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Sentinel-MSI and Landsat-OLI Data Quality
Characterization for High Temporal Frequency

Monitoring of Soil Salinity Dynamic in
an Arid Landscape

Abdou Bannari , Nadir Hameid Mohamed Musa, Abdelgadir Abuelgasim, and Ali El-Battay

Abstract—Although the Sentinel-MSI and Landsat-OLI are de-
signed to be similar, they have different spectral, spatial and radio-
metric resolutions. In addition, relative spectral response profiles
characterizing the filters responsivities of the both instruments are
not identical between the homologous bands. This paper analyse
the difference between the reflectance in the homologous spectral
bands of MSI and OLI sensors, VNIR and SWIR, for high temporal
frequency monitoring of soil salinity dynamic in an arid landscapes.
In addition, their conversion in term of Soil Salinity and Sodicity
Index (SSSI) and in term of Semi-Empirical Predictive Model
(SEPM) for soil salinity mapping were compared. To achieve these,
analyses were performed on simulated data and on two pairs of
images (MSI and OLI) acquired over the same area in July 2015 and
August 2017 with one day difference between each pair. The results
obtained demonstrate that the statistical fits between SMI and
OLI simulated reflectance over a wide range of soil samples with
different salinity degrees reveals an excellent linear relationship (R2

of 0.99) for all bands, as well as for SSSI and SEPM. The Root Mean
Square Difference (RMSD) values are null between the NIR and
SWIR homologous bands, and are insignificant for the other bands.
Moreover, the SSSI show an RMSD of 0.0007 and the SEPM express
an excellent RMSD around 0.5 dS.m−1 reflecting a relative error
between 0.001 and 0.05 for non-saline and extreme salinity classes,
respectively. Likewise, the two used pairs of images exhibited very
significant fits (R2 ≥ 0.93) for spectral band reflectance’s, as well
for SSSI and SEPM, yielding a RMSD values less than 0.029 for
bands and less than 0.004 for SSSI. While, for SEPM, the RMSD
fluctuate between 0.12 and 2.65 dS.m−1, respectively, of non-saline
and extreme salinity classes. Accordingly, we can conclude that the
MSI and OLI sensors can be used jointly to monitor accurately the
soil salinity and it’s dynamic in time and space in arid landscape,
provided that rigorous preprocessing issues must be addressed
before.
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I. INTRODUCTION

ARID landscapes are seriously facing challenge of spatial
and temporal distribution of soil salinity, particularly dur-

ing drought periods [1], due to water quality and scarcity, the
high temperature and the increased evapotranspiration rate [2].
In addition to water stress, these landscapes are vulnerable to
salinization, marginality, and desertification as a consequence
of human activities [3] and global climate change impact [4].
Obviously, these factors have significant impacts on land degra-
dation, crop production, food security, economic aspects and
infrastructure; as well as ecosystem functionality, human well-
being, and sustainable development [5]. Around the world, soil
salinity affect approximately 40% to 45% of the Earth land,
especially in semi-arid and arid landscapes [6], and the global
cost of irrigation-induced salinity is estimated around 11 billion
US$ a year [7]. To remedy this situation in vulnerable landscape
to salinization, there are methods available to slow down the pro-
cesses and, sometimes, even reverse them. However, remedial
actions require reliable information to help set priorities and to
choose the type of action that is most appropriate for a specific
location. In affected areas, farmers, soil managers, scientists, and
agricultural engineers need accurate and reliable information
on the nature, extent, magnitude, severity, and spatial distribu-
tion of the salinity against which they could take appropriate
measures [8].

Soil salinity monitoring in space and time is complicated
by salinity’s dynamic nature, due to the influence of manage-
ment practices, water table depth, soil permeability, micro-
topography, water use, rainfall, and salinity of groundwater.
When the need for repeated measurements in time is multiplied
by the extensive requirements of a single sampling period, the
expenditures of time and effort with conventional soil sampling
procedures increase proportionately. In general, measuring elec-
trical conductivity extracted from a saturated soil paste at the
laboratory (EC-Lab) is the most accurate method used for soil
salinity mapping [9]. Unfortunately, this method is expensive
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and time consuming, especially for regular monitoring over a
long period, and for comparisons over large areas [10], [11].
During the last two decades, remote sensing technology and im-
age processing methods have outperformed these conventional
methods. Currently, new remote sensing satellite instruments
measuring soil salinity, coupled with modeling, programming,
and mapping in GIS environment have significantly improved
the potential for soil salinity monitoring in space with a very high
temporal frequency [12]–[16]. The main advantage of remote
sensing is the ability to map large areas at a relatively low cost by
collecting information at regular intervals; therefore, monitoring
becomes easier. This allows not only for the appropriate remedial
action to be taken, but also for the monitoring of the effectiveness
of any ongoing remediation or preventative measures, which
facilitate monitoring, management, and decision-making [17].

Furthermore, actually, the availability of the new generation
of medium spatial resolution, such as multispectral instruments
(MSI) on board Sentinel-2 satellites and Operational Land Im-
ager (OLI) sensor installed on Landsat-8 platform, offers new
opportunities for long-term high-temporal frequency for Earth
surfaces’ observation and monitoring [18]. The free-availability
of their data significantly advances the virtual constellation
paradigm for mid-resolutions land imaging [19]–[21]. Thanks
to the improvement of their spectral, radiometric, and temporal
resolutions, they can expand the range of their applications
to several natural resources and environmental domains for
monitoring, assessing, and investigating [22]. The orbits of the
both satellites are designed to ensure a revisiting interval time
of approximately less than 5 days [23], thereby substantially
increasing monitoring capabilities of the Earth’s surface and
ecosystems [24]. Their spectral resolutions and configurations
are designed in such a way that there is a significant match
between the homologous spectral bands [24], [25]. However,
depending on the spectral sensitivity of the target under inves-
tigation [26], sensor radiometric drift calibration [27], atmo-
spheric corrections [28], surface reflectance anisotropy [29], and
sensors co-registration [30], [31], it is plausible that the natural
surface-reflectance between MSI and OLI may be different. In
addition, the relative spectral response profiles characterizing
the filters (spectral responsivities) of the both instruments are not
identical between the homologous bands, so some differences
are probably expected in the recorded land-surface reflectance
values; therefore, their data cannot be reliably used together [32],
[33]. Obviously, the importance of these differences depends on
the application (spectral characteristics of the observed target)
and on the approach adopted to perform time-series analyses,
mapping or change detection exploiting both instruments [26].
For instance, it is plausible that the extraction of soil salinity in-
formation in time over arid landscape using surface reflectance,
empirical, semi-empirical, and/or physical approaches, can af-
fect the results comparison.

