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Abstract—Superresolution (SR) has provided an effective solu-
tion to the increasing need for high-resolution images in remote
sensing applications. Among various SR methods, deep learning-
based SR (DLSR) has made a significant breakthrough. However,
supervised DLSR methods require a considerable amount of train-
ing data, which is hardly available in the remote sensing field. To
address this issue, some research works have recently proposed and
revealed the capability of deep learning in unsupervised SR. This
article presents an efficient unsupervised SR (EUSR) deep learning
model using dense skip connections, which boosts the reconstruc-
tion performance in parallel with the reduction of computational
burden. To do this, several blocks containing densely connected
convolutional layers are implemented to increase the depth of the
model. Some skip connections also concatenate feature maps of
different blocks to enable better SR performance. Moreover, a
bottle-neck block abstracts the feature maps in fewer feature maps
to remarkably reduce the computational burden. According to our
experiments, the proposed EUSR leads to better results than the
state-of-the-art DLSR method in terms of reconstruction quality
with less computational burden. Furthermore, results indicate that
the EUSR is more robust than its rival in dealing with images of
different classes and larger sizes.

Index Terms—Deep learning, remote sensing, superresolution
(SR).

I. INTRODUCTION

A SIZABLE number of applications in remote sensing [1]–
[3] need high-spatial resolution images (HSRIs). How-

ever, HSRIs are not often accessible due to several reasons
including high cost of image acquisition and technological and
physical limits of sensors in capturing images with more spatial
details [4]. To overcome these restrictions, data fusion or super-
resolution (SR) techniques have been applied. Between these
two solutions, the SR has attracted more attention because it is
applicable even in the case of single images where there is no
additional information.
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In recent years, a wide range of SR methods, including
nonnegative matrix factorization based methods [5], [6] and
sparse representation based methods [7], [8] have been proposed.
According to the SR literature, deep learning-based SR (DLSR)
methods initially proposed inspired by sparse representation
based methods and led to significant improvement compared
with their rivals [9], [10]. These methods are generally cate-
gorized into two main supervised and unsupervised groups. In
recent years, supervised DLSR has experienced an illustrative
development especially for nonsatellite images [11]–[13]. In
spite of the fact that satellite images are of a more complex nature
contaminated by noise, fewer research works have been carried
out regarding the SR in this field [14]. In [15], a convolutional
model was trained using satellite images to show the effective-
ness of appropriate training datasets in yielding better SR results
for remote sensing data. Lei et al. [16] proposed a local-global
combined model to reconstruct high-resolution (HR) images
through learning multilevel representations of the low-resolution
(LR) counterparts. In [17], a number of convolutional models
were trained using a set of Landsat and Sentinel-2 image pairs
to assess the SR performance for spatial enhancement of Landsat
images. In a different approach, Ma et al. [18] developed a
DLSR scheme in 2019, which superresolves the LR image
in the frequency domain. In this research, first the LR image
is transformed to the frequency domain, then a deep learning
model predicts the high-frequency details, and eventually an
inverse transformation reconstructs the superresolved image in
the original (spatial) domain.

Since supervised DLSR methods usually lead to better re-
sults than unsupervised ones, most of the research works have
been dedicated to this group. However, the unavailability of
high-quality training data can justify the need for unsupervised
DLSR methods. To the best of our knowledge, in the remote
sensing community, there are only two unsupervised DLSR
methods [19], [20], each of which adopted a different approach
to the problem. Wang et al. [20] proposed an unsupervised DLSR
model, inspired by CycleGAN (cycle generative adversarial net-
work) [21], which consists of two separate generative networks.
The first network superresolves LR images and the second one
downsamples HR images. The main drawback of this model
is its need for unpaired training datasets. In other words, the
model still needs a huge amount of LR–HR image pairs for
training. This disadvantage is addressed by Haut et al. [19], and
their proposed model only utilizes a single LR input image. In
that work, a generative model was presented to reconstruct the
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HR image from a random noise with the same size as the HR.
Once the model is optimized, the input is replaced with the HR
output for the next iteration. This procedure is repeated with
a predetermined number of iterations. A challenging issue in
that study is related to the loss function, where there are not
any target HR images to be compared with the output. This
issue has been addressed by downsampling the HR output and
then computing the loss value using the LR image as the target.
The results reported in the article reveals the proficiency of the
model in unsupervised SR task for satellite images. However, its
performance in terms of reconstruction, and especially compu-
tational burden should be still improved. For the sake of brevity,
this method has been called as the unsupervised generative SR
(UGSR).

