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Reconstruction of Hyperspectral Images From
Spectral Compressed Sensing Based on a

Multitype Mixing Model
Zhongliang Wang , Mi He , Zhen Ye, Ke Xu, Yongjian Nian , and Bormin Huang

Abstract—Hyperspectral compressed sensing (HCS) based on
spectral unmixing technique has shown great reconstruction per-
formance. In particular, the linear mixed model (LMM) has been
widely used in HCS reconstruction. However, due to the complexity
of environmental conditions, instrumental configurations, and ma-
terial nonlinear mixing effects, LMM cannot accurately represent
the hyperspectral images, which limits the improvement of recon-
struction quality. In this article, first, by introducing spectral vari-
ability, nonlinear mixing, and residuals, a multitype mixed model
(MMM) is proposed to establish a more accurate hyperspectral
image model. Then, a novel MMM-based HCS is proposed, which
performs spectral compressed sampling at the sampling stage only,
and at the reconstruction stage, by using spectral unmixing, an
MMM-based HCS super-resolution reconstruction algorithm from
spectral compressed sensing data is developed, and the alternating
direction multiplier method is employed to estimate each compo-
nent of the MMM, furthermore, reasonable prior knowledge of
each component is introduced to improve the estimation accuracy.
Experimental results on hyperspectral datasets demonstrate that
the proposed model outperforms those state-of-the-art methods
based on the LMM in terms of HCS reconstruction quality.

Index Terms—Compressed sensing, hyperspectral remote
sensing, linear mixing model (LMM), spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) can provide detailed
ground features and are widely used in mineral explo-

ration, agricultural production, environmental monitoring, and
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military reconnaissance [1]. However, with the continuous de-
velopment of imaging spectrometers, the spatial resolution and
spectral resolution of HSIs are significantly improved, which
leads to a large amount of hyperspectral data acquired by imag-
ing spectrometers. Therefore, big data bring tremendous pres-
sure to the power consumption, computing power, and real-time
transmission of airborne or satellite-borne imaging systems,
making it necessary to effectively compress HSIs by using an
advanced compression technique. Traditional compression tech-
nology first collects high-resolution hyperspectral data through
an optical system and then throws away some information to
achieve the effect of data compression. This wasteful model sig-
nificantly increases the power consumption and computational
complexity of the imaging platform. The compressed sensing
(CS) technique can collect data at a low sampling rate (much
lower than the Nyquist sampling rate), and data acquisition and
compression can be completed in the same process [2], which
is suitable for data acquisition and real-time transmission with
resource-constrained airborne or satellite-borne hyperspectral
imaging platforms. Based on the acquired low-resolution sam-
pling data, the CS reconstruction algorithm can achieve the ideal
reconstruction of the original data under the premise of sparsity.
Therefore, the CS technique also provides an effective way for
the super-resolution reconstruction of HSIs.

At present, hyperspectral compressed sensing (HCS) has at-
tracted increasing attention in the field of hyperspectral remote
sensing. One of the main concerns is how to reconstruct the
original HSIs with high quality from the compressed sampling
data. In recent years, many HCS reconstruction algorithms have
been proposed according to the structure of HSIs. The most
common method is to convert the HSIs into a sparse description
form by employing some proper sparsity priors. For example,
some effective sparsity terms with �0, �1, and �q (0 < q < 1)
norms have been presented to characterize the sparsity [3]–[5];
however, these terms neglect the underlying structure infor-
mation. Mun and Fowler [6] combined block-based random
sampling with projection-driven CS reconstruction, such that
the sparseness in the direction transformation domain and the
smooth reconstructed image were enhanced at the same time.
3-D CS combines the 3D sparse, smooth, and low-rank priors
of HSIs to achieve a certain reconstruction performance [7]. Jia
et al. [8] proposed the structural similarity prior to HSIs and
added it to the objective function, further improving the recon-
struction performance. Note that tensor analysis has been applied
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to model the spatial–spectral correlation and local smoothness in
HSIs, and tensor Tucker decomposition has also been employed
to describe the global spatial–spectral correlation between bands
[9]. To encode the essential structured sparsity of HSIs and
explore the associated advantages for the HCS reconstruction
task, a nonlocal tensor sparse and low-rank regularization ap-
proach is proposed [10]. A hierarchical reweighted Laplace
prior is proposed to model the distribution of sparsity, which
relieves the undemocratic penalization of the traditional Laplace
prior to nonzero coefficients of a sparse signal [11]. Note that
the above algorithms reconstruct the entire hyperspectral data
directly; although the convex optimization algorithms, by adding
various prior information, have obtained certain reconstruction
performance, they usually have high computational complexity
due to the big data of HSIs. Furthermore, the design of prior in-
formation also has a large impact on reconstruction quality, and
unreasonable prior information significantly limits the degree of
reconstruction quality.

Compressive-projection principal component analysis (CP-
PCA) [12] and its extended algorithms [13], [14] explore princi-
pal component characteristics of HSIs between the sampling end
and reconstruction end, where spectral compressed sampling is
the main method for hyperspectral data collection. The recon-
struction process consists of eigenvector reconstruction based on
convex-set optimization instead of directly reconstructing the
original data, which can effectively reduce the reconstruction
complexity. Experimental results show that CPPCA and its
extended algorithms have the advantages of good reconstruction
quality and fast reconstruction speed.

HCS reconstruction based on spectral unmixing reconstructs
HSIs from the perspective of matrix decomposition, which has
received substantial attention in recent years [15]–[24]. Note
that the linear mixed model (LMM), one of the most popular
models used in spectral unmixing-based reconstruction, assumes
that spectral curves can be considered as the product of the
endmembers of various ground objects and their corresponding
abundances. Under this hypothesis, the main task of spectral
unmixing-based reconstruction is to reconstruct the endmem-
ber and abundance of HSIs. Recent works show that spectral
unmixing-based reconstruction achieves a perfect reconstruc-
tion quality with low reconstruction complexity. Assuming the
endmembers are known, the problem of HCS reconstruction
can be translated into an estimation of the abundance matrix
[15], [16], [18]. In our previous work [22], [23], even if the
endmember is unknown, by using a novel sampling matrix,
spatially and spectrally separated compressed sampling data of
HSIs can be obtained, and the endmember and abundance can
be extracted from the above two data points for reconstruction.
Spectral compressive acquisition (SpeCA) [19] employs a dual
measurement matrix to acquire the compressed sampling data of
the original HSIs; its decoder employs vertex component analy-
sis (VCA) [25] to extract the endmember, followed by abundance
estimation using the least squares method for reconstruction.