Likewise, in addition to the remote sensing sensors tech-
nology improvement and innovation, several image processing
methods and models were developed and applied for soil salinity
retrieval. Based on simulated data and satellite images acquired
with several sensors (TM, ETM+, OLI, MSI, ALI EO-1, and
WorldView-3), numerous studies revealed that spectral confu-
sion occurs in the visible and near-infrared (VNIR) spectral

domain between the salt crust and the artifacts of soil optical
properties. While other studies have shown that the shortwave
infrared (SWIR) spectral bands allows better discrimination
among salt-affected soil classes. Shrestha [34] concluded that
the SWIR bands were the most correlated with soil salinity.
Bannari et al. [14], [35]–[37] found that the SWIR bands of ALI,
OLI, SMI, and WV3 offers the best potential for soil salinity
detection and discrimination. Considering different soil types
and geographic locations, Leone et al. [38], Odeh and Onus
[39], and Zhang et al. [40] demonstrated that the SWIR bands
could be used for soil salinity estimation in agricultural fields
better than other spectral domains. Chapman et al. [41] showed
that the SWIR bands of TM provide excellent discrimination of
evaporite mineral zones in salt flats. Drake [42] described the
various absorption peaks of the salts found in evaporite minerals
in the SWIR wavelengths. The study undertaken by Hawari [43]
showed that the absorption features in SWIR bands are consis-
tent with the detection of the gypsum, halite, calcium carbonate,
and sodium bicarbonate. According to Nawar et al. [44], the
SWIR bands of ASTER exhibited the highest contribution for
soil salinity estimation. Moreover, another study [45] indicated
that the SWIR bands of the ETM+ sensor increase the accuracy
of the soil salinity prediction.

This article analyzes and compares the difference between
land-surface reflectance in the homologous spectral bands of
MSI and OLI sensors, VNIR and SWIR, for soil salinity
dynamic monitoring in an arid landscape. In addition, compar-
isons were carried out in terms of conversion of these surface
reflectance to the Soil Salinity and Sodicity Index (SSSI) and to
the Semi-Empirical Predictive Model (SEPM) for salt-affected
soil mapping.

II. MATERIAL AND METHOD

Fig. 1 illustrates the used methodology; which is structured
in four steps exploiting two independent datasets: simulated and
images data. For simulated data, a field campaign was organized
and 160 soil samples were collected with various degrees of
soil salinity classes (i.e., extreme, very high, high, moderate,
and low) including non-saline soil samples. The bidirectional
reflectance factor was measured above each soil sample in a
Goniometric-Laboratory using an Analytical Spectral Devices
(ASD) FieldSpec-4 high resolution (Hi-Res) spectroradiometer
[46]. The required preprocessing steps to allow their meaningful
and accurate use and comparison were then carried out. Indeed,
all measured spectra were resampled and convolved in the
solar-reflective spectral bands of Sentinel-MSI and Landsat-OLI
sensors using the Canadian Modified Simulation of a Satellite
Signal in the Solar Spectrum (CAM5S) [47] based on Herman
radiative transfer code (RTC), and the relative spectral response
profiles characterizing the filters of each instruments in the
VNIR and SWIR bands. While the two pairs of images were
acquired with Sentinel-MSI and Landsat-OLI sensors over the
same study site in July 2015 and August 2017 with one day
difference between each pair. They were not cloudy, or cirrus
contaminated, and without shadow effects because topographic
variations are absent in the study area. They were radiometri-
cally and atmospherically corrected to transform them to the
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Fig. 1. Flowchart of the methodology.

ground surface reflectance, and the Bidirectional Reflectance
Distribution Function (BRDF) were normalized to allow their
meaningful comparison correctly. Finally, the standardized re-
flectance (simulated and images data) was converted in terms
of SSSI and SEPM for soil salinity mapping. For compari-
son and sensor differences quantification, statistical fits were
conducted using linear regression analysis (p < 0.05), coeffi-
cient of determination (R2), and the Root Mean Square Differ-
ence (RMSD) was calculated. It is important to precise that
subsequently to the spectroradiometric measurements, in the
laboratory, soil chemical analyses (cations and anions: Ca2+,
Mg2+, Na+, K+, Cl−, and SO4

2-), the soil reaction (pH) and the
electrical conductivity (EC-Lab) were extracted from a saturated
soil paste, as well as the sodium adsorption ratio (SAR) being
calculated [9]. These parameters provide reliable information
about the degree of salinity in each considered soil sample,
and thus help to understand the close relationship between
the salt content values in each soil sample and its spectral
behavior.

