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Spatial-Spectral Joint Classification of Hyperspectral
Image With Locality and Edge Preserving

Hui Zhang, Wanjun Liu, and Huanhuan Lv

Abstract—Hyperspectral image (HSI) classification is an impor-
tant part of its processing and application. Aiming at the problems
of high data dimensionality and high spatial neighborhood cor-
relation in HSI classification, we propose a spatial-spectral joint
classification method of HSI with locality and edge preserving in
this article. First, the input HSI is normalized, and the feature
is extracted by principal component analysis. The first principal
component image is taken as the guidance image. Second, guided
filtering is used to extract the spatial features of each band sep-
arately. Then, the extracted spatial features are superimposed,
and low-dimensional embedding is completed through local Fisher
discriminant analysis. Finally, the obtained low-dimensional em-
bedded features are input into a random forest classifier to get
classification results. The experimental results of two HSI show
that the proposed method achieves higher classification accuracy
than other related methods. In the case of randomly selecting 10%
and 1% samples from each class of ground object as training
samples, the overall classification accuracy is improved to 99.57%
and 97.79 %, respectively. This method effectively uses the spatial
and local information of the image in low dimensional embedding,
and preserves the boundaries of the ground objects, thus improving
the classification effect.

Index Terms—Guided filtering, hyperspectral remote sensing
image, low-dimensional embedding, random forest.

I. INTRODUCTION

YPERSPECTRAL image (HSI) has ultra-high spectral
Hresolution, which can acquire hundreds of continuous
spectral bands of the ground objects, thereby greatly improv-
ing the ability of distinguishing different ground objects. HSI
plays an important role in national defense construction and
national economy, and has been widely used in areas such as
target detection [1], surface classification [2], environmental
management [3], and mineral mapping [4]. The basis of many
HSI applications is image classification, but the characteristics of
high dimensionality, high correlation between bands, and small
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number of samples have brought challenges to classification,
which makes classification tasks face problems such as dimen-
sionality disaster, spatial homogeneity, and heterogeneity [5].

To solve these problems, on the one hand, many researchers
engaged in HSI classification use methods of machine learn-
ing for image classification, including support vector machine
(SVM) [6], Gaussian mixture model [7], random forest (RF)[8],
sparse expression [9], active learning [10], etc. On the other
hand, deep learning has been successfully applied in computer
vision and other fields. In recent years, it is gradually ex-
panding to HSI classification. The models include autoencoder
network [11], [12], convolutional neural network [13], [14],
three-dimensional convolutional neural network [15], [16] and
recurrent neural network [17], [18]. The deep learning-based
HSI classification method automatically extracts features from
the data, which simplifies the processing of classification, but it
still faces problems such as high computational complexity and
small-sample learning. Therefore, compared with the high com-
putational complexity of deep learning, the machine learning-
based HSI classification method focuses on the selection of
the classifier and feature extraction, which is still an important
breakthrough in improving the accuracy of classification.

Feature extraction can embed high-dimensional data into a
lower-dimensional space, and reduce the data dimension while
maintaining the basic structural information of the original data
as much as possible. Therefore, the curse of dimensionality can
also be alleviated to a certain extent. So feature extraction is a
common data preprocessing method in HSI classification. Prin-
cipal component analysis (PCA) [19] and linear discriminant
analysis (LDA) [20] are two typical subspace linear transforma-
tion approaches, but they cannot effectively reveal the nonlinear
structure of the data. For this reason, researchers put forward
some manifold learning methods, which can better mine poten-
tial low-dimensional manifold structures of high-dimensional
data, such as local preserving projection (LPP) [21], locally
linear embedding [22] and neighborhood preserving embedding
[23]. The above methods can be classified into graph embedding
framework. The difference lies in how to build intrinsic graph
and penalty graph, but they are all unsupervised methods, and
their classification performance is limited [24]. To address this
issue, researchers introduce the prior knowledge of the samples
into graph embedding framework to improve the performance of
classification, and develop supervised learning methods such as
marginal fisher analysis [25], local Fisher discriminant analysis
(LFDA) [26], and regularized local discriminant embedding
[27], so as to further improve the classification accuracy.
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The above methods only use the spectral features in feature
extraction, and ignore the spatial features of the image. In
addition to spectral features, HSI also contains a wealth of
spatial features, and the pixels close to each other in space are
likely to belong to the same kind of ground objects [28], [29].
Only spectral features cannot fully and effectively express the
structures of hyperspectral data. For this reason, researchers put
forward HSI classification approaches of spatial-spectral feature
fusion, and considered that spatial features can be used as a
complementary of spectral features. Hang et al. [30] introduced
matrix-based discriminant analysis (MDA) to extract the spatial
and spectral features of HSI simultaneously. Then, a random
sampling technique is used to produce a subspace ensemble
for final SVM classification. In [31], the joint of extended
morphological profiles (EMP) and spectral features was adopted
to represent the features of pixels in HSI. Then, the authors
construct a hypergraph to learn the low-dimensional features.
Finally, the learned features were fed to SVM for classification.
Huang et al. [32] first employed a weighted mean filter to filter
the image. Then, a spatial-spectral combined distance was used
to fuse the spatial and spectral information to select the neighbors
of each pixel. Finally, manifold reconstruction was performed
and the low-dimensional discriminative features are extracted
for classification. The above methods effectively introduce the
spatial features of the image, and the classification accuracy has
beenimproved, but they only use the spatial information between
the center pixel and its surrounding pixels in a specific area, or
each pixel and its neighbors of the low-dimensional embedding
process. The edge information of the ground objects in the image
is ignored, and this information still plays an important role in
improving the accuracy of classification, especially when the
number of training sample is small.