Note that the existing spectral unmixing-based reconstruction
algorithms are all based on the LMM assumption. However, the
illumination conditions and topography, atmospheric effects,
or even the intrinsic variability of the material may cause a

variation in a spectral signature for a given material. Moreover,
material nonlinear mixing effects caused by multiple scattering
and intimate mixing are also of significant influence. The above
two main factors, spectral variability and nonlinearity, limit the
ability of the LMM to achieve high performance. In view of the
above problems, Thouvenin et al. [26] added a perturbation term
for each endmember to correct spectral variation. The extended
LMM (ELMM) [27] introduces scaled versions of reference
endmembers to account for the pixelwise spatially coherent local
variation in the endmembers. However, it is still difficult to ac-
curately describe the spectral variation using only scalar scaling.
Hong et al. [28] combined the ELMM and perturbed LMM to
correct for spectral variation by employing a spectral variability
dictionary, and reasonable prior knowledge for the spectral
variability dictionary was also proposed for spectral unmixing.
In [29], based on LMM, spectral disturbance is corrected by in-
troducing the spectral correction term, and an LMM for spectral
perturbation correction is proposed, which achieve better HCS
reconstruction performance than LMM-based HCS algorithm.
However, the above algorithm does not consider the nonlinear
mixing factor. To my best knowledge, various modified LMM
have been successfully applied to spectral unmixing; however,
there is still a lack of model research on HCS reconstruction.

Intimate mixture and multilayered scene are two major scenar-
ios inducing nonlinear mixing [1]. The most popular approaches
to deal with intimate mixtures are the photometric model of
Hapke [30], involving multiple scattering between different
materials. In the multilayered configurations, a given material
reflects off other materials before reaching the sensor, such as
the interaction between vegetation and soil. Based on these
concepts, several simplified nonlinear mixing models have been
proposed to analytically describe these interactions. The bilinear
mixture model (BMM) is an extension of the LMM with a term
added to represent the contribution of reflectance between each
pair of the observed materials. This reflectance term commonly
involves the product of every pair of endmember spectra. How-
ever, BMM does not generalize the LMM and results in worse
abundance estimation than linear spectral mixture analysis when
existing high correlation between the original endmembers and
the new introducing endmembers. To alleviate this issue, Halimi
et al. [31] introduced the generalized bilinear model (GBM) to
effectively deal with the underlying assumptions in the BMM.
The good results on synthetic and real hyperspectral data show
the significant advantage of GBM.

To address the limitations of LMM in HCS reconstruction,
the purpose of this article is to reconstruct HSIs from spectral
compressed sampling data by establishing a new model by
considering the other factors based on LMM. More specifically,
the contributions of this article can be summarized as follows.

1) We propose a novel mixing model, called the multitype
mixing model (MMM), which simultaneously corrects
spectral variation, nonlinear effects, and residual terms. In
particular, a correction matrix, which can flexibly correct
for spectral variation, is proposed instead of scale factors.
Moreover, nonlinear effects and residuals are taken into
account to improve the reconstruction accuracy.



2306 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

2) An HCS framework is proposed according to the proposed
MMM, which is succinctly called HCS_MMM. Under the
condition that the endmember is known, reasonable prior
knowledge is explored to recover the correction terms, and
the alternating direction method of multipliers (ADMMs)
[32] are utilized to solve the optimization problem to
obtain the reconstruction of HSIs.

The rest of this article is organized as follows. In Section II,
the proposed MMM is described. In Section III, the proposed
HCS algorithm is given. In Section IV, the experimental results
and discussion on a real hyperspectral dataset are shown, and
finally, Section V gives some concluding remarks.

II. MULTITYPE MIXING MODEL

The original hyperspectral data are denoted as X ∈ RL×N ,
where L is the number of bands and N is the total number of
pixels in each band. The LMM represents HSIs as the product of
an endmember matrix and abundance matrix, that is, X = ES,
where E ∈ RL×p is the endmember matrix with the ith column
vector {ei}pi=1 ∈ RL×1 representing the ith endmember spec-
trum, p is the number of endmembers, and S ∈ Rp×N denotes
the abundant matrix.

Indeed, the LMM provides a simple but effective approxima-
tion of the physical process underlying the observations, which
is extensively used in the field of spectral unmixing. However,
the LMM may be inaccurate in some other specific situations; for
instance, multiple scattering and absorption phenomena result in
highly nonlinear effects. At this point, nonlinearly mixing spec-
tral signatures should be considered [30], [33]. Another main
factor hindering the LMM’s ability to yield high performance is
spectral variability, referring to a variation in a spectral signature
for a given material [34]. Therefore, both nonlinear effects and
spectral variability should be taken into account to establish a
more accurate model [35]. Note that most of the existing studies
are aimed at spectral unmixing, while this article focuses on the
model design of HCS reconstruction. Based on the LMM, this
article proposes an MMM that can effectively combine nonlinear
effects and spectral variability of HSIs. The proposed model can
be written as follows:

X = ES+ΓEH+MG+R (1)

where Γ ∈ RL×L is the correction matrix of the endmember;
M ∈ RL×q is the bilinear endmember matrix; H ∈ Rp×N and
G ∈ Rq×N correspond to the abundance matrices of spectral
variability and nonlinearity, respectively; and R ∈ RL×N is a
sparse residual term accounting for outliers caused by other fac-
tors in addition to nonlinearity and spectral variability. The first
term on the right side of (1) expresses the linear mixed effects,
the second term describes the impact of spectral variability, the
third term illustrates nonlinear effects, and the last term is used
to compensate for model mismatch caused by other factors.

