mean atmospheric temperature using a linear equation [46]. Two
steps are applied to estimate the land surface emissivity. The first
step uses the land cover map to distinguish different land cover
types with a spatial resolution of 30 m. The second step uses
the NDVI threshold method to estimate land surface emissivity
[47]. The atmospheric transmittance is obtained from many
factors, such as water vapor, aerosol, wavelength, and ozone.
Among these, the atmospheric is the most important factor in
determining the atmospheric transmittance and the derivation
of atmospheric transmittance for Landsat 8 TIRS band in [46,
Table 5].

When the error of the water vapor content and land surface
emissivity is moderate, the accuracy level of the monowindow
algorithm is approximately 1.4 K [42]. The mean error between
the MODIS LST and in situ measured LST and Landsat 8 LST
retrieved by the monowindow algorithm is approximately 1.6 K
[48]–[50].

2) MODIS LST Data: The MODIS LST product
(MOD11_L2, 1 km, collection 6) can be downloaded from
the Reverb website.2 The MODIS images must be registered
to a UTM WGS 1984 reference system by the MODIS
Reprojection Tool and georeferenced. The spatial resolution of
the MOD11_L2 product is 1000 m. The LST was retrieved by the
split-window algorithm, and the error is approximately 1 K [51]–
[53]. The MODIS LST product with 1000 m spatial resolution
was used as the auxiliary data for LST downscaling in this study.

3) DEM Data: The SRTM is an international project spear-
headed by the National Geospatial Intelligence Agency and the
NASA. The SRTM can supply DEM from 56 S to 60 N with
finer resolution. In this study, the DEM images were downloaded

2[Online]. Available: http://reverb.echo.nasa.gov

from the website3 with 90-m spatial resolution. The DEM data
with spatial resolutions of 100 and 1000 m are the explanatory
variables used to downscale the LST in this study.

III. METHODOLOGY

A. Describing the GWAR Model

The GWR model extends the traditional regression model and
is effective in describing the local regression relationship. The
GWR model can estimate local parameters rather than global
parameters in the regressive relationships [54] and can describe
the nonstationary relationship between the explanatory variables
and the explained variables by estimating the local regression
coefficients.

A potential interdependence can occur between certain spatial
variables in the same distribution area, which is known as
spatial autocorrelation. The spatial autoregressive (SAR) model
adds the independent variable W̄Y into a linear regression
relationship, and this variable is used to explain the spatial
autocorrelation [55].

Spatial nonstationary and spatial autocorrelation are always
related in the context of modeling, and thus we could combine
these two features into a mixed model. [56]. The GWAR model
combines the GWR model with the SAR model. By adding the
spatial autocorrelation into the GWR-based model, the com-
bined model can reduce unstable estimates. The GWAR model
can be expressed as follows [57]:

yi = β0(ui, vi) +

p∑

k=1

βk(ui, vi)xik + ρ(ui, vi)W̄iY + εi

(6)
where (ui, vi) denotes the coordinates of point i in space; yi and
xik are the explained variable and the kth explanatory variable at
point i, respectively; β0(ui, vi) is the intercept, and βk(ui, vi) is
the local coefficients estimated of the independent xik at point i;
ρ(ui, vi) is a autoregressive parameter to be estimated at point i;
W̄i is a spatial adjacency matrix that contains nonnegative
elements of neighboring properties whose diagonal elements
are zeros to prevent each observation from predicting itself; the
parameter ρ(ui, vi) represents different geographical locations
and affects the Y-variable in the spatial diffusion process; Y
is the spatial sample of observations; and εi is the regression
residual at point i.