A. Study Site

The Kingdom of Bahrain (25°32′ and 26°00′N, 50°20′ and
50°50′E) is an archipelago of 33 islands located in the Arabian
Gulf, east of Saudi Arabia and west of Qatar (see Fig. 2) with
a total land area of about 778.40 km2. According to the aridity
criteria and the great variations in climatic conditions, Bahrain

has an arid to extremely arid environment [48]. The climate is
characterized by very high summer temperatures of an average
45 °C during June–September and an average of approximately
17 °C in winter from December–March. Rain is sparse, and oc-
curs primarily from November to March, with an annual average
of 72 mm, sufficient only to support the most drought-resistant
desert vegetation. Mean annual relative humidity is over 70%
due to the surrounding Arabian Gulf water, and the annual
average potential evapotranspiration rate is 2099 mm [49]. Un-
der such climatic conditions, where precipitation is excessively
low to maintain a regular percolation of rainwater through the
soil, soluble salts are accumulated in the soil, influencing soil
properties and environment causing low soil productivity. In-
deed, these factors have significant impacts on land degradation,
crop production, economic aspects, and infrastructure, as well
as ecosystem functionality, human wellbeing, and sustainable
development [50]. Geologically, Bahrain is characterized by
Eocene and Neocene rocks, which are partly covered by Qua-
ternary sediments and a complex of Pleistocene deposits. The
dominant rocks are limestone and dolomitic-limestone with sub-
sidiary marls and shales. The leading structure is the north–south
axis of the main dome, with minor cross-folds predominantly
tilting from northeast to southwest. The beds are gently inclined
towards the coast from the center of the main island. The fringes
of Bahrain are covered by more recent marine and Aeolian sand
dunes, which were derived from the Arabian land connection
across the present Arabian Gulf.
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Fig. 2. Study site (Kingdom of Bahrain).

B. Soil Sampling and Laboratory Analyses

The soils of Bahrain are characterized by five different classes
associated with moderate to shallow depths and are closely
related to the terrain geology and geomorphology [51]. The
natural Solonchak describes soils with no agricultural activities
and retain a significant gypsum content (high and very high
salinity). Then, there is the cultivated Solonchak soil class, which
is located in areas either currently or previously exposed to
agricultural activities. The Regosols soil class with moderate
salinity is depicted as a mixture of raw minerals as well as
the natural Solonchak soils, with the possibility for growing
scattered halophytic plants. The miscellaneous land class that
is represented by a composition of silts and fine sands with low
salinity is suitable for agriculture. Finally, there is the non-saline
soil class, which is imported to build artificial islands.

Based on Bahrain salt-affected soil map, six salinity classes
are considered (see Fig. 3): extreme (class 1), very high (class 2),
high (class 3), moderate (class 4), low (class 5), and non-saline
(class 6). The extreme soil salinity class is characterized by
the presence of high contents of soluble salts and the surface
salt crust, which is sabkha (see C1 in Fig. 3). They are natural
solonchaks soil (loamy and sandy, highly gypsiferous) devoid
of any vegetation. The very high saline soils (class 2) are
often encrusted with an efflorescence of salt crystals and a
well-developed platy structure, which looks like the creation
of a new sabkha (see C2 in Fig. 3). The high salinity soils
(class 3) are composed of fine, white, sand-sized shell gravel and
gravelly sand (see C3 in Fig. 3); the surface layers are sometimes

cemented by salt and are completely devoid of vegetation.
The moderate soil salinity (class 4) is the dominant class in
the southern half of Bahrain Island (see C4 in Fig. 3). It is
calcareous to highly-calcareous, with calcium carbonate and
dominated by shells and sand. Very sparse and scattered clumps
of halophytic (salt-tolerant) plants are observed in this class area.
Furthermore, in the northwest part of Bahrain Island we find the
spatial distribution of low salinity soils (class 5), with acceptable
fertility potential. This class is the only cultivated area in Bahrain
(about 8% of the total area of the country), which is equipped
with micro drip irrigation systems (see C5 in Fig. 3). Finally,
the non-saline soil (class 6) describes accurately the man-made
(artificial) infrastructure, industrial and urban zones (see C6 in
Fig. 3).

A total of 160 samples were collected during a very dry period
from Apr. 2 to 7, 2016, based on the spatial representativeness
of the six major soil classes as discussed above. Samples were
collected from the dry upper layer from 0 to 5 cm deep (crust)
considering an area about 50× 50 cm without vegetation residue
(senescent or green) and moisture-free (see Fig. 3). Under the
field conditions the soil moisture contents remained very low and
not exceeded 0.08% in the all considered samples (loamy-sandy,
silty-sandy, silty-clay-loam, highly gypsiferous), thus minimiz-
ing the impact of soil moisture on the measured spectra (see
Fig. 4) [52], [53]. Moreover, observations and remarks about
each sample (color, brightness, texture, etc.) were noted. The
location of each point was automatically labeled and recorded
using a 35 mm digital-camera equipped with a 28 mm lens and
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Fig. 3. Photos of the six considered soil salinity classes (C1 to C6).

Fig. 4. Spectral signatures of 160 soil samples with different degrees of
salinity.

accurate GPS survey (σ ≤ ±30 cm) connected in real time to
the GIS database.

After spectroradiometric measurements, which are described
below, soil samples were crushed and then sieved to obtain
the <2 mm fraction. Then, standard USDA laboratory methods
and procedures [9] were used to measure the pH, the electrical
conductivity (EC-Lab), and the major soluble cations (Na+,
K+, Ca2++, and Mg2+) and anions (CO3

2−, HCO3
−, Cl−, and

SO4
2−) using extraction from a saturated soil paste, and the SAR

was also calculated [54]. In addition to the field observations,
these parameters are considered in this study for the only purpose
to provide reliable information about the degree of salinity con-
tent in each considered soil sample assisting the interpretation of
spectroradiometric measurements and selected pixels from the
used images.

C. Spectroradiometric Measurements

Spectroradiometric measurements were acquired in the
Goniometric-Laboratory. The bidirectional reflectance spectra
of soil samples were measured in air-dried conditions using an
ASD (Analytical Spectral Devices Inc., Longmont, CO, USA)
FieldSpec-4 Hi-Res (high resolution) spectroradiometer [46].
This instrument is equipped with two detectors operating in
the VNIR and SWIR, between 350 and 2500 nm. It acquires
a continuous spectrum with a 1.4 nm sampling interval from
350 to 1000 nm and a 2 nm interval from 1000 to 2500 nm.
The ASD resamples the measurements in 1 nm intervals, which
allows the acquisition of 2151 contiguous bands per spectrum.
The sensor is characterized by the programming capacity of the
integration time, which allows an increase of the signal-to-noise
ratio (SNR), as well as stability. The data were acquired at nadir
with a FOV of 25° and a solar zenith angle of approximately
5° by averaging 40 measurements. The ASD was installed at a
height of 60 cm approximately over the target, which makes it
possible to observe a surface of approximately 700 cm2. A laser
beam was used to coincide the center of the ASD-FOV with the
center of the target under measurements. The reflectance factor
of each soil sample (see Fig. 4) was calculated by rationing target
radiance to the radiance obtained from a calibrated “spectralon
panel” in accordance with the method described in Jackson et
al. [55]. Corrections were made for the wavelength dependence
and non-Lambertian behavior of the panel [56], [57].