It is essential to have in mind that the model has to be trained
for input images in such unsupervised DLSR frameworks. This
fact highlights the need of these methods for having a model
with less computational burden. Thus, an efficient unsupervised
SR model (EUSR) based on a DLSR method using dense
skip connections (SRDenseNet) [22] is presented in this study.
SRDenseNet is a superior supervised SR architecture, which
combines low- and high-level feature maps by skip connections
for better image reconstruction. Moreover, these types of con-
nections enable the model to achieve deeper status in parallel
with optimization time reduction. Unlike the UGSR, the input
of our model is initialized by an LR image. This means the
downsampling blocks are removed from our model and as a
result of this, both layers and computational burden of the EUSR
are substantially reduced.

The remainder of this article is organized as follows. Section II
provides a description of the methodology used in the proposed
model. Section III discusses the results and compares the EUSR
with the competing method. Eventually, Section IV concludes
the article and asserts some future research.

II. METHODOLOGY

The proposed model aims to learn a mapping function M :
RW×H×3 → R2W×2H×3 between LR (I0LR ∈ RW×H×3) and
HR (IHR ∈ R2W×2H×3) images, where W and H are, re-
spectively, width and height of the LR image. In this sense,
each input LR image I0LR is fed to the model to generate the
corresponding HR image IHR =M(I0LR, θ), where θ is the
set of model parameters. Due to the absence of the original
HR counterpart, the SR output (IHR) is downsampled by a
scale factor equal to 1/2 using Lanczos3 [23] downsampler
ψ : R2W×2H×3 → RW×H×3. The downsampling result ILR ∈
RW×H×3 is calculated as ILR = ψ(IHR). Then, ILR and I0LR

are compared with each other using a loss function (L) based on
peak signal-to-noise ratio (PSNR) [24]. PSNR is a metric used
to evaluate the quality of an image with respect to another. In
the PSNR (1) I and I0 are, respectively, the target and reference
images, and Peaksv is the maximum signal value in the image
(e.g., 255 for images with radiometric resolution of 8 bits)

PSNR(I, I0) = 10 log10
Peak2

sv

MSE(I, I0)
(1)

Algorithm 1: The EUSR Algorithm.

Input: LR image I0LR

Output: HR super-resolved image IHR

repeat
1. Input the LR image I0LR to the model M and Estimate

the HR image IHR =M(I0LR, θ)
2. Downsample IHR using Lanczos3 downsampler ψ to

provide ILR = ψ(IHR)
3. Compute the loss value L(θ) = 1/PSNR(ILR, I

0
LR)

4. Adam(L) optimizes the M
until satisfy stop criterion
return IHR

where MSE stands for mean squared error. The larger PSNR
value is equivalent to more similar images. Accordingly, the
loss function L is defined as follows:

L(θ) =
1

PSNR(ILR, I0LR)
. (2)

Considering IHR =M(I0LR, θ), ILR = ψ(IHR), (1) and (2)

L(θ) =
1

10

(
log10

Peak2
sv

MSE(ψ(M(I0LR, θ)), I
0
LR)

)−1

. (3)

The idea is that similar LRs result in similar HRs. To obtain
more similar LRs, the model parameters θ need to be optimized.
This is accomplished through minimizing the loss functionL(θ)
using Adam optimizer [25]. The aforementioned approach is
summarized in Algorithm 1.

In the proposed model, different kinds of layers are utilized,
including the followings.

1) Two-dimensional (2-D) convolution (Conv.) [26]: A Conv
layer consists of a group of kernels and biases, which are
applied to extract features from the input. The jth output
feature map Oj at the position (x, y) can be calculated as

Oxy
j = Bj +

∑
k

M−1∑
m=0

N−1∑
n=0

wmn
j x

(x+m)(y+n)
k (4)

where k indexes over the depth of the input X ∈ Rp×q×r,
and wmn

j is the weight value of the 2-D kernel W ∈
RM×N at the position (m,n). Moreover, Bj is the bias
matrix.

2) Rectified linear unit (ReLU) activation [27]: This activa-
tion layer applies the nonlinear ReLU function f(x), as
follows:

f(x) = max{0, x}. (5)

3) Batch normalization (BN) [28]: This layer applies a nor-
malization on each input batch of data x, using the follow-
ing equation:

y =
x− mean(x)√
var(x)− ε

· γ + β (6)

where γ, β, are learned during the training, and ε is
numerical stability parameter.
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Fig. 1. Architecture of the proposed model for unsupervised SR.