The LMM is a simple and effective hyperspectral model.
However, since multiple scattering and intimate mixing, non-
linearity impedes the effectiveness of LMM [30]. Therefore, in
the proposed MMM expressed by (1), we used a GBM [31] to
describe the nonlinear effects. The kth column vector of M is

defined as follows:

mk ≡ ei � ej

s.t. {(i, j) |i<j, i ∈ {1, . . . , p} , j ∈ {1, . . . , p}} , k=1,. . ., q
(2)

where� is the Hadamard (elementwise product) operation. The
constraint i < j defined in (3) is based on the commutative prop-
erty of the Hadamard operation, i.e., ei � ej = ej � ei. Nor-
mally, q is the number of columns of M, and q = p(p− 1)/2.
For spectral unmixing, since p is usually small, making, q < L
the estimation of abundance is an over-determined problem.
However, for the spectral CS discussed in this article, this
condition is difficult to meet. Therefore, when q is larger than the
threshold (αv, 0.5 ≤ α ≤ 1),M should be trimmed to avoid the
occurrence of underdetermined problems and strong similarities
between mk when conducting the CS reconstruction process.
The pruned version was obtained by simply removing some mk

values associated with smaller spectral angles.
Another factor that reduces the effectiveness of LMM is

spectral variability, caused by geometry and topography of the
scene. The scaling factors acting on spectrums are proposed by
ELMM to correct the variability [27], [28]. However, the spectral
variability of different bands may be inconsistent. A single-scale
factor is difficult to accurately correct this variability. Therefore,
we employ a correction matrixΓ in (1) to correct different bands
with different scales. In other words, the correction method
of the spectral curve for different materials may be different.
Therefore, even for compressed sampling data, the spectral
variability in (1) can suitably compensate for the effects of
the spectral variability. Note that this article employs the total
variation (TV) constraint for the calculation of Γ, which will be
described in Section III in detail.

III. HCS BASED ON THE MMM

A. Spectral Compressed Sampling of HSIs

In recent years, several spectral libraries have been estab-
lished, such as the United States Geological Survey (USGS)
spectral library [36], Jet Propulsion Laboratory spectral library,
and Advanced Spaceborne Thermal Emission and Reflection
Radiometer spectral library. Therefore, it is feasible to assume
that the endmember matrix E is known [11], [18], [20], [24]. In
this case, a reasonable sampling scheme should be determined
to achieve good reconstruction quality based on the MMM.

The compressed sampling model of an HSIs usually includes
spatial and spectral sampling. In this article, under the condition
that the endmember is known, only the spectral compressed
sampling manner is employed because the spatial compressed
sampling manner may significantly destroy the abundance in-
formation of HSIs. This is also the most commonly used
compressed sampling method for CS reconstruction algorithms
based on spectral unmixing. Actually, we do not need to predict
the endmember matrix by employing the spatio–spectral hybrid
compressed sampling proposed in our previous work [22], [23],
which can extract endmember easily from the compressed data.
But this is beyond the scope of this article. The purpose of
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the article is to explore the CS reconstruction algorithm us-
ing MMM, rather than the compressed sampling method. In
addition, spectral compressed sampling is a simple and effi-
cient data acquisition method, and both the pushbroom and the
whiskbroom imaging systems are relatively easy to implement
in hardware [19], [37], [38]. The spectral sampling based on the
MMM can be expressed as

Y = AX = AES+AΓEH+AMG+AR (3)

where Y ∈ Rv×N denotes the observed data with v bands
collected by spectral compressed sampling (v � L) and A ∈
Rv×L is the Gaussian random 0-1 observation matrix, which is
convenient for hardware implementation of optical devices such
as digital micromirror devices. Obviously, the sampling rate of
spectral compressed sampling can be defined as SR = v/L.

As for the spectral sampling data of HSIs, compared with
the original HSIs, the number of band is compressed, that is to
say, the spectral resolution of spectral sampling data is reduced,
where the degree of reduction is determined by the sampling
rate. However, the spatial resolution of spectral sampling data
is consistent with the original HSIs. Therefore, the following
reconstruction process can be regarded as a spectral super-
resolution reconstruction of HSIs.

B. HCS Reconstruction Based on the MMM

The goal of the reconstruction is to recover the original HSIs
from the reduced spectral sampling data as much as possible.
Given the endmember matrix E, observation data Y, and mea-
surement matrix A. Equation (3) shows that the abundance
matrices S,H,G; correction matrix Γ; and sparse residual term
R should be estimated. However, solving these variables directly
is a nonconvex optimization problem. The ADMM is employed
for the alternate iterative estimation of above variables [32].

We note that the solution of the abundance matrices S,H,G
is actually an over-determined problem, given other variables.
Although adding prior information (such as the sparsity, TV,
sum-to-one, and nonnegative constraints of abundance [39])
helps obtain the optimal solution, compared to the solution
of underdetermined problems, over-determined problems more
easily yield optimal solutions. Increasing the constraint term of
abundance may not help to improve the reconstruction quality
and indeed increases the complexity of the solution. Therefore,
we use only the least squares method to estimate matrices S, H,
and G.

However, the estimations of the correction matrix Γ and the
sparse residual term R are optimization problems for under-
determined equations. These components are difficult to solve
directly, and reasonable priors need to be introduced.

The second item on the right of model (1) is to compensate
for the LMM mismatch caused by endmember spectral variation.
The rows of the matrix Γare used to respond to the interaction
between different bands. In general, the interaction between the
bands decreases rapidly as the band distance increases. It means
that the difference between the adjacent positions of the matrix
Γ in the horizontal direction will be very sparse. In other words,
the matrix Γ should satisfy a smooth row. Simultaneously, the

columns of the matrix Γ represent the weights of endmember
spectral of different materials. Since the third item on the right
of model (1) can effectively capture the nonlinear effect between
the endmember. Then, the second term simply compensates for
the variation of each endmember. So, the column vector of the
matrix Γ may be a sparse vector. Of course, the difference along
the column direction is also sparse. Therefore, in this article, we
employs the TV constraint for Γ and the sparse constraint for
R. Then, the reconstruction problem can be formulated as the
optimization of the following objective function:

min
S,H,B

1

2
‖Y −AES−AΓEH−AMG−AR‖2F

+ λ1TV(Γ) + λ2‖R‖2,1 (4)

where ‖C‖F =
√

trace{CCT } is the Frobenius norm of C.
The superscript T represents the transpose of the matrix.

TV (Γ)
Δ
= ‖FΓ‖1,1 = ‖FhΓ‖1,1 + ‖FvΓ‖1,1 is defined as the

spatially anisotropic TV norm [40], where Fh and Fv represent
the discrete gradient operators in the horizontal and vertical
directions, respectively. ‖C‖1,1 =

∑L
i=1 ‖Ci‖1, where Ci is

the ith column vector of C. ‖R‖2,1 is the so-called �2,1-norm
defined by ‖R‖2,1 =

∑N
i=1 ‖Ri‖2, depicting the row sparsity of

R. Finally, λ1 ≥ 0 and λ2 ≥ 0 are the regularization parameters,
which are used to tradeoff the TV terms and sparse terms.

Note that the ADMM [32] is employed to solve the optimiza-
tion problem given by (4), which is detailed in Algorithm 1, and
the solution to each subproblem is given in Appendix.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the relevance of the MMM
proposed in Section II and the corresponding reconstruction
accuracy of the HCS_MMM algorithm described in Section III
using synthetic and real data. All the experiments are run with
MATLAB 2018a on a laptop workstation with a 2.6-GHz CPU
and 32-GB RAM.