The parameters β0 and βk in (6) are calculated as follows:

β̂ (ui, vi) = (XTW (ui, vi)X)−1XTW (ui, vi)Y (7)

where β̂(ui, vi) is the unbiased estimate of the regression coef-
ficient β; X and Y represent the vectors for the explanatory and
explained variables, respectively; andW (ui, vi) is the weighting
matrix used to ensure that observations near the specific point
have larger weighted values. Four different kernel functions can
estimate the W (ui, vi). In this article, we selected the Gaussian
function to calculate the weights, and thus W (ui, vi) can be
obtained as follows:

Wij = exp

(
−dij

2

b2

)
(8)

3[Online]. Available: http://www.gscloud.cn

http://reverb.echo.nasa.gov
http://www.gscloud.cn
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Fig. 2. Schematic of the GWAR-based LST downscaling algorithm.

where dij is the Euclidean distance between the points i and j,
and b is the adaptive kernel bandwidth. The cross-validation
method of local regression analysis is used to calculate the
bandwidth [57]. The formula of this method is written as follows:

CV =
1

n

n∑

i=1

[yi − ŷ �=i(b)]
2 (9)

where the ȳ �=i(b) represents the predicted value of yi from the
GWAR model.

B. GWAR-Based LST Downscaling Algorithm

It is important to choose the appropriate explanatory variables
in the downscaling process. Many factors should be involved in
the modeling process, including solid moisture, solar radiation,
and land cover. [58]. Nevertheless, the selection of all of these pa-
rameters is difficult and unrealistic. In previous research studies,
scholars focused greater attention on the relationship between
NDVI and LST. However, due to the complex relationship
between the LST and NDVI, the downscaled results are poor
with a wide range of soil moisture [59].

DEM and NDBI were chosen as the explanatory variables in
this article. The NDBI represents the built-up area, which is an
important land cover type. The NDBI can describe the urban
spatial extent and intensity of development and is an indicator
of the urban impervious surface [60]. Elevation is recognized
as a crucial factor in characterizing the variations of LST. The
longitude and latitude reflect the influence of moisture on LST
from different areas and the difference in solar radiation, respec-
tively. In other words, the longitude and latitude are related to
the LST [39]. Because these two parameters were input into the

GWAR model, the parameters were not selected as explanatory
variables.

Fig. 2 shows the schematic of the GWAR-based LST down-
scaling algorithm. We summarized the specific steps as follows:

1) The DEM and NDBI were aggregated to 1000 and 100
m. DEM and NDBI with a spatial resolution of 1000 m
represent the MODIS LST pixel resolution, and DEM and
NDBI with a spatial resolution of 100 m represent the ex-
planatory variables at the Landsat 8 LST pixel resolution.

2) We use the GWAR model to establish a regression rela-
tionship between the MODIS LST, NDBI, DEM images,
and the SAR variables at a spatial resolution of 1000 m,
which can be expressed as follows:

LST1000
i = β1000

0 (ui, vi)+ β1000
1 (ui, vi) NDBI1000i

+ β1000
2 (ui, vi) DEM1000

i

+ ρ1000
(
ui, vi)�LST1000

�=i + ε1000i . (10)

In formula (10),LST1000
i denotes MODIS LST at point iwith

a spatial resolution of 1000 m; NDBI1000i is the aggregated
Landsat 8 NDBI; DEM1000

i is the aggregated DEM at the
point iwith a spatial resolution of 1000 m; ω̄LST1000

�=i denotes the
autoregressive variable and represents the LST of the surround-
ing observations that affect point i; β1000

0 (ui, vi), β1000
1 (ui, vi),

β1000
2 (ui, vi), ρ1000(ui, vi), and ε1000i are the intercept, local

coefficients, autoregressive coefficient, and residual of the re-
gression location i at a spatial resolution of 1000 m at point i,
respectively; and LST1000

�=i is the influence of the surrounding
observation points not including the point i.
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Fig. 3. Distribution of LST in Beijing.

1) Duan and Li [39] proposed that the ordinary kriging
interpolation method is more suitable for improving the
accuracy of LST downscaling than the simple spline ten-
sion interpolation method. Therefore, the ordinary kriging
interpolation method is used in this article to interpolate
the spatial resolution of the residual and variables from
1000 to 100 m.