4) Upsampling: This layer upsamples input feature maps
using bilinear method and a given scale factor.

5) Sigmoid activation: Sigmoid is also an activation function,
which maps each input x to a value between 0 and 1. The
sigmoid function is provided in (7), as follows:

Sig(x) = (1 + exp(−x))−1. (7)

For our model, an architecture was needed to provide both
high SR performance and low computational burden. To sat-
isfy this need, the proposed architecture was inspired by the
SRDenseNet, which is based on a dense convolutional network
(DenseNet) [29]. For our purpose, due to the following reasons,
the DenseNet architecture has been considered. The DenseNet
uses dense connections, which improve the gradient and in-
formation flow throughout the model. Moreover, the DenseNet
requires fewer parameters than alternative architectures (specif-
ically residual networks [30]) [29].

As Fig. 1 demonstrates, the model is constituted of several
blocks, namely, welcome, dense, bottleneck, upsampling, and
reconstruction blocks.

A. Welcome

This block is the first block encountered by the LR image and
involves 2-D Conv and ReLU activation [27] layers. This block
aims to extract some low-level feature maps as inputs to dense
blocks.

B. Dense

Dense block is a set of Conv layers each of which is followed
by ReLU and BN [28] layers; in addition, the output of each layer
is fed to all subsequent layers. However, in our study, in order to
both boost and accelerate the model, BN layers are eliminated
from the dense blocks (Fig. 2). Dense blocks have been initially
introduced in DenseNet [29]. Employing dense blocks, mod-
els with fewer parameters and less computational burden are
generated because feature maps are reused for several layers.
Furthermore, as it is obvious from Fig. 1, skip connections
are applied to concatenate feature maps from different levels.
This way, the upsampling block could benefit from the current

Fig. 2. Architecture of a four-layer dense block, whereas dense blocks in the
proposed model consist of eight layers.

collection of the feature maps ranging from low- to high-level
ones.

C. Bottleneck

As mentioned earlier, the feature concatenation results in a
set of feature maps obtained by all the previous layers, and this
puts a huge computational burden on the model. The solution
applied here is the bottleneck block which involves a 256-kernel
Conv followed by a ReLU activation. This block summarizes
1040 feature maps in only 256 feature maps, which considerably
decreases the computational burden of the model.

D. Upsampling

In this block, a BN layer and a bilinear upsampling layer
afterward undergo to enlarge the size of the feature maps by a
scale factor of two. By doing this, feature maps are prepared to
reconstruct the output SR image.

E. Reconstruction

The reconstruction block is a set of two Conv layers each
of which is followed by ReLU and sigmoid activation layers,
respectively. The second Conv layer in this block has three
kernels to generate the RGB channels of the SR image. In
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Fig. 3. Image set used in this experiment, from top left to bottom right:
agricultural, chaparral, forest, intersection, and residential, residential2. First
and second rows indicate vegetation and urban classes, respectively.

addition, the application of the sigmoid is to map the values
between zero and one. By doing so, the values of the output
image become similar to the target LR image. Note that, unlike
the common approach using BN along with Conv layers, we have
reduced the use of BN in a way that it is just used in upsampling
block, and this task increases the speed of the convergence.

III. EXPERIMENTS

In this section, the proposed method is compared with the
UGSR, as the most state-of-the-art method, and three other
non-DLSR methods. The experiments have been divided into
four subsections, namely, datasets, parameter settings, accuracy
assessment, convergence speed analysis, and sensitivity analysis
to the image size.

A. Datasets

We have used two datasets, namely UC Merced [31] and
RSCNN7 [32]. UC Merced includes 2100 remote sensing im-
ages in 21 various land use classes, i.e., 100 images per each
class. The image size in the dataset is 256×256 pixels. RSCNN7
is composed of seven different classes, including grass, field,
industry, lake, forest, residential, and parking. Each class has
400 images of size 400 × 400 pixels. For our experiments,
we have chosen six different images which could be classified
into vegetation and urban categories (see Fig. 3). These two
classes have been selected due to their importance and generality
in a wide range of applications. We then cropped them into
128× 128 pixels to accelerate the experiments. However, image
crops with the resolution of 256 × 256 pixels have been applied
in sensitivity analysis to the image size. To generate an LR
version of these HR images, we have followed a downsampling
procedure using the Lanczos3 kernel. This way, the acquisition
condition of the sensor has been preserved, whereas the spatial
resolution has been reduced. Thus, the HR act as test reference
data.