For the performance assessment of the reconstruction quality,
the average signal-to-noise ratio (aSNR) and the average spectral
angle mapper (aSAM) were both employed, where the aSNR
(measured in dB) is defined as

aSNR =
1

L

L∑

i=1

10log10
‖Xi‖22∥∥∥Xi − X̂i

∥∥∥
2

2

(5)

where Xi and X̂i represent the original image and the recon-
struction one of ith band, respectively. The aSAM is defined
as

aSAM =
1

N

N∑

j=1

arccos
XT

j · X̂j

‖Xj‖2 ·
∥∥∥X̂j

∥∥∥
2

(6)

where Xj and X̂j represent the spectral vectors of the jth pixel
of the original and reconstructed images, respectively. Note that
aSAM can effectively evaluate the spectral similarity between
the original and the reconstruction spectrums, a small aSAM
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Fig. 1. Reflectance of five endmember spectra.

means a high similarity between the reconstructed imagery and
the original one.

A. Experiments With Synthetic Data

In this section, the parameter settings of the proposed
HCS_MMM algorithm are tested by synthetic experiments. A
64× 64-pixel image composed of five pure spectral components
is generated according to the MMM. The endmember spectral
signatures are selected from the USGS digital spectral library
[36]. Fig. 1 shows the spectral curves of the five materials used in
the synthetic data, and the number of bands is 224. The synthetic
data are generated according to the following pattern: 60% of
the image pixels are generated according to the standard LMM,
20% are generated according to a model that features nonlinear
component interactions, and the remaining 20% are added by
a spectral variability model described in the second term on
the right side of (3). The corresponding abundance fractions
for the three models (linear, spectral variability, and nonlinear)
are generated by squares, horizontal stripes, and vertical stripes,
respectively, and their shapes can be observed from the visual
comparison of the synthetic data shown in Fig. 4(a).

The observed data are collected using spectral compressed
sampling. The sampling matrix is a binary matrix with 0 and
1 obtained by rounding a uniformly distributed random matrix.
The proposed algorithms were tested using different values of
the parameters λ1 and λ2 on different sampling rata. Fig. 2
reports the aSNR results achieved by different parameter. From
Fig. 2, we can see that the results of parameter λ2 at different
sampling rates are basically the same and can maintain high
reconstruction accuracy over a wide range. At a higher sampling
rate, a noticeable peak in aSNR appears when λ2 is around 1.
At low sampling rates, however, aSNR curves fluctuate little in
the 1-104 range. It means that λ2 is reasonable in this interval.
Therefore, in the following experiments, we set a normal value
of 103 for parameter λ2. But aSNR is more sensitive to the
parameter λ1, which can be observed from the experimental
results of λ1. With different sampling rates, the variation trend of

aSNR curve varies greatly with λ1. Fortunately, when λ1= 0.1,
the aSNR of all sampling rates can get a higher value. Therefore,
we set λ1= 0.1 for the following experiments.

Next, we compare the proposed algorithm with other state-
of-the-art spectral unmixing based algorithm, such as SSHCS
[22], SpeCA [19], and SSCR_SU [23], on the synthetic data
by varying sampling rata from 0.1 to 0.5, with a 0.1 step size.
The number of endmembers are set to 5 for all algorithm, and
the endmembers of HCS_MMM, SSHCS, and SSCR_SU are
extracted by VCA algorithm from the original data. Since the
sampling rate of SSHCS and SSCR_SU includes spatial and
spectral part. We fix the spatial sampling to 0.01 according to
the suggestions by corresponding references. For the SpeCA
algorithm, only the number of endmembers and sampling rate
need to be set, and the other parameters can be set by default.

Fig. 3 shows the aSNR comparison results of the different
algorithms. The proposed HCS_MMM algorithm can achieve
far better performance than other spectral unmixing algorithms.
At 0.5 sampling rate, the reconstructed aSNR even exceeds
SSCR_SU by nearly 10 dB. The performance advantage de-
creases as the sampling rate decreases. Even so, the aSNR of 5 dB
over other algorithms can still be achived, when the sampling rate
is 0.1. The reconstruction performance of SSHCS and SSCR_SU
is similar for synthetic data, but SpeCA had the worst results.

To visually demonstrate the reconstruction results, we present
pseudocolor images (top) and local enlarged views (bottom) with
bands (178, 94, 89) of the original synthetic data and the recon-
structed data obtained by all algorithms under sampling rates of
0.2 in Fig. 4. However, it is difficult to find the difference between
the reconstructed image and the original image. Actually, since
the spectral observation data is mainly used in the reconstruction
of the several algorithms, there is little disturbance to spatial
information. Therefore, the reconstruction preserves the spatial
details intact, but the spectrum is distorted. Spectral distortion
in pseudocolor images is a slight variation in color, which is
difficult to distinguish visually, even in the local enlarged views.

In order to verify that the performance of the proposed
HCS_MMM algorithm is significantly better than other algo-
rithms, we provide the 178th bands residual images between
original and reconstructed data in Fig. 5. Since all the competing
methods can obtain good reconstructed results, the residuals will
be small. For the sake of observation, we magnify the residuals
of all algorithms by a factor of 20. Note that Fig. 5(a) is the 178th
bands original image, the others are residual images. Here, the
similarity of the residual image to the original image does not
indicate that the reconstruction performance is better. Actually,
the higher the brightness of the images, the larger the residuals;
conversely, the smaller the residuals. Now, it is obvious that the
residual of the proposed HCS_MMM algorithm is much smaller
than that of other algorithms. The brightness of residual images
achieved by SpeCA and SSCR_SU is similar, but SSHCS is
slightly darker.

Since the several algorithms based on spectral unmixing
can effectively avoid the distortion of spatial information and
are at a disadvantage in terms of the consistency of spectral
signatures, it is necessary to show the comparison between
the original and the reconstructed spectral curve achieved by
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Fig. 2. Regularization parameter sensitivity analysis of the proposed HCS_MMM algorithm with different sampling rate. (a) SR = 0.1; (b) SR = 0.2; (c) SR =
0.3; (d) SR = 0.4; (e) SR = 0.5.

Fig. 3. Comparison of the aSNR values of the reconstructed images achieved
by the various algorithms for synthetic data.

various algorithms. Fig. 6 shows the comparison results under
0.2 sampling rate. The reconstructed spectral of HCS_MMM can
approach the original curve well. But other algorithms deviate
greatly, especially SpeCA. The experiment results of Figs. 5
and 6 confirm the effectiveness of the proposed model and
reconstruction algorithm again.