2) Kustas et al. [29] indicated that certain relationships exist
between NDVI and LST, and these relationships are invari-
able in different spatial resolutions. Zhan [16] indicated
that the relationship established at the lower spatial reso-
lution could be directly used at a higher resolution. Many
studies showed that the relationship between LST and the
explanatory variables is independent with spatial resolu-
tion [28], [30], [58], [59]. In this article, we assumed that
the relationship between LST and the independent vari-
ables with a spatial resolution of 1000 m is scale-invariant,
and based on this assumption, the relationship between
LST with DEM, NDBI, and autoregressive variable in a
100-m spatial resolution can be written as follows:

LST100
i = β100

0 (ui, vi)+ β100
1 (ui, vi) NDBI100i

+ β100
2 (ui, vi) DEM100

i

+ ρ100
(
ui, vi)�LST100

�=i + ε100i (11)

where LST100
i is the downscaled LST with a spatial

resolution of 100 m at point i, and LST100
�=i represents that

the LST of point i is not included in the autoregressive
variables.

We use the TsHARP- and GWR-based algorithms to compare
with the abovementioned GWAR-based algorithm. In this study,
we used the coefficient of determination (R2), root mean square
error (RMSE) and mean absolute error (MAE) to verify the
downscaled results. Higher R2 and lower RMSE and MAE
represent better downscaled results.

IV. RESULTS AND DISCUSSION

A. Spatial Autocorrelation Analysis of LST

The spatial autocorrelation is defined as potential interdepen-
dence between the spatial variables in the spatial distribution
area, i.e., the value of the spatial variable is always connected to
the values of the same variable at the adjacent location. Spatial
autocorrelation is caused by intrinsic relevancy between the
spatial variables.

Fig. 3 presents the distribution of LST in Beijing. To observe
the details of the spatial distribution, (1)–(4) in Fig. 3 indicate
four enlarged portions of the LST image. Additionally, (1)–(4)
display a strong spatial dependence and pixels with similar LST
cluster together. Higher LST (red spots) is surrounded by high
LST (orange spots), and similarly, lower LST (blue spots) is
surrounded by low LST (light blue spots). High temperature (red
spots) is connected to low temperature (blue spots) by the middle
temperature (yellow spots). The LST distribution of Lanzhou has
the same distribution as that of Beijing.

Moran’s I is an index that is always used to analyze spatial
autocorrelation. Moran’s I measures the relationship between
the adjacent spatial attributes. Values of Moran’s I range from
−1 to 1. Moran’s I greater than 0 indicates positive spatial
correlation, and the larger the value, the more obvious the spatial
autocorrelation. In contrast, Moran’s I less than 0 indicates
negative spatial correlation, and the smaller the value, the greater
the spatial difference. If Moran’s I is equal to 0, the data present
a random distribution. Moran’s I is defined as follows:

Moran’s I =
n∑∑
Wij

∑∑
Wij

(
Xi −X

) (
Xj −X

)

∑(
Xi −X

)2
(12)

where n is the number of total elements, and Xi denotes
observation of the variable at point i, X̄ denotes the aver-
age of variable X , and Wij is the spatial weight function,
which represents the position relationship between the observed
values [55].
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TABLE III
STATISTICS OF THE SAR PARAMETERS

Two important indicators in spatial statistics are the p-value
and z-score. The p-value represents the probability that the spa-
tial variable is caused by a random process, and the expression
of the p-value is different according to different distributions of
data. Usually, if the p-value is less than 0.05, it indicates that
the data were not generated randomly and that the data have im-
portant research significance. The z-score represents a multiple
of the standard deviation, and it can reflect the dispersion and
clustering of the data. The z-score can be a positive or a negative
value. The equation of the z-score is given as follows:

Z =
x− μ

σ
(13)

where x and μ are the primitive value and the average value,
respectively, and σ is the standard deviation. In general, a z-
score greater than +2.5 indicates that the dataset is clustered,
whereas a z-score that is less than −2.5 indicates that the dataset
is dispersed.