D. Sentinel-MSI and Landsat-OLI Simulated Data

The measured bidirectional reflectance factors using the ASD
have a 1 nm interval, which allows the acquisition of 2151 con-
tiguous hyperspectral bands per spectrum. However, most multi-
spectral remote sensing sensors measured the reflectance that is
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TABLE I
SENTINEL-MSI AND LANDSAT-OLI EFFECTIVE BANDWIDTHS AND CHARACTERISTICS

λ = wavelength and SNR = signal to noise ratio.

Fig. 5. Sentinel-MSI and Landsat-OLI relative spectral response profiles
characterizing the filters of each spectral band in the VNIR (a), and the
SWIR (b).

integrated over broad bands. Consequently, the measured spectra
of each soil sample was resampled and convolved to match
the MSI and OLI solar-reflective spectral responses functions
characteristics (see Fig. 5). In this step, the resampling procedure
considers the nominal width of each spectral band (see Table I).
Then, the convolution process was executed using the CAM5S

RTC [47]. This fundamental step simulates the signal received by
the MSI and OLI sensors at the top of the atmosphere from a sur-
face reflecting solar and sky irradiance at sea level considering
the filters responsivities of individual sensor band (see Fig. 5),
and assuming ideal atmospheric conditions without scattering
and without absorption [58]–[61]. To understand correctly gain
insights into any reflectance differences between the two sensors
due to only their spectral responses functions differences, the
160 simulated sensor reflectance values were generated with
various salinity degrees. These simulated reflectances in the
VNIR and SWIR spectral band were fitted between MSI and OLI
homologous bands using regression analysis (p < 0.05). This
statistical examination step was used to evaluate the strength of
the relationship between the reflectance information in homol-
ogous spectral bands, and the possibility to involve the both
sensors together for salt-affected soil monitoring in time. It
is important to note that the MSI-NIR-2 broad band (band-8:
785–900 nm) is not considered in this study because it is not a
real homologous band of OLI-NIR, and it has a greatest reflective
band difference with the OLI-NIR (851–879 nm). In fact, the
OLI-NIR spectral response function intersects with only 20% of
the MSI-NIR-2 response function. Moreover, the MSI red-edge
bands were not considered also as they are not acquired by the
OLI sensor.

E. Sentinel-MSI and Landsat-OLI Images Data

The Sentinel-2 “A and B” satellites were launched, respec-
tively, on June 23, 2015 and March 7, 2017 with the identical
MSI sensors on board. They were proposed to provide continuity
to the SPOT missions [24] and to improve the Landsat-OLI
temporal frequency. In fact, the synergy between Sentinel-MSI
(A and B) and Landsat-OLI significantly increase the tempo-
ral resolution for several environmental and natural resource
applications, such as the vigor of vegetation cover, emergency
management, soil salinity dynamics, water quality, and climate
change impact analysis at local, regional, and global scales.
Sentinel-MSI is the result of close collaboration between the
European Space Agency, the European Commission, industry,
service providers, and data users. The MSI images the Earth’s
surface reflectivity with a large FOV (20.6°) in 13 spectral bands,
4 bands with 10 m pixel size (blue, green, red, and NIR-1), 6
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Fig. 6. True color composite of raw OLI and MSI images data acquired over Kingdom of Bahrain in July 2015 (left) and August 2017 (right).

bands with 20 m (Red-Edge, NIR-2, and SWIR), and 3 bands
with 60 m bands (coastal, water vapor, and cirrus). The swath of
each scene is 290 km, permitting global coverage of the Earth’s
surface every 10 days. The MSI radiometric performance is
coded in 12 bits, enabling the image acquisition in 4095 digital
numbers, ensuring radiometric accuracy of less than 3% and an
excellent SNR [27], [62]. The geometric registration precision is
better than 0.15 pixels, and it was shown that no visual obvious
misregistration was observed when the multitemporal MSI data
were used [31]). Table I summarizes the effective bandwidth
characteristics for MSI.

Furthermore, since 1972, the Landsat scientific collaboration
program between the NASA and USGS constitute the con-
tinuous record of the Earth’s surface reflectivity from space.
Indeed, the Landsat satellites series support nearly five decades
of a global moderate resolution data collection, distribution and
archive of the Earth’s continental surfaces [63], [64] to support
research, applications, and climate change impact analysis at
the global, the regional, and the local scales [19], [65], [66].
In February 11, 2013, the polar-orbiting Landsat-8 satellite was
launched, transporting two push-broom instruments: OLI and
TIRS. The OLI sensor collects land-surface reflectivity in the
VNIR, SWIR, and panchromatic wavelength with a FOV of 15°
covering a swath of 185 km with 16 days’ time repetition at the
equator. The band passes are narrower in order to minimize at-
mospheric absorption features [67], especially the NIR spectral
band (0.865 μm). Two new spectral bands have been added: a
deep blue visible shorter wavelength (band 1: 0.433–0.453 μm)
designed specifically for water resources and coastal zone in-
vestigation, and a new SWIR band (9: 1.360–1.390 μm) for
the detection of cirrus clouds. Moreover, the OLI design results
in a more sensitive instrument with a significant amelioration
of the SNR radiometric performance quantized over a 12-bit
dynamic range (Level 1 data), raw data are delivered in 16
bit. This SNR performance and improved radiometric resolu-
tion provide a superior dynamic range and reduce saturation
problems associated with globally maximizing the range of
land-surface spectral radiance and, consequently, enable better