To overcome the aforementioned drawbacks, we proposed a
spatial-spectral joint classification method of HSI with locality
and edge preserving in this article. The spatial-spectral features
extracted by the proposed method make use of the spatial in-
formation, local information and preserves the boundaries of
the ground objects, and perform classification with a random
forest classifier, which improves the classification accuracy and
reduces the computational complexity. The main characteristics
of the proposed method can be concluded as follows.

1) Alocal linear model between the first principal component
of PCA and the output image is established, and the
difference function between the input and output images
of each band is solved to extract the spatial features while
taking into account the edge information of the ground
objects.

2) In the low-dimensional embedding, the distance-based
similarity weighted matrices are calculated to effectively
preserve the local multimodal features of each class. The
local between-class and within-class scatter matrices are
obtained by the weighted matrices, which preserve neigh-
borhood relationships and force neighboring points in the
input space to remain close in the projected subspace, so
that the data of different categories can be better separated
in the projection space.
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The remainder of this article is organized as follows: In
Section II, the related works are presented. In Section III,
the proposed method is discussed in detail. The experimental
analysis and comparisons are presented in Section IV. Finally,
the conclusion is drawn.

II. RELATED WORKS
A. Guided Filtering

Guided filtering [33] is an edge preservation filter with excel-
lent performance that has appeared in recent years. In addition
to the basic smoothing function, it can also transfer the spatial
edge information in the guidance image to the output image
more completely. It has been widely used in image denoising
[34], image fusion [35], and other fields.

In the process of collection, acquisition and transmission of
HSI, different types of noise are often introduced. As a result, the
spectral characteristics of the same class of ground objects show
different degrees of fluctuation, which brings great difficulties to
the accurate classification of HSI under small training samples.
To alleviate the problem, we use guided filtering to remove the
noise in the original image and preserve the edges of the ground
objects. The filter plays a smoothing role in regions where
the pixels change softly. In regions where the pixels change
sharply, the filter can also maintain the edges of the objects,
thereby retaining the distinguishing features that are conducive
to classification.

Suppose that the filter output ¢ and the guidance image [ have
the following local linear relationship in a window J, centered
at the pixel kand r as the radius

¢ = arl; + b, Vi€, q €q ()
where aj, and by are some linear coefficients assumed to be
constant in dg.

To determine the linear coefficients, a solution to minimize
the difference between ¢ and p is sought, it can be transformed
into an optimization problem according to the method of uncon-
strained image restoration. The cost function is

E(ak,bk) = Z ((ak:Ii + bk _pi)2 + 8&%) (3)

1€k

where ¢ is a regularization parameter.
Least square method is used to get

7 Zies, Lipi — pipr
B o te

“)

ay

by, = Dr — apfik (5)

where pj; and o} are the mean and variance of [ in 4y, respec-
tively. |d] is the number of pixels in d, and pp = ﬁ Dics, Pi
is the mean of p in ;.

When window operation is adopted in the whole image, the
output value of a certain pixel can be obtained by means of the
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average linear function of the pixel as follows:

4 = || > (arli +by)

k€6
=a;l; +b; (6)

where a; = \}T\ Zke& ag and b; = ﬁ dei by, are the average
values of ax and byin all windows 1.

The regularization coefficient € and radius r are the two pa-
rameters of the filter. The proposed method analyzes and verifies
the influence of their different values on the final classification
results in detail.