TABLE I
COMPREHENDED DETAILS OF THE PROPOSED MODEL ARCHITECTURE

B. Parameter Settings

SRDenseNet [22] was an inspiration for our model architec-
ture. Consequently, some parameters, including the number of
the dense blocks, and the growth rate have been set according
to this article. The comprehended configuration of the proposed
model is available in Table I. Furthermore, all parameters of
the UGSR and other non-DLSR competing methods were set as
suggested in [19] and [4], respectively.

C. Accuracy Assessment

In order to evaluate the performance of the EUSR, we selected
the UGSR as the most state-of-the-art unsupervised DLSR
method in the remote sensing community. Furthermore, three
unsupervised non-DLSR methods, namely, blind deblurring
(BDB) [33], fast superresolution (FSR) [34], and gradient profile
prior (GPP) [35] were selected. The reason why we chose these
three methods is that they conduct unsupervised SR without
using any data except for input LR image, just like the proposed
method. The UGSR was suggested in [19] to be trained for
2000 epochs (P = 2000). On the other hand, for the EUSR,
an early stopping technique was implemented with the patience
set to 60 epochs (P = 60), which was determined by [22].
This arrangement for stopping criteria has been made in all
subsections except for Subsection III-D, where both criteria have
been separately considered to analyze the convergence speed of
each method. In addition, the structural similarity (SSIM) [36]
and the PSNR have been utilized as frequently used metrics for
assessment of the SR results.

According to Table II, in all images except for intersection
and residential2 images, the EUSR outperforms the competing
methods in terms of PSNR. In addition, the proposed method
obtains equal or higher SSIM values than the competing methods
in all images. Moreover, DLSR methods (the EUSR and UGSR)
prove their superior performance with respect to non-DLSR
methods (BDB, FSR, and GPP) according to Table II and Fig. 4;
thus, in the next experiments only DLSR methods, i.e., the EUSR
and UGSR are compared. As it is clear from Fig. 5, apart from the
agricultural image, the results of the DLSR methods are almost
close to each other. However, the EUSR shows an illustrative
enhancement in terms of convergence speed and computational
burden (Subsection III-D).
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Fig. 4. Results of the competing and the proposed methods for the image forest: (a) HR(PSNR(dB)\SSIM), (b) BDB(22.15\0.59), (c) FSR(28.95\0.89),
(d) GPP(28.70\0.89), (e) UGSR(29.69\0.91), and (f) EUSR(29.90\0.91).

TABLE II
COMPARISON OF THE PROPOSED METHOD AND THE COMPETING METHODS IN

TERMS OF THE PSNR(DB) AND SSIM USING IMAGES WITH THE SIZE EQUAL

TO 128 × 128 PIXELS

The best result for each image and metric is highlighted in bold font.

Fig. 5. PSNR(dB) results for the UGSR and the proposed method.

D. Convergence Speed Analysis

By convergence speed, we mean the ability of a model in
converging to a final desired answer as soon as possible. This
proves the efficiency of a method in terms of the computational
burden. Note that methods with lower computational burden
need lower computational resources. Computational burden has

been always an important criterion to rank the proficiency of
methods. Considering this, we have designed an experiment to
compare the time and epochs needed for model convergence and
the PSNR of the results. To do so, we have run the models and
got the results in two different ways: first, after 2000 epochs
of training (P = 2000), second, after 60 epochs without any
decrease in the loss value (P = 60). We have selected 2000
epochs because our rival has introduced this as the optimum
value [19]. We have also employed 60 epochs as the early
stopping patience according to [22].

It is worth mentioning that all the experiments were conducted
on an ASUS FX-553 laptop that has a NVIDIA GeForce GTX-
1050Ti GPU (4 GB GDDR5). Additionally, all the DLSR models
have been implemented using Keras [37] and TensorFlow [38].

The results show the prominence of the proposed method in
the convergence (see Table III).

In addition to the impressive performance in terms of PSNR,
as can be seen from Table III, the proposed method robustly
converges before 250 training epochs to the results even better
than ones achieved by the UGSR after 2000 epochs. High
convergence speed along with high accuracy is the factors indi-
cating the efficiency of a method [39]. In our proposed method,
convergence speed has increased by 90.24% while accuracy has
been better than that of the rival that means, the EUSR is much
more efficient than the UGSR.