In Table III, the p-values of these two areas are 0.00, which
proves that these two datasets are impossible to be generated
randomly. The z-scores are 35.75 °C (Beijing) and 59.88 °C
(Lanzhou), which show that the datasets are highly spatially
clustered. The Moran’s I values are 0.71 (Beijing) and 0.97
(Lanzhou), indicating that the LST has a strong positive spatial
autocorrelation and is highly clustered in the study areas.

In terms of spatial variables, spatial nonstationary and spatial
autocorrelation of LST coexist. Therefore, we should not only
examine the spatial nonstationary of LST but also focus attention
on the spatial autocorrelation in the process of LST downscaling.

B. Regression Analysis and Selection of Explanatory Variables

The TsHARP is a traditional LST downscaling algorithm. The
GWR-based algorithm is a local model for spatial downscaling
that improves the spatial resolution of the LST data and has
better downscaled results than the traditional TsHARP algorithm
[39]. The GWAR-based downscaling algorithm adds spatial
autocorrelation to the GWR model and is mainly compared with
the GWR-based algorithm.

Fig. 4 shows the R2 of the GWR and GWAR models at a
1000-m spatial resolution. The GWR and GWAR models using
the DEM and NDBI as the explanatory variables are denoted as
GWR_BD and GWAR_BD, respectively, and these two models
using the DEM and NDVI as explanatory variables are denoted
by GWR_VD and GWAR_VD, respectively. First, the R2 values
of the GWAR_BD and GWR_BD model are 0.96 and 0.91 in
Beijing and 0.92 and 0.84 in Lanzhou, respectively. The R2

values of the GWAR_VD and GWR_VD models are 0.92 and

Fig. 4. Coefficient of determination (R2) of the regression models with a spatial
resolution of 1000 m.

0.87 in Beijing and 0.86 and 0.80 in Lanzhou, respectively. When
the explanatory variables are the same (DEM and NDBI or DEM
and NDVI), the regression results of the GWAR model are better
than those of the GWR model at coarse resolution. Second,
the R2 values of GWAR_BD and the GWAR_VD are 0.96 and
0.92 in Beijing and 0.92 and 0.86 in Lanzhou, respectively. In
these two areas, the R2 of the variable combination of DEM
and NDBI is significantly increased compared with the variable
combination of DEM and NDVI using the same model.

Habin et al. compared the NDVI and NDBI as an index to
research the surface urban heat island. The results indicated that
with changing of the season, the linear relationship between LST
and NDBI is stronger than the relationship between LST and
NDVI [61]. Govil et al. [62] proved that the NDBI is better suited
to downscaling LST than the normalized multiband drought
index (NMDI), NDVI, and NDWI in almost every season. The
relationship between the LST and NDVI is nonlinear and is
strongly affected by season, whereas the relationship between
LST and NDBI shows a linear pattern in every season. When
the season changes, the relationship between LST and NDBI is
more stable than the NDVI.

Fig. 5 shows the Landsat 8 NDVI and NDBI with MODIS
LST at a spatial resolution of 1000 m in Lanzhou. As shown
in Fig. 5(a), when the NDVI is greater than 0, the relationship
between the LST and NDVI is negative and linear. However, the
relationship of LST and NDVI shows a triangular relationship in
the entire study area. Comparing Fig. 5(a) and (b), the Landsat
NDBI is more connected with the MODIS LST with higher R2

(0.70) than Landsat NDVI (R2: 0.47). Normally, the LST and
the water surface have no linear relationship with NDVI, and
therefore, the water areas have a higher error [63]

Therefore, we conclude that first, the relationship between
NDBI and LST has a more stable linear correlation than the
NDVI and LST when the time and season change, and sec-
ond, the relationship between NDVI and LST is not a linear
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Fig. 5. Scatterplots and regression relationship between (a) Landsat NDVI and (b) Landsat NDBI with MODIS LST at a 1000-m spatial resolution.