characterization of land-cover conditions [68], [45]. According
to Gascon et al. [69], [46] and Markham et al. [27], Landsat-OLI
and Sentinel-MSI on orbit reflective wavelength calibration is
better than 3%. From geometric point of view, Stumpf et al.
[70], [47] obtained a co-registration accuracy between images
provided by both missions around± 3 m by reference to accurate
ground control point’s measurements. Table I summarizes the
effective bandwidth characteristics for OLI. In this research, two
pairs of images data were used. They were acquired during the
hottest period in the Middle-East with temperatures around 46–
48°C. They were not cloudy and not contaminated with cirrus,
without significant topographic variations and, consequently,
the shadow effects were absent in the study area. The first pair
was acquired with one day difference, the July 29 and July 30
2015 for OLI and MSI, respectively. The second pair was also
recorded with one day difference on August 18 and August 19,
2017, respectively, for MSI and OLI (see Fig. 6). This very short
time between each pair (MSI and OLI) data acquisition is so
important to minimize the impact of land-use and soil surface
conditions changes between these sensor observations.

F. Images Data Preprocessing

Prior to launch, the sensors are subject to rigorous radiometric
and spectral characterization and calibration. However, post-
launch absolute calibration is an important step to establish the
relationship between at-sensor radiance and the digital number
output for each pixel in the different spectral bands. Sensor radio-
metric calibration and atmospheric corrections (scattering and
absorption) are fundamental preprocessing operations to restore
the images radiometric quality at the ground level. The changes
caused by these artifacts can be mistakenly attributed to changes
in the land use and ground bio-physiological components, and
errors can propagate in all subsequent image processing steps,
such as spectral indices calculations, multitemporal analysis,
climate change modeling, etc. [71], [72]. For converting the
measured digital numbers by MSI and OLI sensors to the appar-
ent radiance, the values of the solar zenith angle and rescaling
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TABLE II
INPUT PARAMETERS FOR THE CAM5S RTC

Note: ASL: Above Sea Level; GMT: Greenwich Mean Time; ppm: parts per million.

coefficients (gain and offset) delivered by USGS-EROS and
ESA centers were used. Moreover, the CAM5S RTC [47] was
used for atmospheric conditions simulation to calculate all the
requested atmospheric correction parameters for MSI and OLI
spectral bands. This RTC simulates the signal measured at the
TOA from the Earth’s surface reflecting solar and sky irradiance
at sea level, while considering the sensors characteristics, such
as the band passes of the solar-reflective spectral bands (see
Fig. 5), satellite altitude, atmospheric condition, atmospheric
model, Sun and sensor geometry, and terrain elevation. Con-
sequently, all the requested atmospheric correction parameters
were calculated and applied to transform the apparent reflectance
at the TOA to the ground reflectance. Table II summarizes the
input parameters for the CAM5S RTC for each pair of images.
To preserve the radiometric integrity of the images, absolute
radiometric calibration and atmospheric effects corrections were
combined and corrected in one step [73] to generate ground
surface reflectance images using the Canadian image processing
system PCI-Geomatica.

Furthermore, knowing that Earth’s natural surfaces do not
have a Lambertian spectral behavior, because both solar and
observing zenith angles exert a radiometric distortion impact
on surfaces reflectance, the BRDF problem was normalized.
According to Roy et al. [66] along the Landsat-OLI bands (edges
by reference to the image center) the reflectance can vary by less
than 6% due to this BRDF effects. Moreover, Roy et al. [29]
reported that this problem can affect the Sentinel-MSI bands
by approximately 8% because of its large FOV. Certainly, these
differences may constitute a source of errors for biophysical
and physiological parameters extraction, as well as for general
remote sensing applications because their values as mentioned

before are relatively more meaningful than the sensor calibration
errors [27] and atmospheric corrections [69]. To normalize the
BRDF influence on the ground surface reflectance images of
MSI and OLI, a semi-empirical approach [74] was applied in
this research.

G. Data Conversion

For soil salinity detection and mapping, many soil salinity
spectral indices and models have been proposed in the literature
[75]–[78]. A comparative study among several semi-empirical
predictive models based on salinity indices, such as Brightness
Index, Normalized Difference Salinity Index, Salinity Indices,
ASTER Salinity Index, SSSI, etc., was achieved for accurate
salt-affected detection in irrigated agricultural land (slight and
moderate salinity classes) in North Africa and in the arid land-
scape (slight, moderate, strong, and very strong salinity classes)
in Middle-East [36], [79], [80]. The results of these studies
showed that the SEPM model based on SSSI, which integrate
the SWIR bands, provided the best accuracy for salt-affected soil
classes’ detection and mapping. Consequently, in this study, the
comparisons of SSSI and SEPM are undertaken in the same
way as surface reflectance derived from simulated and images
data to quantify the impact differences between relative spectral
response profiles characterizing the filters of homologous bands
of MSI and OLI sensors. The SSSI and SEPM equations are as
follows [35], [36]:

EC−Predicted = Cste.
[
4521.(SSSI)2 + 125. (SSSI) + 0.41

]

(1)

SSSI = (ρ
SWIR−1

.ρ
SWIR−2

− ρ
SWIR−2

.ρ
SWIR−2

)/(ρ
SWIR−1

) (2)
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where
EC-Predicted SEPM;
ρSWIR-1 Reflectance in MSI and OLI SWIR-1 channel;
ρSWIR-2 Reflectance in MSI and OLI SWIR-2 channel;
Cst Scaling factor, which theoretically enables an

up-scaling between the spatial information mea-
sured in the field and its homologous information
derived from the image [81].

However, in this study case its value is equal to one because
we are comparing data from the same sources (MSI to OLI from
simulated data, or image to image), and not from the field to the
image.