B. Local Fisher Discriminant Analysis

Affected by illumination conditions, atmospheric effects and
geometric distortions, the real class-conditional distributions of
HSI usually have a complicated multimodal structure. The local
multimodality of each class is preserved by using a distance-
based similarity weighted matrix. In order to obtain the weighted
matrix, the similarity between samples needs to be calculated.
A, ; € [0, 1] represents the similarity between sample z; and z ;,

denoted as
2
Ayj = exp (—”“" Zl ) @

YiVj
where ~; is the local scaling of x;, defined as v; = ||z; — x|,
x! is the neighbor of x;, and ¢ is the adjustment factor. The local

between-class scatter matrix S*® and local within-class scatter
matrix S are defined as

Z Wlb (zi — xj)(xi — xj)" (8)
4,j=1

and
Z Wlw (zi — xj)(wi — x5)" ©)
zy 1

where two weighted matrices W' and W' are introduced to
preserve local information of the data, and their (i, j)** elements
Wb and W} are respectively defined as

Wi = { ! _ ! (10)
1/n ify; # vy
and
A/, ity =y; =
I,VJV :{ J . j (11
07 lfyl #yj

The transformation matrix W LFDA can be obtained by cal-
culating the optimal value of the local Fisher ratio as follows:
WT S|
(WTSww|

The above optimization problem is equivalent to solving
SV = AS™V, where A is the generalized eigenvalue, and V/

represents the eigenvector corresponding to the Fisher discrim-
ination direction. Assuming that the generalized eigenvalues

WrLrpA = arg max (12)
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are Ay > Ao...
eigenvector vy, v, . . .

> As in descending order, the corresponding
v forms the optimal projection matrix.

C. Random Forest Classifier

RF is a decision tree ensemble method based on bagging
and random subspace. It can effectively solve the problems of
high-dimensional data and high feature-to-instance ratio. The
better generalization performance and the higher computational
efficiency enable it to achieve better results in complex classifi-
cation problems [36].

RF is composed of hundreds of decision-tree-based
models{h(X,0k),k =1,2,..., N0}, where 0k is an indepen-
dent identically distributed random variable, and N6 is the
number of variables. RF trains k decision trees for k training
subset sampled randomly with replacement from the original
sample set. The final classification result is decided by the votes
of all classification trees [37].

H(x) = argmax Z I(hi(z) =vy;), j=12,...,C
Y el 2, k]

(13)

where H(x) represents the combined model, h;(x),i=

1,2, ...,k is the decision tree model generated from k training

subsets, and y;,j =1,2,...,C is the output or labels of C
classes. I(e) is the combined strategy and defined as follows:

L, h; (l‘) =Y;

I(x) = { '

where h;(z)is the output of the decision tree, and y;,j =
1,2,...,C is the label of class i.

(14)

III. PROPOSED METHOD
A. Procedure of Proposed Method

The flowchart of the proposed spatial-spectral joint classifica-
tion method of HSI with locality and edge preserving is shown
in Fig. 1. The main steps include the following:

1) The original data are preprocessed by band division and

normalization.

2) PCA is performed to get the features of normalized data,
and the first principal component is used as the guidance
image. Guided filtering is adopted to extract spatial fea-
tures of each band separately.

3) The extracted spatial features are superimposed and LFDA
is applied for low-dimensional embedding.

4) The obtained low-dimensional embedded features are di-
vided into training samples and test samples and input to
the RF classifier to get classification results.

B. Preprocessing of Hyperspectral Data

The value recorded by HSI is the radiance of the ground
object, not the reflectivity. Therefore, it is necessary to normalize
each band of the image. Otherwise the convergence speed will
be slow and may not converge to the minimum value. The
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Fig. 1. Flow of the proposed classification method.

normalized calculation formula is as follows:
Y -V,

X=-—-— """
YM_Ym

15)
where Y is the input image and X is the normalized image. Y,
and Y}, represent the minimum and maximum values of each
band in the image, respectively. Through the normalization, the
spectral values of each band in the image are within the range
of [0, 1].

C. Spatial-Spectral Feature Extraction

Let us denote X as an input HSI dataset to be classified with
m rows and n columns. It can be expressed as

r11 Ti12 Tip

T21 T22 Tip
X fr—

Ts1 Ts2 Tsp

where s = m x n is the number of pixels, and p is the number
of bands, and x;; represents the i*" sample of the j*" band.