B. Experiments With Real Data

1) Description of the Datasets and Compared Methods: In
this section, we choose six real HSIs since their partial ground
truth is publicly available. The first image dataset is Samson,
which is a simple dataset that is available online. There are
952 × 952 pixels and 156 channels covering the wavelengths
from 401 to 889 nm. A region of 95 × 95 pixels is used in our
experiments. Three classes, soil, tree, and water, remain.1 The

1.[Online]. Available: http://www.escience.cn/people/feiyunZHU/Dataset_
GT.html

RGB composite of the Samson data (bands 105, 50, and 18 for
red, green, and blue, respectively) is shown in the first line of
Fig. 9(a).

Jasper Ridge, a popular hyperspectral dataset used in hy-
perspectral unmixing analyses, includes 512 × 614 pixels and
224 channels ranging from 380 to 2500 nm. In subsequent
experiments, we consider a subimage of 100 × 100 pixels and
retain 198 channels after removing some channels (due to the
dense water vapour and atmospheric effects). There are four
endmembers latent in these data. The RGB composite of the
Jasper Ridge data (bands 33, 15, and 4 for red, green, and blue,
respectively) is shown in the second line of Fig. 9(a).

The third dataset used in our experiments, University of Pavia
(PaviaU), is an urban image acquired by the Reflective Optics
System Imaging Spectrometer sensor during a flight campaign
over Pavia, northern Italy [45]. After removing the 12 noisiest
bands, 103 spectral channels and a region with a spatial coverage
of 610× 340 pixels remain. The ground truth available from the
PaviaU data is divided into nine classes. The RGB composite of
the PaviaU data (bands 28, 11, and 2 for red, green, and blue,
respectively) is shown in the fourth line of Fig. 9(a).

The fourth HSIs group is taken from the Urban dataset, which
is one of the most widely used data used in hyperspectral unmix-
ing studies. There are 307 × 307 pixels and 210 wavelengths
ranging from 400 to 2500 nm. Due to water absorption and
atmospheric effects, we reduced 210 bands to 162 bands by
removing bands 1-4, 76, 87, 101-111, 136-153, and 198-210. Six
classes representing the various land cover types that occur in
this environment were defined for the site. The RGB composite
of the Urban data (bands 28, 11, and 2 for red, green, and blue,
respectively) is shown in the third line of Fig. 9(a).

For the last two test images, we employed the Salinas and
Salinas-A hyperspectral datasets. The Salinas data were col-
lected by the 224-band AVIRIS sensor over Salinas Valley, Cal-
ifornia. The scene covered comprises 512 lines by 217 samples.
A total of 204 spectral channels remained after discarding the 20
water absorption bands. The Salinas scene contains 16 classes,
including vegetables, bare soils, and vineyard fields. Salinas-A
is a small subscene of the Salinas image, comprising 86 × 83
pixels and including six classes. The RGB composites of the

http:&sol;&sol;www.escience.cn&sol;people&sol;feiyunZHU&sol;Dataset_GT.html
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Fig. 4. Original and reconstructed synthetic images achieved by the various algorithms with a 0.2 sampling rate. (a) Original; (b) SSHCS; (c) SpeCA;
(d) SSCR_SU; (e) HCS_MMM.

Fig. 5. Visual results of the 178th bands from original synthetic data and 20 times enhancement residuals between original and reconstructed data when sampling
rate is 0.2. (a) Original image; (b) SSHCS residual (28.74 dB); (c) SpeCA residual (25.53 dB); (d) SSCR_SU residual (26.57 dB); (e) HCS_MMM residual
(48.69 dB).

Fig. 6. Original and reconstructed spectral curves for synthetic data.

Salinas and Salinas-A data (bands 40, 20, and 10 for red, green,
and blue, respectively) are shown in the fifth and sixth lines of
Fig. 9(a), respectively.

In our real-data experiments, we compare the proposed algo-
rithm with several state-of-the-art reconstruction algorithms of
HCS using spectral unmixing based on an LMM, SSHCS [22],
SpeCA [19], and SSCR_SU [23]. SSHCS and SSCR_SU can
estimate the number of endmembers automatically. However,
SpeCA does not specify the endmember number estimation
algorithm. Therefore, for the sake of fairness, the number of
endmembers for all algorithm experiments is the same as the
number of classes included in the image ground truth.

In this section, the compressed data are collected by a random
Gaussian sampling matrix A with a sampling rate ranging
from 0.1 to 0.5 for our HCS_MMM algorithm. The other three
comparison algorithms adopt the sampling patterns given by
their references. In this study, the proposed method assumes
that the necessary endmembers are obtained from the spectrum
library. Although the off-the-shelf spectrum library contains
a large number of standard spectra of different objects, the
standard spectra do not necessarily match the spectra in the real
scene on account of the various weather and imaging conditions.
Therefore, we implement the VCA method on each dataset to
extract certain endmembers.

2) Performance Comparison: Fig. 7 shows the results of the
four algorithms in terms of the aSNR with different sampling
rates. The results show that the reconstruction performance
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Fig. 7. Comparison of the aSNR values of the reconstructed images achieved by the various algorithms. (a) Samson data; (b) Jasper ridge data; (c) PaviaU data;
(d) Urban data; (e) Salinas data; and (f) Salinas-A data.

Fig. 8. SNR per band for different datasets with a 0.5 sampling rate. (a) Samson data; (b) Jasper ridge data; (c) PaviaU data; (d) Urban data; (e) Salinas data; and
(f) Salinas-A data.



2312 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 9. Original pseudocolor and residual images for the different datasets with a 0.5 sampling rate; from top to bottom, Samson data, Jasper Ridge data, PaviaU
data, Urban data, Salinas data, and Salinas-A data. (a) Original; (b) SSHCS; (c) SpeCA; (d) SSCR_SU; and (e) HCS_MMM.
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Fig. 10. SAM per pixel for different datasets with a 0.5 sampling rate. (a) Samson data; (b) Jasper Ridge data; (c) PaviaU data; (d) Urban data; (e) Salinas data;
and (f) Salinas-A data.