Fig. 6. Spatial distribution of the kriging-interpolated regression coefficients and residual for the GWAR-based algorithm in Beijing. (a) Intercept (β0). (b) Slope
of NDBI (β1). (c) Slope of DEM (β2). (d) Slope of autoregressive (ρ). (e) Residual (ε).

relationship in the high soil water content, bare soil, and other
land cover types. In analyzing the above-mentioned points,
the GWAR-based algorithm using the DEM and NDBI as the
explanatory variables is more suitable for describing the MODIS
LST distribution in the study areas.

Local parameters offer an effective method for analyzing the
spatial relationship between the explained variable and explana-
tory variables. Figs. 6 and 7 show the spatial patterns of the
kriging-interpolated regression coefficients and residual for the
GWAR-based algorithm (the explanatory variables are DEM and
NDBI) in Beijing and Lanzhou. The spatial heterogeneity is
shown by the spatial distribution of the parameters.

In Figs. 6(a) and 7(a), the slope of the intercept ranges are
26–32 °C and 41–54 °C in Beijing and Lanzhou, respectively. In

Fig. 6(b), the slope of NDBI is 4–12 °C. The value in the middle
of the study area is larger than at the edge, and thus the influence
of NDBI is higher in the middle than at the edge in Beijing. This
may be related to the large number of building in the middle
of Beijing. Because the terrain is relatively flat in Beijing, the
slope of the DEM has a small fluctuation. However, the slope
of the autoregressive [see Fig. 6(d)] has a larger range and an
uneven regional distribution. In the southwest, the autoregressive
is positive, but it is negative in the southeast. The result indicates
that the spatial autocorrelation is uneven in different regions,
which might be caused by the different land cover types.

In Lanzhou (see Fig. 7), the images are relatively smoother.
The slope of NDBI has a large range of 33–57 °C, and that in the
northeast is larger than in the southwest. The slope of the DEM
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Fig. 7. Spatial distribution of the kriging-interpolated regression coefficients and residual for the GWAR-based algorithm in Lanzhou. (a) Intercept (β0).
(b) Slope of NDBI (β1). (c) Slope of DEM (β2). (d) Slope of autoregressive (ρ). (e) Residual (ε).

TABLE IV
STATISTICS OF KRIGING-INTERPOLATED REGRESSION COEFFICIENTS AND RESIDUAL FOR THE GWAR MODEL

also has an uneven distribution, and that of the north is obviously
larger than that of the south. The slope of the autoregressive
shows the same phenomenon in that the different regions have
an uneven distribution. In these two areas, the distribution of
the residual [see Figs. 6(e) and 7(e)] is uneven, but both of the
residuals range from −2 to 2 °C. The spatial distributions of
these kriging-interpolated regression coefficients and residuals
are uneven, showing that study of the spatial characteristics is
important.

Table IV summarizes the min, max, and mean of the param-
eters presented in Figs. 6 and 7. Observing and analyzing the

values of these variables indicate that the relationship between
DEM and Landsat 8 NDVI with MODIS LST shows spatial het-
erogeneity and spatial autocorrelation. Therefore, it is necessary
to consider both spatial nonstationary and spatial autocorrelation
in the process of LST downscaling.

C. Analysis of the Downscaled Results

1) Analysis of the Relationship Between Landsat 8 LST
and MODIS LST: The Wan refinements and validation of
the collection-6 MODIS LST indicated that the collection-6
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TABLE V
LINEAR RELATIONSHIP BETWEEN MODIS LST AND LANDSAT 8 LST AT A

1000-M SPATIAL RESOLUTION, MODEL: LSTMODIS = a∗ LSTLandsat + b

products are much better than the collection-5 products and
that the mean error is less than 1 K in most sites [64]. A large
quantity of research studies have indicated that if no ground
observation data are available, then the accuracy of the MODIS
LST product inversion can be used to validate the accuracy of
LST [65]–[67]. In this article, we used the collection-6 MODIS
LST to analyze the relationship between MODIS LST and
Landsat LST. Table V shows the linear relationship between
MODIS LST and Landsat 8 LST at a 1000-m spatial resolution
with a model: LSTMODIS = a∗ LSTLandsat + b.