H. Statistical Analyses

As discussed previously, the MSI and OLI relative spectral
response profiles characterizing the filters of each spectral band
are relatively different (see Fig. 5). To examine the impact of this
difference, statistical analyses were computed using “Statistica”
software considering simulated and images data. The relation-
ships between derived product values (reflectance, SSSI, and
SEPM) from MSI against those from OLI were analyzed using
a linear regression model (p < 0.05). As well, the R2 was used to
evaluate the strength of this linear relationship. For this process,
the resampled and convolved spectra of 160 soil samples and
images ground reflectance data were used, and the homologous
values in VNIR and SWIR bands of MSI and OLI were compared
using the 1:1 line. Ideally, these independent variable values
should have a correspondence of 1:1. Additionally, the RMSD
between the both sensors was derived for simulated and images
data as follows [21], [82]:

RMSD =

√∑n
i

(
vOLI
i − vMSI

i

)2
n

(3)

where RMSD is the root mean square difference between cor-
responding Landsat-OLI and Sentinel-MSI variables values (re-
flectance, SSSI, and SEPM) derived from simulated spectra and
images-pixels, vi is the variable under analysis and “ i ” is the
number of variable (i = 1 to n).

III. RESULTS ANALYSES

A. Soil Laboratory Analysis and Simulated Data Comparison

Fig. 4 shows that overall, the spectral signatures of the 160
considered soil samples are controlled by the type of salt ex-
isting in each soil sample, such as sulfates, chlorides, and/or
carbonates. The results showed different amplitudes and several
absorption features depending on the chemical compositions
and the mineralogy of the existing salts in the selected soil
samples. Moreover, the spectral signatures are also influenced
by several factors, such as mineralogical composition, impurity,
structure, and texture of the soil and salt crystals, and the soil
optical properties (color brightness, and roughness), particularly
in the VNIR spectral domain [14]. Furthermore, the laboratory
analyses of all soil samples revealed that the moisture content
values are distributed in a very limited range between 0% and

0.08%, thus minimizing the impact of moisture content on the
measured spectra (see Fig. 4). In fact, only three weak absorption
bands near 1350, 1800, and 2208 nm were observed in some
samples (atmospheric water vapor absorption features at 1440
and 1920 nm are not considered in this analysis). While, the other
absorption features are automatically linked to the salt mineral-
ogy, particularly the gypsum, sodium, chloride, halite, calcium
carbonate, and sodium bicarbonate, which reveals significant
absorption features at 980, 1000, 1190, 1210, 1400, 1450, 1490,
1540, 1748, 1780, 1800, 1900,1945, 1975, 2175, 2215, 2265,
and 2496 nm [14]. These observations corroborate findings of
other studies [14], [43], [53].

Otherwise, the major exchangeable cations and anions in the
considered six soil sample classes (Ca2+, Mg2+, Na+, K+, Cl−

and SO4
2-), pH, EC-Lab, and SAR values were calculated from

the sampling points representing each soil class separately and
summarized in Table III. The laboratory analyses revealed a
very high concentration of sodium (Na+) and dominant chloride
anion (Cl−). Globally, the values of EC-Lab, Na+, and SAR
increase gradually and very significantly from non-saline soil to
extreme soil salinity (sabkha). Indeed, the non-saline and low
soil salinity classes, which support the agricultural system in
Bahrain, are characterized by low EC-Lab (2.6 ≤ EC-Lab ≤
4.4 dS.m−1) and SAR (≤ 10.3). The moderate salinity class
was characterized by EC-Lab around 7.4 dS.m−1, and SAR
nearby 12.7 representing the dominant soil class in Bahrain
and is a part of the Regosols soil category that allows for the
growth of halophytic plants. Contrariwise, the other three soil
salinity classes with high, very high, and extreme salinity content
showed exceptional EC (67 ≤ EC-Lab ≤ 600 dS.m−1) and very
high SAR (≥99.2) values. These three classes represent the
natural Solonchak soil category. While, the pH values (7.1 to 8.6)
are very informative as regards the preponderance of carbonate
and the presence of bicarbonate in the soils which contribute
significantly to the alkalinity aspect of the soil. Clearly, these
results confirm our choice of different soil salinity classes that
represent the truth of arid landscapes, which is fundamental for
the analyses of the impact of the spectral response functions
difference on the surface reflectance and the products derived
from the homologous spectral bands (VNIR and SWIR) of the
MSI and OLI sensors.

Fig. 7 illustrates the scatter plots of SMI and OLI simulated
surface reflectance values at the top of the atmosphere, which
were generated from 160 soil samples with unlike salinity de-
grees (2.6 ≤ EC-Lab ≤ 600 dS.m−1) to analyze the impact of
differences in reflectance exclusively due to dissimilarities in
spectral response function between homologous spectral bands.
These scatter plots reveals a very good linear relationship (R2 of
0.999) between homologous bands whit the slopes and intercepts
very near to unit and zero, respectively. Table IV summarizes
the obtained regression fit equations, the coefficient of determi-
nation, and the RMSD between MSI and OLI simulated surface
reflectance in the homologous bands, as well as the derived SSSI
and SEPM products. The RMSD values are null between the
NIR and SWIR homologous bands, and are insignificant for
the other bands (i.e., 0.003 for coastal and 0.001 for the blue,
green, and red bands). Highlighting the good behavior of SWIR
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TABLE III
LABORATORY DETERMINATION OF PH, EC-Lab AND IONS CONTENT IN THE DIFFERENT SOIL SALINITY CLASSES

TABLE IV
REGRESSION FIT EQUATIONS BETWEEN MSI AND OLI SIMULATED SURFACE REFLECTANCE IN THE HOMOLOGOUS SPECTRAL BANDS, AND THE DERIVED

RMSD FOR SSSI AND SEPM

∗ dS.m−1 for electrical conductivity unite; 0.003 dS.m−1 for non-saline and 0.553 for extreme salinity classes.