Fig. 11. Original and reconstructed spectral curves for different pixels with a 0.5 sampling rate. (a) Samson data (10,10); (b) Jasper Ridge data (10,10); (c) PaviaU
data (10,10); (d) Urban data (100,100); (e) Salinas data (10,10); and (f) Salinas-A data (10,10).
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TABLE I
COMPARISON OF ASAM (°) ACHIEVED BY THE VARIOUS ALGORITHMS (THE BEST RESULTS ARE IN BOLD)

of all algorithms increases with increasing sampling rate. The
values for SSHCS, SpeCA, and SSCR_SU increases slowly,
while that of HCS_MMM increases rapidly. This illustrates
that the proposed algorithm has a more obvious advantage over
the others at higher sampling rates. For example, when the
SNR is 0.5, HCS_MMM exceeds other competing methods on
aSNR by at least 4.5 dB on the Samson dataset, 2.9 dB on the
Jasper Ridge dataset, 4 dB on the PaviaU dataset, 4.2 dB on
the Urban dataset, 3 dB on the Salinas dataset, and 6.8 dB
on the Salinas-A dataset. When the sampling rate exceeds
0.2, the reconstruction quality of the HCS_MMM algorithm
is significantly better than that of the other three algorithms.
However, when the sampling rate is 0.1, the reconstruction
accuracy of HCS_MMM is close to that of SSCR_SU of the
Jasper Ridge, PaviaU, Urban, and Salinas datasets. This is
because when the sampling rate is too low, the last three terms
on the right side of (3) are difficult to estimate accurately. As a

result, the multitype mixing model degrades to the LMM. Thus,
HCS_MMM performs similarly to SSCR_SU for some datasets.
However, for the Samson and Salinas-A datasets, the aSNR of
HCS_MMM still exceeds that of SSCR_SU by 2.3 and 3.2 dB,
respectively.

It is worth noting that although the Salinas-A scene is part
of the Salinas dataset, their reconstruction results are quite
different. The Salinas-A region is smaller, the ground truth
contains fewer classes, and the reconstruction quality is lower.
The performance of SpeCA is particularly evident. This may
also mean that CS reconstruction based on spectral unmixing
is more suitable for large-area, multiclass HSIs than for other
images types.

SNR per band are also provided in Fig. 8. We can see that
the reconstructed SNR of the HCS_MMM algorithm fluctuates
greatly with the band, which may be caused by the estimation
of the correction matrix Γ and sparse residual term R. The
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TABLE II
RUNTIME OF THE VARIOUS ALGORITHMS

estimation of Γ and R is an underdetermined problem. Even if
the appropriate prior constraint is used, it is still difficult to find
the accurate solution. Therefore, the reconstruction performance
may be slightly different between different bands. However,
the other three algorithms mainly solve positive definite or
overdetermined problems and can obtain consistent analytical
solutions. Even so, the lowest point of the SNR curve achieved
by the proposed HCS_MMM algorithm is still higher than that
of other algorithms on multiple datasets.

Similar to synthetic data, all algorithms can well preserve the
spatial information of the image on real datasets, and the slightly
visual differences are difficult to observe. So we also adopt the
residual images to demonstrate the significant performance of
the proposed algorithm for real datasets. Fig. 9 shows the original
RGB composite and residual images between original data and
reconstructed data achieved by different algorithms with a 0.5
sampling rate. Now, we can easily judge the advantages of each

algorithm. The residual image of HCS_MMM is significantly
darker than other algorithms, indicating that the residual of the
proposed algorithm is smaller and the reconstruction accuracy
is higher. When the sampling rate is 0.5, the reconstruction
performance of the other three algorithms is similar according
to Fig. 7. Therefore, the brightness of residual images for the
three algorithms is also visually similar. Only on the Jasper
Ridge data, the reconstruction of SSHCS algorithm in this band
is unsatisfactory.

To further illustrate the superiority of the proposed
HCS_MMM on spectrum reconstruction, we compare the aSAM
values of the different algorithms. In Table I, we provide the
performance of all methods using the aSAM results over all the
above datasets.

The results in Table I are essentially consistent with the
trends in Fig. 1. At higher sampling rates, the aSAM value
reconstructed by the proposed algorithm is lower than those



2316 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

of the other three spectral unmixing-based reconstruction algo-
rithms, which verifies the effectiveness of HCS_MMM. When
the sampling rate is 0.1, the realization of each algorithm on
different datasets has its own advantages. For example, the
HCS_MMM algorithm leads the pack for the Samson and Jasper
Ridge datasets. For the PaviaU and Salinas datasets, SpeCA
is the best. The SSCR_SU algorithm has the lowest aSAM
for the Urban dataset, and the SSHCS algorithm has the best
performance for the Salinas-A datasets with a 0.1 sampling rate.

Fig. 10 shows the reconstructed SAM per pixel for different
data sets. The results of the proposed HCS_MMM algorithm
are marked with a solid black line. From the first four data
sets, we can easily distinguish that the SAM of the proposed
algorithm is lower than other algorithms. For the latter two data
sets, however, the observation of discrimination is not obvious
due to the inappropriate spikes of SAM reconstructed by SpeCA
and SSCR_SU. Only on the first 10 000 pixels of Salinas data,
it can still be clearly observed that HCS_MMM is superior to
other algorithms.

To further demonstrate the superiority of the proposed algo-
rithm over the other algorithms on spectrum reconstruction, we
illustrate the original and reconstructed spectral curves with a
0.5 sampling rate for the different pixels in the above datasets
in Fig. 11. The spectral unmixing-based CS reconstruction al-
gorithm can completely recover the original spectral curves,
especially for the Salinas and Salinas-A datasets. However,
the curves recovered by the proposed HCS_MMM algorithm
are closer to the original curves than with several other al-
gorithms, which can be seen from the enlarged subgraph in
Fig. 11. The experimental results in Figs. 4 and 5 further
confirm the superiority of the proposed algorithm, both in the
reconstruction of spatial images and the recovery of spectral
curves.

The runtime of the several algorithms is listed in Table II.
Obviously, the reconstruction speed of SSHCS algorithm is the
fastest, which is more than two orders of magnitude higher than
other algorithms. Because the computational cost of SSHCS is
dominated by VCA algorithm, which has the order of complex-
ity O(p2N ). What’s more, SSHCS algorithm does not require
iteration. The runtime of SSCR_SU and SpeCA is basically
in the same magnitude, but the proposed algorithm is slightly
longer than the two algorithms. For example, the runtime of
HCS_MMM is about five times that of SSCR_SU. This is
because HCS_MMM continuously adjusts the step size μ dur-
ing iteration to balance the primal and dual residuals, which
makes the algorithm more difficult to converge than other meth-
ods. So 100 iterations are necessary for HCS_MMM, whereas
SSCR_SU typically takes only 20 to achieve good performance.
The complexity of the SpeCA algorithm is dominated by the
term p3L3, which indicates that the runtime of the algorithm
will be sensitive to the number of endmembers. When p is large,
the computational cost is disastrous. For example, SpeCA runs
even longer than HCS_MMM on Salinas data. It should be noted
that, the computational complexity of proposed algorithm is
O(vLN ). Therefore, the runtime is lengthened by the increase of
v, when the sampling rate is increased. But the other algorithms
are almost constant.