We take the first principal component extracted by PCA as
the guidance image. Specifically, because the first principal
component has the largest eigenvalue, the largest component
projection, and the largest amount of information, it contains
the most important information of the original image. Most of
the boundaries in the original image are retained, so it is used as
the guidance image to filter multiple bands.

The covariance matrix of X needed to be calculated to get the
guidance image. First, the mean value of all the pixels in the 5"
band of the image is

(16)

s
H=1>
T;=— Tij
J 5 4 J
=1

T

Overlay
-

Band 1 after
Filtering

Band n after
Filtering

_||.Fhlll

Cla551ﬁcatlon Result

where 1 < i < 5,1 < j < p, and a;; is the i*" sample of the j*&
band. Then, the covariance matrix can be obtained by

C= lz (a?i — .fj)(l‘i — i‘j)T.

s <
i=1

7)

The eigenvalue decomposition of the covariance matrix is car-
ried out to get the eigenvalue Ay > Ay > --- > A, and the corre-
sponding eigenvector is A = [aq, aa, - - - , @p). So the guidance
image can be constructed by

I=aoTXx. (18)

Let X be the input image, and I obtained above be the
guidance image. Build a local linear model between the output
of X and I according to (1), get the values of ay and by from
(4), calculate the value of each pixel by (6), and finally get the
output.

The third band of the HSI Indian Pines is taken as the input
image. Fig. 2 shows a comparison of the features extracted
by morphological filtering and guided filtering. Morphological
filtering uses the circular window, and guided filtering uses the
square window. The first principal component extracted by PCA
is taken as the guidance image, and the windows with radius r
of 2, 4, 6, and 8 are used for filtering respectively.

Fig. 2 shows that the two filtered images with window radius
of 2 and 4 can basically extract the structural features of different
classes of the ground objects. When the window radius is 6 and
8, the structure of the ground objects in the image extracted
by morphological filtering is relatively fuzzy, while the image
extracted by guided filtering can basically retain the edge infor-
mation and general outlines of the ground objects.

Then, low-dimensional embedding is realized according to (7)
to (12). Spatial-spectral features obtained after low-dimensional
embedding are used for classification.
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Fig. 2. Comparison of morphological filtering and guided filtering. (a) The
input image. (b) The feature obtained by morphological filtering with r = 2.
(c) The feature obtained by morphological filtering with » = 4. (d) The feature
obtained by morphological filtering with » = 6. (e) The feature obtained by
morphological filtering with » = 8. (f) The guided image. (g) The feature
obtained by guided filtering with » = 2. (h) The feature obtained by guided
filtering with = 4. (i) The feature obtained by guided filtering with » = 6. (j)
The feature obtained by guided filtering with r = 8.

D. Classification Based on RF

The proposed method uses RF to achieve classification. The

specific steps are as follows:

1) The spatial-spectral features obtained are randomly di-
vided into training set and test set.

2) Based on bagging sampling, N samples and
M characteristic variables are randomly selected from
the training samples 7'times to construct a new bootstrap
sample dataset. T'classification regression trees are
generated from the new dataset. The training samples
out of bag (OOB) are used to estimate the generalization
ability of the classifier.

3) The root node of each classification regression tree stores
the corresponding sample data. From the root node, a
certain characteristic variable is selected according to the
principle of minimum impurity, and child nodes are gen-
erated by splitting. The impurity index used in this article
is Gini coefficient(, the Gini coefficient of characteristic
variable g is calculated as

C
)=1-> p;
j=1

where c is the number of classes divided by g and p; is the
proportion of the i*" class sample to the total sample. Then,
suitable splitting points are selected for g, which can maximize
the decrease of the Gini coefficient of the node before and after
splitting. Assuming that the selected feature variable is f and the
splitting point is z, then the decrease before and after splitting
is

19

AG(f) =Glg) — (1= q)G(f < z) —qG(f > 2)
where G(f < z) represents the Gini coefficient of the samples
whose f value of node ¢ is less than z. ¢ is the proportion
of samples whose f value of node g is less than z. G(f > z)
represents the Gini coefficient of the samples whose f value of

node g is greater than z.

(20)
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Fig.3. False color image and the ground truth image of Indian Pines. (a) False

colour image. (b) The ground truth image.

4) Recursively selects and splits nodes for each tree with-
out clipping until the maximum decomposition depth is
reached. In order to speed up the construction of the trees
and reduce the risk of overfitting, an additional sample
number limit condition is added to determine whether
each node continues to split, that is, when the number
of samples of a node is greater than the limit threshold
TNihresholds the split can continue.