Our efficiency in the computational burden, can be explained
from two aspects: removing BNs, and applying an LR image
as an input instead of a random noise. Applying an LR image,
in comparison to the UGSR input of which is a random noise
with the same size as HR, significantly decreases the number
of layers. Unlike the hourglass architecture [40] used in the
UGSR, in the EUSR there is no need to downsampling blocks,
which constitutes almost half of the layers. Therefore, the model
is optimized faster. Moreover, as Fig. 6 presents, using the
LR image as the model input, we apply all the data in hand
and start from higher PSNR values. This obviously requires
fewer optimization epochs, compared with the random noise
input.

E. Sensitivity Analysis to the Image Size

Regarding the image size, it is to say that the research
works suffer from limitations of data, time, and hardware
resources especially in the DLSR field. However, practically
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TABLE III
PSNR (DB), NUMBER OF EPOCHS, AND TIME (S) PROVIDED FOR THE UGSR AND THE PROPOSED METHOD USING

TWO PATIENCE VALUES (P = 60 AND P = 2000)

The best result for each image, patience value and metric is highlighted in bold font.

Fig. 6. PSNR evolution of the UGSR and the proposed method for the images: (a) agricultural, (b) chaparral, (c) forest, (d) intersection, (e) residential, and
(f) residential2.

it is essential and inevitable to work on images with larger
sizes. Accordingly, this analysis has been designed to assess
the performance and applicability of our method in case of
larger sizes. In this experiment, we have used larger crops
(256 × 256 pixels) of the image set. As it can be seen from
Table IV, the proposed method achieves a remarkable perfor-
mance with respect to the UGSR (a 49.91% improvement on
average of six images). The results are brought for P = 60

and P = 2000 for the EUSR and the UGSR, respectively. It
is worth mentioning that the UGSR method might obtain more
acceptable results in case of more training epochs. Nonetheless,
the UGSR needs much more epochs for training in case of larger
images, which proves less efficiency of this method for practical
applications.

In Figs. 7 and 8, the sensitivity of both methods to the image
size can be observed. Increasing the image size, not only raises
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Fig. 7. HR and superresolved results obtained by the UGSR (P = 2000) and the EUSR (P = 60) over the residential image. The first and second rows are,
respectively, specified to 128 × 128 and 256 × 256 pixel resolutions. (a) HR (128 × 128 pixels), (b) UGSR(128 × 128 pixels), (c) EUSR(128 × 128 pixels),
(d) HR (256 × 256 pixels), (e) UGSR(256 × 256 pixels), and (f) EUSR(256 × 256 pixels).

Fig. 8. HR and superresolved results obtained by the UGSR (P = 2000) and the EUSR (P = 60) over the chaparral image. The first and second rows are,
respectively, specified to 128 × 128 and 256 × 256 pixel resolutions. (a) HR(128 × 128 pixels), (b) UGSR(128 × 128 pixels), (c) EUSR(128 × 128 pixels),
(d) HR(256 × 256 pixels), (e) UGSR(256 × 256 pixels), and (f) EUSR(256 × 256 pixels).

the computational burden but also could cause some artifacts
such as watering effect (the case in Figs. 7(e) and 8(e)). To be
more likely, as the image size is increased by utilizing larger
crops, the information content of the image is also increased,
which is equivalent to more spatial details. Reconstruction of

HR images which have high spatial details requires a highly
competent SR performance. Therefore, our proposed method is
more practical than its rival, because in the real world we deal
with HR images.
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TABLE IV
PSNR (DB) OF 256 × 256 PIXEL IMAGES RESULTED OF THE PROPOSED

(P = 60) AND THE UGSR (P = 2000) METHODS

The best result for each image is highlighted in bold
font.

IV. CONCLUSION

This article presents an efficient unsupervised DLSR method
for remote sensing images. The proposed architecture takes ad-
vantage of densely connected layers to simultaneously provide
robust proficient SR performance and efficiency in the computa-
tional burden. Our experiments, including accuracy assessment,
convergence speed analysis, and sensitivity analysis to the image
size, prove the ability of the proposed model to efficiently
achieve a state-of-the-art performance. Future research can be
concentrated on implementing perceptual loss in the proposed
model to obtain visually more pleasant HR images.
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