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A Bayesian Structural Time Series Approach for
Predicting Red Sea Temperatures

Nabila Bounceur , Ibrahim Hoteit , and Omar Knio

Abstract—Sea surface temperature (SST) is a leading factor
impacting coral reefs and causing bleaching events in the Red Sea.
A long-term prediction of temperature patterns with an estimate
of uncertainty is thus essential for environment management of the
Red Sea ecosystem. In this work, we build a data-driven Bayesian
structural time series model and show its effectiveness in predict-
ing future SST seasons with a high accuracy, and identifying the
main predictive factors of future SST variability among a large
number of factors, including regional SST and large-scale climate
indices. The modeling scheme proposed here applies an efficient
hierarchical clustering to identify interconnected subregions that
display distinct SST variability over the Red Sea, and a Markov
Chain Monte Carlo algorithm to simultaneously select the main
predictors while the time series model is being trained. In partic-
ular, numerical results indicate that monthly SST can be reliably
predicted for five months ahead.

Index Terms—Bayesian structural time series (BSTS), factor
selection, hierarchical clustering, Markov chain Monte Carlo
(MCMC), predictive modeling, red sea, sea surface temperature
(SST).

I. INTRODUCTION

R ED Sea coral reefs are experiencing bleaching, the most
problematic change that may have happened to this

ecosystem [1]–[3]. Bleaching events are believed to be sig-
nificantly influenced, at a first level, by thermal stress from
sea surface temperature (SST) [4]. Consequently, any decision
making related to management strategies of Red Sea ecosystem
must rely on SST predictions.

The Red Sea (see Fig. 1) is located in an area that lies in a
transitional region with potential influence from the Atlantic,
Indian Ocean, and Pacific Ocean [5]. Accordingly, SST predic-
tions must incorporate, in addition to information accounting for
its past spatiotemporal variability, potential global, and regional
predictors, such as the El Niǹo Southern Oscillation (ENSO),
the North Atlantic Oscillation (NAO), and the Arctic Oscillation
(AO) (e.g., [6]–[10]).
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Seasonal predictability of SST to a set of predictors may be
achieved by using climate simulators [11]. Long-term predic-
tions with general climate models (GCMs) is, however, chal-
lenging. This is due to fundamental limitations arising from
predictability limits (see, e.g., [12], [13] for seasonal climate
forecasts reliability). Specifically, the application of GCMs
proved challenging for SST predictions over the tropics [14].

Many approaches to improve SST prediction are based on su-
perensemble models developed by combining a large ensemble
of coupled ocean-atmosphere models or by using multimodel
prediction systems [15]. This requires additional analysis of
the ensembles to adequately construct the combined model, in
addition to statistical correction methods to improve seasonal
prediction needed for most GCMs.

The most relevant application of a dynamical–statistical cor-
rection method to obtain improved predictions can be found in
the recent study of Hong et al.[16], who predicted the main
modes of SST over the equatorial eastern Pacific. In this study,
handful a priori climate indices were used that were selected,
and no time lags were included in the predictors.

When the set of predictors is large and a systematic selec-
tion is required, previous approaches may become infeasible
for long-term predictions, as a large number of experiments
should be designed and run. Statistical methodologies emerged
as an alternative means of climate forecasting. Previous attempts
linked SST statistically to its past spatiotemporal values only,
using among others, canonical correlation analysis [17], singular
spectral analysis [18], and neural networks [19]. See, for e.g.,
Mason and Mimmack [20] for a comparative study.

Although previous investigations considered the associations
between indices of climate variability and SST (e.g., [21]–[23]),
few were applied over the Red Sea (e.g., [24]–[26]). Moreover,
these studies considered single, or a small set of these climate
indices, which were selected a priori. The selection was mainly
based on a correlation analysis between the time series of the
climate indices and of the SST time series, or by applying a
priori knowledge of an association due to the physics of the
climate system. See, for instance, the study of Xue et al. [27],
who used wind stress and sea-level indices as predictors of east
Pacific SST.

Several statistical methods may be applied to estimate the
time lag in potential predictors, including partial autocorrelation
function, ensemble empirical mode decomposition, and cross-
correlation analysis (e.g., [28]). These methods are applied a
priori and do not take into account the impact of the selection on
the predictive ability of SST model in a systematic way. Pseudo
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Fig. 1. Longitude–latitude map showing the Red Sea and its coral reef
locations. The Red Sea extends from 12.5◦N to 30◦N (about ∼ 2500 km
in length) and from 31◦E to 46◦E (maximum width of ∼ 300 km). The
bathymetry of the Red Sea is shown in grey colors. Depths between 0 and
−200m are emphasized in dark grey; main coral reef locations are indicated
by red dots. Data of elevations (m) relative to the sea are extracted from “The
GEBCO One Minute Grid dataset” (http://www.gebco.net/data_and_products/
gridded_bathymetry_data/). The coral reefs locations dataset is extracted from
the comprehensive global dataset of warm-water coral reefs (tropical and sub-
tropical regions) (http://data.unep-wcmc.org/datasets/1).