5) The generated 7" classification regression trees constitute
a forest. During the test phase, each tree will vote on the
test samples once, and finally assign the class with the
most votes to the test samples, so as to realize the random
forest classification.

IV. EXPERIMENT AND RESULT ANALYSIS
A. Experimental Data

To verify the validity of the method, representative Indian
Pines and Pavia University HSI datasets are selected for classi-
fication experiments.

1) Indian Pines dataset: This dataset is derived from the
AVIRIS sensor and reflects the vegetation planting in
northwestern Indiana, USA. The image size is 145 x 145
pixels, the wavelength range is 0.4 to 2.5 um, and the
spatial resolution is 20 m. Due to the atmosphere and water
absorption, the noise bands are removed and the remaining
200 bands are used for classification. The dataset contains
16 classes of ground objects and with a total of 10 249
samples. False color image of the area (synthetic bands:
140, 80, and 50) is shown in Fig. 3(a), and the ground truth
image is shown in Fig. 3(b).

2) Pavia University dataset: The dataset is derived from the
ROSIS sensor. The image size is 610 x 340 pixels, the
wavelength range is 0.43 to 8.6 um, and the spatial res-
olution is 1. 3m. After removing the noise bands, the re-
maining 103 bands are used for classification. The dataset
contains 9 classes of ground objects and with a total of
42 776 samples. False color image of the area (synthetic
bands: 90, 60, and 30) is shown in Fig. 4(a), and the ground
truth image is shown in Fig. 4(b).
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Fig. 4. False color image and the ground truth image of Pavia University.
(a) False colour image. (b) The ground truth image.

B. Comparison Methods and Evaluation Indicators

We use the proposed method (GF-LFDA-RF) and seven other
methods to classify the datasets to test the performance. The
seven methods are as follows:

1) The method uses SVM to classify raw spectral features

(SP-SVM).

The method uses RF to classify raw spectral features
(SP-RF).

The method combines LFDA and SVM (LFDA-SVM)
[26].

The method combines the EMP and spectral features and
adopts the KNN (K-Nearest-Neighbor) method to con-
struct a hypergraph and uses SVM to classify (SSHGx)
[31].

The matrix-based discriminant subspace ensemble
method for HS image spatial-spectral feature fusion (PT
-+ MDA + RS) [30].

The method uses guided filtering and performs RF
classification (GF-RF) [38].

The method called spatial-spectral manifold recon-
struction preserving embedding (SSMRPE) for HIS
classification [32].

The evaluation indicators used in this article include overall
classification accuracy (OA), average classification accuracy
(AA) and Kappa coefficient (KC). In order to improve the
reliability and accuracy of the experiment, the experiment is
repeated ten times under each experimental condition, and the

average value of the ten experimental results is taken as the final
result.

2)
3)

4)

)

0)

7)

C. Parameter Settings

The parameters influencing the performance of the proposed
method include the embedding dimension k£ and neighborhood
number ¢ of LFDA, the window radius r and regularization
coefficient ¢ of guided filtering, and the number of decision
trees 7' and the limit threshold n¢preshold Of RF. According
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Fig. 5. OA under different k& and ¢ of Indian Pines dataset.
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3220

Fig. 6. OA under different k£ and ¢ of Pavia University dataset.

to the research results in [36], the number of samples of the
split node nihreshold 1 set to 10. The influences of different
parameter values are analyzed through experiments, and then
the best parameters are selected. A total of 50 samples of each
class of the ground objects are randomly selected from the two
datasets (if the total number of the ground objects in a certain
class is less than 50, half is selected) as training samples, and
the remaining are test samples. Figs. 5 and 6 show the impact of
different k and ¢t whenr = 2, ¢ = 0.1, and 7" = 100. As can be
seen from Fig. 5, for the Indian Pines, when & = 20 and ¢ = 18,
the classification accuracy obtained is the highest, with a value of
94.02%. With the increase of k, the classification accuracy con-
tinues to increase and gradually reaches the highest value, and
then no longer improves. This is because the more the embedding
dimension is, the richer the discrimination information is and the
classification accuracy is correspondingly improved. However,
when there is enough embedded information for classification,
the increase of dimensions will have a limited effect on the
improvement. When t is different, the classification accuracy
fluctuates, but the difference is not obvious. As shown in Fig. 6,
for the Pavia University, when k = 24 and ¢t = 13, the classifica-
tion accuracy is the highest, and its value is 95.36%. Figs. 7 and 8
show the effects of different » and € when the values of 7" = 100,
k and t are optimal. As can be seen from Fig. 7, for the Indian
Pines, when r = 7 and ¢ = 0.0001, the classification accuracy
is the highest, with a value of 98.50%. For Pavia University
dataset, when r = 8 and € = 0.1, the classification accuracy is
the highest, with a value of 98.04%. With the increase of r, the
classification accuracy gradually reaches the maximum value,
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Fig. 7. OA under different rand € of Indian Pines dataset.
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Fig. 8. OA under different rand € of Pavia University dataset.
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90