In these two datasets, the Landsat 8 LST generally agrees
with the MODIS LST at a 1000-m spatial resolution. In both
of these study areas, the R2 reaches 0.90 and the RMSEs are
less than 2 °C (1.82 and 1.97 °C). Duan and Li [39] used the
ASTER LST product as reference LST data to evaluate the
performance of the GWR-based LST downscaling algorithm and
reported that the RMSE between ASTER LST and MODIS LST
is approximately 2.1 K. The RMSE between Landsat 8 LST and
the MODIS LST at a 1000-m spatial resolution is lower than that
of the MODIS LST and ASTER LST. Hutengs and Vohland [35]
indicated that the RMSE between Landsat 8 LST and MODIS
LST is approximately 1.2 °C and is higher than the RMSE
between MODIS LST and Landsat 7 LST. Peng et al. [41] used
the Landsat 8 retrieved LST as the reference LST to compare
the results of different algorithms. Therefore, the accuracy of
Landsat 8 LST could be used to verify the downscaled LSTs. In
this article, we used the Landsat 8 retrieved LST as the reference
to verify the downscaled LSTs.

2) Evaluating the Accuracy of Downscaled LST Data: In
this study, the combinations of DEM and NDBI and DEM and
NDVI were used as the explanatory variables for the experiment.
We compared the GWAR-based algorithm with the traditional
global TsHARP- and local GWR-based algorithms. Figs. 8 and
9 show the MODIS LST, Landsat 8 LST, and the downscaled
LSTs of all algorithms. Figs. 8(a) and 9(a) show the MODIS
LST at a 1000-m spatial resolution in Beijing and Lanzhou,
respectively. As shown in MODIS LST at a 1000-m spatial
resolution [see Figs. 8(a) and 9(a)], the demarcation of the land
cover types is blurred, and selected types cannot be judged
accurately. Figs. 8(b) and 9(b) present the Landsat 8 LST at
a 100-m spatial resolution. Figs. 8(c) and 9(c) show the down-
scaled LST of the TsHARP algorithm at a 100-m spatial reso-
lution. GWAR_VD and GWR_VD denote the DEM and NDVI

as the explanatory variables for LST downscaling. Similarly,
GWAR_BD and GWR_BD denote the DEM and NDBI as the
explanatory variables for LST downscaling. Figs. 8(d)–(g) and
9(d)–(g) show the downscaled LSTs at a 100-m spatial resolution
of the GWR_VD-based, GWAR_VD-based, GWR_BD-based,
and GWAR_BD-based algorithms from these two study areas,
respectively.

Comparing the LST images, the spatial distribution of the
downscaled LSTs is consistent with the Landsat 8 LST. The
results of TsHARP algorithm [see Fig. 8(c) and 9(c)] contain
a boxy artifact in both areas. This phenomenon is caused by
the LST variability in soil moisture in the coarse resolution
images, but the LST downscaling process of the TsHARP al-
gorithm does not consider this problem [68]. The downscaled
LSTs of the GWR_VD- and GWR_BD-based algorithms [see
Figs. 8(d) and (f) and 9(d) and (f)] have a smoothing effect.
Two possible reasons can explain this phenomenon. A common
problem exists in the regression process that is based on the
minimum mean square error, which underestimates the high
values and overestimates the low values, and in the process of
spatial aggregation, the NDBI, NDVI, and DEM from 100 m or
90 m to 1000 m are replaced by the average of the surrounding
pixel, which causes loss of the detailed information in NDBI,
NDVI, and DEM, as also reported by in related studies [39], [41],
[69]. For the algorithm with the same explanatory variables [see
Fig. 8(d)– (g)], the downscaling LST results of the GWAR-based
algorithm showed more spatial details than the GWR-based
algorithm. Fig. 9(e) and (g) used the GWAR-based algorithm;
Fig. 9(e) used the DEM and NDVI as the explanatory variables,
whereas Fig. 9(g) used the DEM and NDBI as the explanatory
variables. Comparing these two images, Fig. 9(e) shows that
the areas with rivers and lakes, etc., are not well reconstructed,
but Fig. 9(g) is closer to the Landsat 8 LST. The reason for
this observation is that the GWAR_VD-based algorithm cannot
capture the triangular relationship between NDVI and LST in
the soil moisture and areas with a wide range of vegetation.
Because autocorrelation is considered and the DEM and NDBI
are used as the explanatory variables, the smoothing effect of
the GWAR-based algorithm is alleviated, and the downscaled
results are better in the full soil moisture content. Therefore,
the GWAR algorithm with the explanatory variable combination
of DEM and NDBI reflects more spatial details and has better
downscaled results than the other algorithms.