V. CONCLUSION

In this article, due to the limitation of LMM in HCS recon-
struction, we proposed a more accurate hyperspectral inages
model, called the MMM, which considers not only the linear
mixing properties but also some other spectral conditions, such
as spectral variability, nonlinear effects, and sparse residuals.
Based on the proposed MMM, the corresponding HCS algorithm
is also presented, which only performs spectral compressed
sampling on HSIs at the sampling stage and HCS reconstruction
based on the proposed MMM at the reconstruction stage. As
for the reconstruction process, ADMM is utilized to estimate
each component of the MMM, furthermore, reasonable prior
knowledge is introduced to improve the estimation accuracy.
With the proposed HCS_MMM, we successfully realized the
reconstruction of the original HSIs with high quality from the
spectral compressed sampling data. Experimental results show
that the proposed HCS_MMM can obtain better reconstruction
performance than the other state-of-the-art algorithms, which
means that by taking multiple factors beyond linear effects into
consideration is generally superior to the LMM. Note that how
to improve the reconstruction performance at low sampling rate
for the proposed HCS_MMM is the future work that needs to
be solved.

APPENDIX

SOLUTION TO ALMM-BASED CS RECONSTRCTION

The object function in (4) is not convex with respect to all
variables simultaneously, but it is a convex problem regarding
the separate variable when other variables are fixed. As a result,
we successively minimize the object function with respect to S,
H, G, Γ, R as follows:

1) Subproblem for S,H,G: After fixing other variables, since
p� N , the estimation of abundance S in (4) is found to be a
standard least squares problem

min
Sk

1

2

∥∥Y−AESk−AΓkEHk−AMGk−ARk
∥∥2
F

(7)

where the superscript k indicates the k−th iteration.
The least squares problem has analytical solutions with high
accuracy and high reliability

Sk+1 ←
[
(AE)T (AE)

]−1
(AE)T

× (
Y −AΓkEHk −AMGk −ARk

)
(8)

where C−1 denotes the inverse matrix of C.
Similarly, the minimization of Hk and Gk is the same as
that of Sk and is also a least squares problem. Therefore, an
analytical solution is given directly

Hk+1 ←
[(
AΓkE

)T
AΓkE

]−1(
AΓkE

)T

× (
Y −AESk+1 −AMGk −ARk

)
(9)

Gk+1 ←
[
(AM)TAM

]−1
(AM)T

× (
Y−AESk+1−AΓkEHk+1−ARk

)
. (10)
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2) Subproblem for Γ: Fixing other variables, the subproblem of
minimizing Γ can be written as

min
Γk

1

2

∥∥Y−AESk+1 −AΓkEHk+1−AMGk+1−ARk
∥∥2
F

+ λ1

∥∥FΓk
∥∥
1,1

. (11)

Introducing auxiliary variablesTk
1 = AΓk, Tk

2 = Γk, and
Tk

3 = FTk
2 , the unconstrained optimization problem of (11)

can be converted into the following constrained optimization
problem:

min
Γk,Tk

1 ,T
k
2 ,T

k
3

1

2

∥
∥Y−AESk+1−Tk

1EHk+1−AMGk+1

− ARk
∥
∥2
F
+ λ1

∥
∥Tk

3

∥
∥
1,1

s.t. AΓk −Tk
1 = 0,Γk −Tk

2 = 0,FTk
2 −Tk

3 = 0. (12)

The augmented Lagrange function for, Γk,Tk
1 ,Tk

2 ,Tk
3 is

L (Γk,Tk
1 ,T

k
2 ,T

k
3 ,D

k
1 ,D

k
2 ,D

k
3

)

=
1

2

∥∥Y −AESk+1 −Tk
1EHk+1 −AMGk+1 −ARk

∥∥2
F

+ λ1

∥∥Tk
3

∥∥
1,1

+
μ

2

∥∥AΓk −Tk
1 −Dk

1

∥∥2
F

+
μ

2

∥
∥Γk −Tk

2 −Dk
2

∥
∥2
F
+

μ

2

∥
∥FTk

2 −Tk
3 −Dk

3

∥
∥2
F

(13)

where Dk
1 , Dk

2 , and Dk
3 denotes the Lagrange multipliers and

μ is a positive penalty constant used to control the iterative
convergence speed. How to choose a suitable value for the
parameter μ is an active research topic. Adaptive selection of
parameters based on the primal and dual ADMM variables,
where the updated objective of μ is to keep the ratio between
the primal and dual residual norms within a given positive
interval, usually performs very well in many cases [39], [41],
[42]. In this article, we adopt the parameter selection rules
suggested by [42]. The augmented Lagrange function of (13)
is also a nonconvex optimization problem for minimizing all
variables at the same time. Therefore, the ADMM is applied
again to update each variable alternately.
Minimization with respect to Γk: The optimization problem
of Γk can be formulated as follows:

min
Γk

μ

2

∥∥AΓk −Tk
1 −Dk

1

∥∥2
F
+

μ

2

∥∥Γk −Tk
2 −Dk

2

∥∥2
F
.

(14)
Therefore, the analytical solution for Γk+1 can be simply
obtained by the following formula:

Γk+1 ← (
ATA+ IL

)−1 [
AT

(
Tk

1 +Dk
1

)
+
(
Tk

2 +Dk
2

)]

(15)
where IL denotes the identity matrix with L× L.
Minimization with respect to Tk

1 : The subproblem of Tk
1 can

be written as

min
Tk

1

1

2

∥
∥Y−AESk+1 −Tk

1EHk+1−AMGk+1 −ARk
∥
∥2
F

+
μ

2

∥
∥AΓk+1 −Tk

1 −Dk
1

∥
∥2
F

(16)

which is readily solved by

Tk+1
1 ← [(

Y −AESk+1 −AMGk+1 −ARk
)

× (
EHk+1

)T
+ μ

(
AΓk+1 −Dk

1

)]

×
[(
EHk+1

) (
EHk+1

)T
+ μIL

]−1
. (17)

Minimization with respect to Tk
2 : To compute Tk+1

2 , the
optimization problem to be solved is

min
Tk

2

μ

2

∥
∥Γk+1 −Tk

2 −Dk
2

∥
∥2
F
+

μ

2

∥
∥FTk

2 −Tk
3 −Dk

3

∥
∥2
F
.