Fig. 9. OA under different 7.

and then no longer improves or even decreases, which is related
to the distribution of the ground objects in the HSI itself. When
r becomes higher, the spatial information obtained is richer,
but when enough spatial information is obtained, noise may be
introduced in increasing the window. In addition, experiments
show that ¢ values of 0.0001, 0.001, 0.01, and 0.1 have little
effect on the classification results.

In order to evaluate the influence of 7" in the RF on the
performance of the classifier, the 7" values of the two images are
dynamically changed by step size 5 within the range of (5,200).
Figs. 9 and 10 show the influence of different 7" and OOB error
when parameters k, ¢, r, and ¢ are optimal. For the Indian Pines
dataset, OA increases with the increase of 1", while OOB error
decreases with the increase of 7" and gradually becomes stable.
When T = 175, OOB error is the smallest of 0.0029, and OA
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Fig. 11. Comparison of OA under different numbers of training samples in
Indian Pines dataset.

is the highest of 98.56%. Similarly, in Pavia University, when
T = 155, OOB error value is the smallest, which is 0.0044, and
OA is the highest, with a value of 98.13%.

D. Experimental Results and Evaluation of Indian Pines

In the experiment, 50, 100, and 150 samples are randomly
selected from each class of ground objects (when the number
of ground objects is insufficient, half is selected) as training
samples, and the remaining are test samples. Fig. 11 shows the
comparison of OA of each method under different numbers of
training samples. It can be seen that as the number of training
samples increases, OA of each method improves. This is be-
cause the more training samples, the richer the discrimination
information, and the higher the classification accuracy. The clas-
sification results of SP-SVM and SP-RF are similar, indicating
that the generalization capabilities of SVM and RF classifiers
are similar. LFDA-SVM utilizes the local information between
pixels to extract the discriminant features that are helpful for
classification, which improves the accuracy compared to using
only the original spectral features. However, due to only using
the spectral features of the image, the improvement of results
is limited. SSHGx*, PT + MDA + RS, GF-RF, SSMRPE, and
GF-LFDA-RF introduce spatial information of images, and the

classification results have been significantly improved. When
different numbers of training samples are selected, the OA of
the proposed method is always the highest, indicating that the
method can extract the spatial features of the image based on
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TABLE I
CLASSIFICATION RESULTS OF EACH METHOD ON INDIAN PINES (%)

Class SP-SVM SP-RF LFDA-SVM SSHG* PT+MDA+RS GF-RF SSMRPE GF-LFDA-RF
Alfalfa 85.71 87.09 100 64.70 70.96 100 91.66 100
Corn-notill 72.75 76.93 75.28 92.50 95.58 97.88 97.58 99.23
Corn-min 73.40 77.15 70.19 90.70 92.90 93.22 96.72 98.02
Corn 70.06 65.35 93.37 94.83 95.16 99.04 97.57 99.06
Grass/pasture 88.46 85.01 98.96 96.86 97.47 99.52 96.85 99.76
Grass/trees 88.22 88.44 96.92 98.33 98.63 97.18 100 100
Grass-mowed 70.37 70.83 100 87.50 100 100 100 100
Hay-windrowed 91.59 94.64 100 100 100 99.77 100 100
Oats 90 71.43 71.42 76.92 100 85.71 71.42 100
Soybeans-notill 73.90 74.26 81.14 91.41 96.03 98.78 97.28 99.77
Soybeans-min 79.23 80.18 83.14 92.62 95.95 97.56 99.22 100
Soybeans-clean 80.83 71.45 60.74 92.75 92.20 99.81 97.89 98.16
Wheat 88.67 88.94 66.82 100 100 99.46 100 100
Woods 93.18 95.34 97.68 99.47 99.64 99.74 99.38 100
Bldg-grass-drives 62.18 64.78 93.29 96.56 94.15 98.57 95.76 100
Stone-steel-towers 97.43 98.78 48 100 100 100 100 100
OA 80.43 81.20 83.93 94.41 96.27 98.05 98.31 99.57
AA 81.62 80.66 83.56 92.20 95.54 97.89 96.33 99.62
Kappa 77.65 78.55 81.55 93.61 95.74 97.77 98.07 99.51

®

Fig. 12.