The RMSE and MAE values between the downscaled LSTs
and Landsat 8 LST of Beijing and Lanzhou are shown in Ta-
ble VI and Table VII, respectively. The RMSE and MAE can be
calculated as follows:

RMSE =

√
1

n

∑n

i=1

(
LSTS −LSTR)

2 (14)

MAE =
1

n

n∑

i=1

|LSTS − LSTR| (15)

where n represents the amount of pixels, and LSTS and LSTR

are the downscaled LST and the reference LST (Landsat 8 LST),
respectively.



2542 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 8. Spatial distribution of LSTs in Beijing. (a) MODIS LST (1000 m). (b) Landsat 8 LST (100 m). (c) TsHARP downscaled LST (100 m). (d) GWR_VD
downscaled LST (100 m). (e) GWAR_VD downscaled LST (100 m). (f) GWR_BD downscaled LST (100 m). (g) GWAR_BD downscaled LST (100 m).

Fig. 9. Spatial distribution of LSTs in Lanzhou. (a) MODIS LST (1000 m). (b) Landsat 8 LST (100 m). (c) TsHARP downscaled LST (100 m). (d) GWR_VD
downscaled LST (100 m). (e) GWAR_VD downscaled LST (100 m). (f) GWR_BD downscaled LST (100 m). (g) GWAR_BD downscaled LST (100 m).
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TABLE VI
DOWNSCALING STATISTICS OF RMSE AND MAE BETWEEN LANDSAT 8 LST AND DOWNSCALED LSTS IN BEIJING

TABLE VII
DOWNSCALING STATISTICS OF RMSE AND MAE BETWEEN LANDSAT 8 LST AND DOWNSCALED LSTS IN LANZHOU

Fig. 10. Scatterplots and regression relationship between downscaled LSTs from the GWAR-based and Landsat 8 LST at a 100-m spatial resolution (a) in Beijing
and (b) in Lanzhou.

In these two areas, both the RMSE and the MAE of the
GWAR_BD-based algorithm are the lowest [RMSE: 1.37 °C
(Beijing) and 1.76 °C (Lanzhou), MAE: 0.86 °C (Beijing), and
1.33 °C (Lanzhou)]. The RMSE and MAE of the TsHARP-based
algorithm are the highest [RMSE: 2.53 °C (Beijing) and 3.46 °C
(Lanzhou), MAE: 2.04 °C (Beijing), and 2.94 °C (Lanzhou)].
The RMSE and MAE of the GWAR_BD-based algorithm are
lower than those of the TsHARP algorithm and that of the
GWR_VD algorithm and the GWAR_VD-based algorithm are
also lower than the GWR_BD-based algorithm. These results
indicate that with the same explanatory variables, the GWAR-
based algorithm is better than the GWR-based algorithm. The
RMSE and MAE of the GWAR_BD-based algorithm are lower

than those of the GWAR_VD-based algorithm, and that of
GWR_BD-based algorithm are also lower than the GWR_VD-
based algorithm. Therefore, when the algorithm is the same, the
explanatory variable combination of DEM and NDBI has better
downscaled results than the DEM and NDVI. Therefore, the
GWAR-based algorithm with the explanatory variables of DEM
and NDBI is more effective for LST downscaling in the study
areas.