(18)
Similar to Γk+1, Tk+1

2 is updated as follows:

Tk+1
2 ← (

FTF+ IL
)−1 [

FT
(
Tk

3 +Dk
3

)
+
(
Γk+1−Dk

2

)]
.

(19)
Minimization with respect toTk

3 : To computeTk+1
3 , we solve

the optimization problem

min
Tk

3

λ1

∥∥Tk
3

∥∥
1,1

+
μ

2

∥∥FTk+1
2 −Tk

3 −Dk
3

∥∥2
F

(20)

whose solution is the well-known soft threshold

Tk+1
3 ← soft

(
FTk+1

2 −Dk
3 ,

λ1

μ

)
(21)

where soft(∗) denotes the soft-threshold function.
Lagrange multipliers update Dk+1

1 , Dk+1
2 , Dk+1

3 : Lagrange
multipliers can be updated by means of gradient descent

Dk+1
1 ← Dk

1 −
(
AΓk+1 −Tk+1

1

)

Dk+1
2 ← Dk

2 −
(
Γk+1 −Tk+1

2

)

Dk+1
3 ← Dk

3 −
(
FTk+1

2 −Tk+1
3

)
. (22)

3) Subproblem for R: With the other variables fixed, the min-
imum subproblem with respect to Rk can be expressed as
follows:

min
Rk

1

2

∥
∥Y −AESk+1 −AΓk+1EHk+1 −AMGk+1

−ARk
∥∥2
F
+ λ2

∥∥Rk
∥∥
2,1

. (23)

After introducing the auxiliary variables Uk = Rk, the un-
constrained optimization problem of (23) can be converted
into the following constrained optimization problem:

min
Rk,Uk

1

2

∥∥Y −AESk+1 −AΓk+1EHk+1 −AMGk+1

−ARk
∥
∥2
F
+ λ2

∥
∥Uk

∥
∥
2,1

s.t.Rk −Uk = 0. (24)

The augmented Lagrange function is

L (Rk,Uk
)
=

1

2

∥∥Y −AESk+1 −AΓk+1EHk+1

−AMGk+1 −ARk
∥
∥2
F

+ λ2

∥∥Uk
∥∥
2,1

+
μ

2

∥∥Rk −Uk −Vk
∥∥2
F

(25)

where Vk is a Lagrange multiplier.
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Algorithm 1: Pseudocode of the HCS_MMM Algorithm.
Input: Y, A, and E
Set parameters: λ1, λ2, μ, maxiters = 100
Step 1. Initialization:
H0 = 0,G0 = 0,Γ0 = IL,T

0
1 = AΓ0,

T0
2 = Γ0,T0

3 = FT0
2,R

0 = 0,U0 = R0,

D0
1 = 0,D0

2 = 0,D0
3 = 0,V0 = 0, k = 1, thr = 10−5,

res =∞
Step 2. While k < maxiters and
(resp > throrresd > thr)

Step 3. Update Sk+1 according to (8);
Step 4. Update Hk+1 according to (9);
Step 5. Update Gk+1 according to (10);
Step 6. Update Γk+1 according to (15);
Step 7. Update Tk+1

1 according to (17);
Step 8. Update Tk+1

2 according to (19);
Step 9. Update Tk+1

3 according to (21);
Step 10. Update Lagrange multipliers Dk+1

1 ,Dk+1
2 ,Dk+1

3

by (22);
Step 11. Update Rk+1 according to (27);
Step 12. Update Uk+1 according to (29);
Step 13. Update the Lagrange multipliers Vk+1 by (30);
Step 14. Compute the convergence conditions:
resp = ‖AΓk+1 −Tk+1

1 ‖F + ‖Γk+1 −Tk+1
2 ‖F

+‖FTk+1
2 −Tk+1

3 ‖F + ‖Rk+1 −Uk+1‖F
resd = ‖μATTk+1

1 −Tk
1‖F + ‖μTk+1

2 −Tk
2‖F

+‖μFTk+1
3 −Tk

3‖F + ‖μUk+1 −Uk‖F
Step 15. Update μ:

μk+1 =

⎧
⎨

⎩

2μk ifresp > resd
μk/2 ifresd > resp
μk otherwise

End While
Step 16. Estimate X̂ by (31):
Output: X̂

The augmented Lagrange functionL(Rk,Uk)minimizesRk

to obtain the following optimization subproblems and Rk can
be computed by solving the following optimization problem:

min
Rk

1

2

∥
∥Y−AESk+1 −AΓk+1EHk+1−AMGk+1−ARk

∥
∥2
F

+
μ

2

∥∥Rk −Uk −Vk
∥∥2
F
. (26)

Rk+1 can be updated as follows:

Rk+1 ← (
ATA+ IL

)−1

× [
AT

(
Y −AESk+1 −AΓk+1EHk+1

−AMGk+1
)
+ μ

(
Uk +Vk

)]
. (27)

We minimize L(Rk,Uk) with respect to Uk:

min
Uk

λ2

∥∥Uk
∥∥
2,1

+
μ

2

∥∥Rk+1 −Uk −Vk
∥∥2
F

(28)

whose solution is the well-known vect-soft threshold [43], [44]

Uk+1 ← vect− soft

(
Φ,

λ2

μ

)
(29)

where vect− soft(∗) denotes the vect-soft-threshold
function, Φ = Rk+1 −Vk, and vect− soft(Φ, λ2

µ ) =

max{‖Φ‖2− λ2
µ ,0}

max{‖Φ‖2− λ2
µ ,0}+ λ2

µ

×Φ.

Lagrange multiplier update Vk+1

Vk+1 ← Vk − (
Rk+1 −Uk+1

)
. (30)

After k iterations, the original HSIs can be estimated as
follows:

X̂ = ESk+1 + Γk+1EHk+1+MGk+1+Rk+1. (31)

In this article, the HCS reconstruction algorithm based on
the MMM is marked as HCS_MMM. The specific calculation
process is as follows.

In Algorithm 1, the computational cost of the proposed
HCS_MMM is dominated by matrix products. For each iter-
ation, the most costly steps are the calculus of ARk and ATY,
which have the order of complexity O(vLN ). The complexi-
ties of the step 3, 4, 5, 7, and 11 are dominated by the term
vLNassociated with the solution calculus of ARk or ATY.
Therefore, the overall order of complexity per iteration is given
then by O(vLN ).
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