bands, the calculated SSSI values fit perfectly with the line 1:1
(R2 of 0.9996) showing a slope of 1.01, intercept of 0.002,
and RMSD of 0.0007 (see Fig. 8). Moreover, independently
to the degrees of salinity in the considered soil samples, the
simulated SEPM values fit perfectly with 1:1 line expressing an
excellent coefficient of determination (R2 of 0.9994) and a slope
near to the unit (0.995). The calculated RMSD for the SEPM
vary between 0.003 and 0.5 dS.m−1 (electrical conductivity
unit) reflecting a relative error that varies between 0.001 and
0.05 for salinity classes varying between 2.5 (non-saline) and
600 dS.m−1 (extreme salinity). Moreover, this difference is
identical to the electrical conductivity accuracy measurement
in the filed using electronical instruments [83]. These results
pointed out that MSI and OLI sensors can be combined for high
temporal frequency to monitor soil salinity dynamic in time and
space in an arid landscape. However, it is important to remember
that these simulations took place in a Goniometric-Laboratory
using close range measurements protocol assuming indirectly
that the measured surfaces are homogeneous with Lambertian
reflectance (by reference to spectralan). In addition, the atmo-
spheric scattering and absorption are absent, errors related to
radiometric calibration and geometric location are also absent,
no topographic variation, no residual clouds or shadows, and
no BRDF impact. Evidently, these simulations in a controlled

environment are ideal comparatively to the real Earth observa-
tion conditions using images data acquired with MSI and OLI
sensors and covering a large pixel surface (900 m2) with mixed
information.

B. Images Results Analysis

The spectral bands of MSI have unlike spatial resolutions (10,
20, and 60 m) than those of OLI bands (30 m). To handle this
spatial difference and to generate data correspondingly to OLI
images for analyses, MSI images were resampled automatically
in 30 m pixel size considering UTM projection and WGS84
datum. Based on the measured GPS (σ ± 30 cm) coordinates
location, the considered 160 sampling points representing all
salinity classes (approximately 26 pixels per class) were care-
fully located and selected from the homologous spectral bands
in the booth pair of images. Then, comparisons of the surface
reflectance, and derived SSSI and SEPM were undertaken in the
same way as for the simulated data using regression analysis,
R2, and RMSD. Since the results obtained from the two pairs of
images are similar (see Table V), only the results retrieved from
the pair acquired in August 2017 are presented in Fig. 9. This
scatter plots shows the relationship between surface reflectance
in the VNIR and SWIR homologous bands of SMI and OLI



2444 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 7. Compared surface reflectance simulated and convolved in Sentinel-MSI and Landsat-OLI homologous spectral bands.

sensors acquired over a wide range of soil samples with different
salinity degrees (2.6 ≤ EC-Lab ≤ 600 dS.m−1). A very good
linear relationship between all homologous bands is observed
with the slopes and intercepts near to unity and zero, respectively.
The used images in each pair had very significant fits (R2

≥ 0.96) for green, red, NIR, and SWIR homologous spectral
bands (see Fig. 9 and Table V). For these bands, the majority
of sampling points are located around the line 1:1. While, the
coastal and blue bands fits with R2 of 0.93 and 0.96, respectively.
Although these last two bands depicts a good fit to the 1:1 line,
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Fig. 8. Compared SSSI (left) and SEPM (right) derived from Sentinel-MSI and Landsat-OLI simulated data.

TABLE V
REGRESSION FIT EQUATIONS BETWEEN MSI AND OLI IMAGE SURFACE REFLECTANCE IN THE HOMOLOGOUS SPECTRAL BANDS, AND THE DERIVED

RMSE FOR SSSI AND SEPM

∗ dS.m−1 for electrical conductivity unite; 0.12 dS.m−1 for non-saline and 2.65 for extreme salinity classes.

in general the reflectance are relatively overestimated in MSI
than in OLI. This is likely due to the correction of scattering
effects by aerosols in these short wavelengths, as well as to the
OLI medium spatial resolution compared to the original pixel
size of MSI. These observations have been also noted in other
studies [21]. Furthermore, the RMSD values are insignificant for
the NIR and SWIR homologous bands (≤0.009), and are very
small (≤0.029) in the visible bands (see Table V). Globally, the
reflectance in OLI visible bands is slightly lower against those
in MSI.

Fig. 10 illustrates the relationship between the derived SSSI
and SEPM products from MSI and OLI data acquired in 2017.
The SSSI values fit significantly with the line 1:1 (R2 of 0.95)
showing a slope of 0.97, intercept of 0.00, and RMSD of 0.004.
Moreover, the predicted salinity values using the SEPM are
fitting well with 1:1 line expressing an excellent coefficient
of determination (R2 of 0.95) between the derived information
from the two sensors, with a slope of 0.97 (near to the unit)
and intercept of 1.46. This scatter-plot showed also a relative
underestimation of very high salinity class (200 ≤ EC-Lab ≤
600 dS.m−1) in the OLI SEPM than that of MSI. Whereas, the
RMSD calculated for SEPM varied from 0.12 to 2.65 dS.m−1

for non-saline and extreme salinity classes, respectively. Almost
similarly to simulated data, these RMSD reflect relative errors
varying between 0.005 and 0.03 for the considered soil salinity
classes (2.6 ≤ EC-Lab ≤ 600 dS.m−1), which are quite identical

to the electrical conductivity accuracy measurements in the filed
using electronical instruments [83]. The small RMSD values
found between homologous bands of the two considered pair of
images (MSI and OLI) and the derived SSSI and SEPM could
not be attributed only to sensor spectral response function differ-
ences. Definitely, in addition to the unlike spatial resolutions and
the resampling MSI pixels, these relative small differences are
probably also due to the signal saturation, which resulted by the
difference in radiometric resolutions between both sensors. This
saturation may be more pronounced over bright and strongly
reflective surfaces such as white salt-crust areas, especially when
specular effect is strongly pronounced. It can also be magnified
by the non-Lambertian surfaces that cause a non-negligible
BRDF effects [29], as well as the BRDF standardization (FOV of
±10.3° for MSI rather than ±7.5° for OLI), which is based on
a semi-empirical model [74]. Moreover, it can also be caused
by the residual errors of sensor radiometric calibration and
atmospheric corrections that are never perfect, particularly at
shorter wavelengths, where atmospheric scattering impacts are
usually greatest, and also because the images have not been
atmospherically corrected pixel by pixel but rather band by band.