Fig. 10(a) and (b) displays the scatterplot and regression
relationship comparison of the downscaled LSTs and Landsat 8
LST derived from GWAR-based algorithm, and the explanatory
variables are DEM and NDBI in the two study areas, Beijing and
Lanzhou, respectively. The relationship between the Landsat 8
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LST and downscaled LSTs can be represented clearly by the
scatterplot.

Fig. 10 shows scatterplots of the downscaled LST based on
the GWAR_BD algorithm and Landsat 8 LST in the two study
areas with a spatial resolution of 100 m. Fig. 10 indicates that
the scatter had a distribution closer to the 1:1 line and that
the R2 of Beijing and Lanzhou is 0.94 and 0.90, respectively,
which indicates that the proposed GWAR_BD-based algorithm
achieved the better result. Fig. 10 shows that the downscaled
LSTs based on the GWAR_BD algorithm are satisfactory in the
study areas.

V. CONCLUSION

LST is an important environmental variable, and LST data
at higher spatial resolution are favorable for research on en-
vironmental problems. In this article, we proposed a new LST
downscaling algorithm that uses the GWAR model to downscale
the spatial resolution of MODIS LST from 1000 to 100 m. We
chose DEM and NDBI as the explanatory variables to downscale
the LST and the TsHARP-based and GWR-based algorithms
as the comparison algorithms. In this article, Landsat 8 is the
reference LST used to verify the downscaled LST.

In this study, comparing the DEM and NDBI with the DEM
and NDVI as the explanatory variables, the downscaled results
indicated that the explanatory variable combination of DEM
and NDBI achieves better downscaled results than that of DEM
and NDVI. This result occurs because the relationship between
LST and NDVI is not a linear relationship in the mixed with
water, bare soil, and other land cover types. A larger error in soil
moisture content occurs when the DEM and NDVI are used as
the explanatory variables. In addition, the downscaled result of
the TsHARP algorithm contains boxy artifacts, and the result of
GWR-based algorithm has a smoothing effect. Calculating the
statistics of the RMSE and MAE between the Landsat 8 LST
and downscaled LSTs, the GWAR-based algorithm achieved the
lowest RMSE (1.35 °C in Beijing and 1.76 °C in Lanzhou) and
MAE (0.86 °C in Beijing and 1.33 °C in Lanzhou). Comparing
the Landsat 8 LST with the downscaled LSTs at a 100-m
spatial resolution, the R2 values of the GWAR-based algo-
rithm in the study areas are 0.94 (Beijing) and 0.90 (Lanzhou).
The GWAR-based algorithm considers both the spatial nonsta-
tionary and the spatial autocorrelation. Therefore, the down-
scaled results of the GWAR-based algorithm with DEM and
NDBI as the explanatory variables can capture additional spatial
details and achieve better downscaled results than the other
methods.

Although the GWAR-based algorithm achieved better results
than the other algorithms, several problems require further inves-
tigation. First, the GWAR-based algorithm with DEM and NDBI
as the explanatory variables only considers the spatial features
of the LST, but the temporal variability is ignored. Second, the
spatial autocorrelation differs in different land cover types, and,
therefore, we could investigate the spatial autocorrelation based
on land cover types in the future. Third, we should add different
areas and time images to investigate the downscaling methods.
In addition, we could attempt to use other high spatial resolution

data to verify the applicability of this algorithm for other data.
Therefore, an in-depth study will be conducted in the future.

In this article, we proposed the GWAR-based algorithm for
LST downscaling, an approach that considers the spatial nonsta-
tionary and spatial autocorrelation simultaneously in the study
of spatial variables, and we chose the DEM and NDBI as the
explanatory variables in the downscaling process. In short, this
article offers a new method for the study of LST downscaling and
improves the results of LST downscaling, which are essential for
the future study of LST.
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