(h)

(8

Classification result and OA of each method on Indian Pines. (a) SP-SVM(OA = 80.21%). (b) SP-RF(OA = 82.04%). (c) LFDA-SVM(OA = 83.88%).

(d) SSHG*(OA = 94.05%). (e) PT 4+ MDA + RS(OA = 95.87%). (f) GF-RF(OA = 98.04%). (g) SSMRPE(OA = 98.47%). (h) GF-LFDA-RF(OA = 99.63%).

the characteristics of HSI data such as high resolution and
multimodality. At the same time, considering the edge infor-
mation of the features and the local information of the pixels,
the classification results are improved.

In order to verify the influence of different methods on the
classification results of the ground objects under the balanced
training set, 10% samples are randomly selected from each class
of the ground object as training samples and the remaining are
taken as test samples. Table I shows the classification accuracy
of each class, OA, AA, KC, and running time of each method.
Fig. 12 is the classification result of one experiment randomly
selected from the ten experiments. According to Table I, OA,
AA, and KC of the proposed method are about 99.57%, 99.62%,
and 99.51%, respectively, which are all higher than the results
of SP-SVM, SP-RF, LFDA-SVM, SSHGx, PT + MDA + RS,

GF-RF, and SSMRPE. Among them, OA improved by about
19.14%, 18.37%, 15.64%, 5.16%, 3.3%, 1.52%, and 1.26%,
respectively. AA improved by about 18%, 18.96%, 16.06%,
7.42%, 4.08%, 1.73%, and 3.29%, respectively. KC improved
by about 21.86%, 20.96%, 17.96%, 5.9%, 3.77%, 1.74%, and
1.44%, respectively. At the same time, 15 of the 16 classes have
obtained the best classification accuracy in proposed method.
Although the generalization capabilities of SVM and RF clas-
sifiers are similar, RF consumes less time than SVM. When
randomly selecting 10% of the training samples to train the
model, there will be small samples such as 2, 3, and 5, but
the proposed method still obtains good classification results,
which shows that the method can better deal with the small
sample learning problem of HSI classification. As can be seen
from Fig. 8, since the SP-SVM, SP-RF, and LFDA-SVM only
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TABLE II
CLASSIFICATION RESULTS OF EACH METHOD ON PAVIA UNIVERSITY (%)

Class SP-SVM  SP-RF  LFDA-SVM SSHG* PT+MDA+RS  GF-RF SSMRPE  GF-LFDA-RF

Asphalt 75.94 78.59 80.28 87.41 93.63 91.49 92.96 96.39
Meadows 82.78 84.03 85.60 98.25 97.83 99.57 97.07 99.68
Gravel 80.60 65.50 74.91 84.93 88.01 90.02 95.14 97.91
Trees 93.04 98.41 93.07 95.69 99.54 99.65 98.15 97.66
Painted metalsheets 96.63 97.92 95.93 90.55 86.82 90.18 92.88 98.08
Bare Soil 93.89 92.26 95.64 97.30 97.96 95.41 97.93 98.27
Bitumen 64.37 80.69 84.30 90.58 97.30 90.19 99.90 95.47
Self-Blocking Bricks 72.45 70.34 77.67 88.26 84.53 96.22 94.38 92.26
Shadows 100 100 100 92.37 99.45 97.74 99.20 93.97
OA 82.28 83.07 85.25 94.15 95.26 96.39 96.42 97.79
AA 77.26 80.66 87.48 92.21 94.01 94.53 94.67 96.63
Kappa 75.46 78.55 79.78 91.70 93.68 95.22 95.24 97.07

one experiment randomly selected from the ten experiments. As

shown in the results, the proposed method also gets the best OA,

e AA, and KC. At the same time, five classes have obtained the

B spP-RF
B LFDA-SVM
B SSHG*

[ PT+MDA+RS
I GF-RF

I SSMRPE
B GF-LFDA-RF

Overall Accuracy(OA)/%

40 80 120
Number of training samples

Fig. 13. Comparison of OA under different numbers of training samples in
Pavia University dataset.

use spectral features, a serious “salt and pepper phenomenon”
appears in the results of them. SSHGx*, PT + MDA + RS, and
SSMRPE M combine spectral features with spatial features, and
the classification results are significantly improved, but there are
many misclassification results at the edges of the features. The
results of GF-RF and GF-LFDA-RF show that the boundaries
of the ground objects are clear, which indicates that guided
filtering can better maintain the edge information of the ground
objects while achieving smoothing. The proposed GF-LFDA-RF
method introduces local information between pixels on the basis
of extracting spatial features by guided filtering, and obtains
embedded features conducive to classification, which can better
reflect the real distribution of the ground objects.