In general, independently to the used data (simulated or im-
ages) the statistical fits were found to be highly significant (0.95
≤ R2) and the reached RMSD values (<0.029) were smaller
than the accuracy of radiometric calibration process (0.03) as
demonstrated by Markham et al. [7]. Moreover, despite the small
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Fig. 9. Compared surface reflectance acquired with Sentinel-MSI and Landsat-OLI spectral bands (VNIR and SWIR) acquired on August 2017.

differences especially in coastal and blue bands, these results
pointed out that MSI and OLI sensors can be combined for high
temporal frequency to monitor soil salinity dynamic in time and
space in an arid landscape. However, rigorous preprocessing
issues (sensors calibration, atmospheric corrections, and BRDF
normalization) must be addressed before the joint use of ac-
quired data with these two sensors. This result corroborate the
finding of Davis et al. [84], who have demonstrated that the
two sensors have similar salinity modeling skill in Hyde County

areas in North Carolina (USA). Moreover, although this article
is focusing specifically on soil salinity as a specific target, the
results obtained are consistent with previous research projects
considering several other applications around the world. For
instance, comparing surface reflectance and derived biophysical
variables over Australian territory, Flood [26] indicated good
compatibility between SMI and OLI instruments with RMSD <
0.03 for surface reflectance in VNIR and SWIR bands, and an
RMSD around 0.05 for biophysical variables. Pastick et al. [85]
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Fig. 10. Compared SSSI (a) and SEPM (b) derived from Sentinel-MSI and Landsat-OLI images data acquired on August 2017.

demonstrated that observations made by MSI and OLI can be
used to monitor land-surface phenology accurately in drylands
of the Western United States. Vuolo et al. [86] compared surface
reflectance and biophysical products of many targets over six test
sites in Europe showed a good relationship between these two
sensors products, yielding RMSD values around 0.03 reflectance
units. Some tests performed on simulated data and on real images
data acquired simultaneously with MSI and OLI over a wide
variety of land cover types (agricultural fields, inland, and open
shallow water) showed a very high coefficient of determination
(R2 of 0.98) between homologous bands [18]. Moreover, the
comparison of an automated approach for burned areas mapping
combining OLI and MSI data, preprocessed rigorously, showed
that both sensors have identified similarly the spatial patterns
for burned areas [87].

IV. CONCLUSION

The MSI onboard Sentinel satellites and the OLI installed on
Landsat-8 satellite are designed to be similar in the perspective
that their data be used together to support global Earth surface
reflectance coverage for science and development applications
at medium spatial resolution and near daily temporal resolution.
However, relative spectral response profiles characterizing the
filters responsivities of the both instruments are not identical
between the homologous bands, so some differences are prob-
ably expected in the recorded land-surface reflectance values.
This article analyzes and compares the difference between the
reflectance of the homologous spectral bands in the VNIR
and SWIR of MSI and OLI sensors for soil salinity dynamic
monitoring in arid landscapes. In addition, comparisons were
carried out in term of conversion of these surface reflectance to
the SSSI and in term of the SEPM for salt-affected soil mapping.
To achieve these, analyses were performed on simulated data
and on two pairs of images acquired over the same area in
July 2015 and August 2017 with one day difference between
each pair. For simulated data, a field campaign was organized
and 160 soil samples were collected with various degrees of
soil salinity classes (i.e., extreme, very high, high, moderate,
low, and non-saline). The bidirectional reflectance factor was
measured above each soil sample in a Goniometric-Laboratory

using an ASD spectroradiometer. Then, these measurements
were resampled and convolved in the solar-reflective bands of
SMI and OLI using the CAM5S TRC and the relative spectral
response profiles characterizing the filters of these instruments.
Furthermore, the used pairs of images were not cloudy, or cirrus
contaminated, and without shadow effects. They were radio-
metrically and atmospherically corrected, and the differences
related to BRDF were normalized. To generate data for analysis,
similarly to OLI, MSI images were resampled systematically in
30 by 30 m pixel size considering UTM projection and WGS84
datum. The comparisons of the surface reflectance, and derived
SSSI and SEPM were undertaken in the same way for simulated
and images data using regression analysis, R2, and RMSD. The
results obtained demonstrate that the statistical fits between SMI
and OLI simulated surface reflectance over a wide range of soil
samples with different salinity degrees reveals an excellent linear
relationship (R2 of 0.99) for all bands, as well as for SSSI and
SEPM. The RMSD values are null between the NIR and SWIR
homologous bands, and are insignificant for the other bands
(i.e., 0.003 for coastal and 0.001 for the blue, green, and red
bands). Moreover, the SSSI shows an RMSD of 0.0007 and
the SEPM expresses an excellent RMSD around 0.5 dS.m−1

(electrical conductivity unit) reflecting a relative error that varies
between 0.001 and 0.05, respectively, for salinity classes varying
between 2.5 and 600 dS.m−1. Likewise, the two used pairs of
images exhibited very significant fits (R2 of 0.93 for the costal
and R2 ≥ 0.96 for the other bands of land surface reflectance,
and R2 of 0.95 for SSSI and SEPM). Excellent consistency was
also observed between the derived products of the two sensors,
yielding RMSD values less than 0.029 (reflectance units) for
the bands and less than 0.004 for SSSI. While, the calculated
RMSD for the SEPM fluctuate between 0.12 and 2.65 dS.m−1,
respectively, of non-saline and extreme salinity classes, which
means that the relative errors varies between 0.005 and 0.03
for the considered soil salinity classes (i.e., between non-saline
to extreme salinity). In general, independently to the used data
(simulated or images) the statistical fits were found to be highly
significant (0.95 ≤ R2) and the reached RMSD values (< 0.029)
were smaller than the accuracy of radiometric calibration pro-
cess (0.03) as demonstrated by Markham et al. [7]. Moreover,
despite the small differences especially in coastal and blue
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bands, the results of this research pointed out that MSI and
OLI sensors can be combined for high temporal frequency to
monitor soil salinity dynamic in time and space in an arid land-
scape. However, rigorous preprocessing issues such as sensors
calibration, atmospheric corrections, and BRDF normalization
must be addressed before the joint use of acquired data with
these two sensors.
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