E. Experimental Results and Evaluation of Pavia University

In the experiment, 40, 80, and 120 samples are randomly
selected from various ground objects as training samples, and
the remaining samples are test samples. Fig. 13 shows OA of
each method under different training sample numbers. It can
be seen that OA of the proposed method is higher than other
methods.

To verify the classification results of the ground objects by
different methods under the balanced training set, 1% samples
are randomly selected from each ground object as training sam-
ples and the remaining samples as test samples. In Table II, the
comparison results are listed. Fig. 14 is the classification result of

best classification accuracy. It can be seen from Fig. 14 that the
classification results obtained by GF-LFDA-SVM have fewer
noise points and a smoother distribution of the ground objects
(especially the edges of the ground objects), further illustrating
the effectiveness of the method proposed in this article.

F. Computational Complexity

In order to analysis the computational complexity of proposed
method, suppose a HSI has p bands, and the number of pixels
of each band is denoted as m, then the image filtering takes
O(p x m). The computational complexity of low-dimensional
embedding is determined by two aspects. One is the calculation
of neighbors, and the other is the solution of generalized eigen-
vectors. The similarity distance between any two samples is cal-
culated with the cost of O(pn?), n is the number of samples. The
finding of k neighbors costs O(kn?). For ease of understanding,
itis assumed that both the within-class and between-class scatter
matrices are D x D, and solving the generalized feature vector
takes O(D?). Therefore, the computational complexity of the di-
mensionality reduction is O(pn? + kn? + D?). The cost of RF
classifier training n samples is O(n log(n) x g x T'), where ¢ is
the dimension after dimensionality reduction, 7" is the number of
decision trees. As a result, the final computational complexity of
proposed method is O(s x p + pn? + kn? + D3 + nlog(n) x
q X T'), and it mainly depends on the size of training samples,
pixel number, band number, and decision tree number.

To quantitatively compare the complexity of each method, the
computational time of each method is shown in Table III. The
time of each method is the sum of training time and testing time.
All of the results were obtained on a personal computer, which
has a CPU of Intel Core i5@2.7 GHz and 8-GB memory. The
software implementation was performed using MATLAB 2017
and python 3.5. As shown in Table III, the proposed method is
faster than other methods on Indian Pines dataset, but is slower
than SP-SVM, SP-RF, and LFDA-SVM on Pavia University
dataset. The reason is that Pavia University dataset has more
pixels than Indian Pines dataset, so it takes more time in the
filtering process.
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Fig. 14.

Classification result and OA of each method on Pavia University. (a) SP-SVM(OA = 82.36%). (b) SP-RF(OA = 82.89%). (c) LFDA-SVM(OA =

85.61%). (d) SSHG+(OA = 94.33%). (e) PT + MDA + RS(OA = 95.62%). (f) GF-RF(OA = 96.04%). (g) SSMRPE(OA = 96.75%). (h) GE-LFDA-RF(OA =

98.11%).

TABLE III
COMPUTIONAL TIME (IN SECONDS) OF DIFFERENT METHODS ON INDIAN PINES AND PAVIA UNIVERSITY DATASETS

Data SP-SVM  SP-RF  LFDA-SVM  SSHG* PT+MDA+RS GF-RF SSMRPE GF-LFDA-RF
Indian Pines 24.2 13.3 23.7 26.4 454 14 23.5 12.8
Pavia University 10.2 39 8.7 22.43 395.2 24.5 43.6 22.4

V. CONCLUSION

In this article, a HSI classification method is proposed, which
makes full use of spatial and local features and keeps the edges
of the ground objects. In the proposed method, the local linear
model between the first principal component of PCA and the
output image is built to filter each band of the input image,
so as to achieve the goal of removing the noise in the input
image and preserving the edges of the ground objects. Then, in
the low-dimensional embedding, the local scatter matrices are
calculated according to the local neighborhood relationships
between the samples, and the random forest classifier is used
to carry out the classification. The experimental results on the
Indian Pines and Pavia University hyperspectral datasets show
that the proposed algorithm performs much better than some
state-of-the-art methods in terms of classification accuracy and
KC. The limitation of proposed method is that the parameters
of the model need to be manually adjusted during classification.
Therefore, our future work will focus on how to realize the

adaptive parameters to further improve the -classification
performance of the proposed method.
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