Bayes factor [29] may also be used for predictors’ selection, as a
measure of the statistical evidence supporting the use of lagged
climate indices (see, e.g., [30]). However, it relies on variations
of one predictor at a time while testing the predictive ability of
the system, which can be appealing for large set of predictors.

This work aims at investigating the seasonal predictability of
SST in the Red Sea using a data-driven approach, while simul-
taneously selecting relevant predictors and estimating modeling
uncertainties.

Here, we apply a Bayesian structural time series (BSTS)
framework that incorporates a clustering approach to identify
interconnected subregions that display distinct SST variability
over the Red Sea, and a Markov chain Monte Carlo (MCMC)
algorithm to simultaneously select the main predictors while the
model is being trained over each cluster.

The framework views the Red Sea as a black-box system,
with past SST and climate indices as inputs, and future SST as
output. In this context, we apply a BSTS model [31], [32], a
well-established machinery, to assess the long-term predictabil-
ity of SST in the Red Sea, based on observations and large-scale
climate indices. This includes a systematic selection of the pre-
dictors and the relative time lags. Moreover, in this framework,
predictions are made over SST clusters identified based on the
similarity of their long-term variability by using a hierarchical
clustering technique.

To the best of our knowledge, this is the first study that
analyzes, in a systematic way, the relationship between all global
climate indices and SST variability in the Red Sea, and uses
a Bayesian model to make predictions over regions exhibiting
similar dynamics.

The rest of this article is organized as follows. Section II is
devoted to climate data description and Section III presents
the modeling framework, including the data processing and
analysis. Results are provided in Section IV, which also includes
a discussion of the selection of SST predictors, the validity of the
SST representation, and the future seasonal predictions. Main
conclusions are provided in Section V.

II. DATA DESCRIPTION

We considered monthly mean SST over the Red Sea (see
Fig. 1) provided by the European Centre for Medium-Range
Weather Forecasts Interim (ERA-Interim) reanalysis from 1979
to 2016 [33], [34]. We also considered the historical observed
monthly time series covering the period 1979–2016 of seven
climate indices.

These include ENSO[35], [36], AO [9], [37], NAO [38], [39],
Dipole Mode Index (DMI) [40], Madden–Julian Oscillation
(MJO) [41], East Atlantic–Western Russia pattern (EAWR)
[42], [43], and Pacific Decadal Oscillation (PDO) [44]. The
records were obtained from the online archives of the National
Centre for Atmospheric Research and the National Oceanic and
Atmospheric Administration.

ENSO is the most important driver of interannual climate
variability near the equatorial Pacific Ocean and it affects the
climate in large parts of the world (e.g., [45], [46]). The data
considered here are the multivariate ENSO index (MEI). MEI
reflects the nature of the coupled ocean-atmosphere system.

AO is an index of the dominant large-scale pattern of nonsea-
sonal sea-level pressure variations north of 20◦N between the
midlatitudes and Arctic atmospheric mass.

NAO is a prominent mode of atmospheric variation over the
North Atlantic in all seasons and surrounding regions [47].

DMI is an index of anomalous SST gradient between the west-
ern equatorial Indian Ocean and the South Eastern equatorial
Indian Ocean.

The MJO is a tropical disturbance that occurs mainly in the
Indian Ocean and the Pacific Ocean. It has wide ranging impacts
on the patterns of tropical and extratropical surface temperature
around the global tropics and subtropics. The MJO informs
where convection is active in the tropics, and was shown to
influence the intensity ENSO cycle [48].

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://data.unep-wcmc.org/datasets/1
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Fig. 2. Time series of monthly climate indices from January 1978 to September 2018. Plotted are curves for AO, NAO, EAWR, ENSO, PDO, DMI, and MJO
(20◦E, 120◦E, 160◦E, 120◦W, 10◦W), as indicated.

EAWR describes the teleconnection patterns with an impor-
tant component in the North Atlantic region. These patterns
affect Eurasia during most of the year and they are related
to the planetary Rossby wave energy propagation with several
anomaly centers ranging from the Caspian Sea to Newfoundland
[43]. This mode tends to be weak through Middle East. The PDO
index is the leading mode of monthly SST anomalies (SSTA) in
the North Pacific Ocean, poleward of 20◦N. It resembles ENSO
but at a decadal scale.

The corresponding time series of some of the climate indices
are illustrated in Fig. 2. The curves show that the climate indices
exhibit high variability. Table I provides the corresponding
summary statistics.

III. MODELING FRAMEWORK

The modeling framework is schematically illustrated in Fig. 3.
It consists in a BSTS model that incorporates a hierarchical
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TABLE I
QUANTILES OF THE CLIMATE INDICES VALUES OVER THE TIME PERIOD 1979–2016

Fig. 3. Flowchart summarizing the proposed methodology. The BSTS model
combines three main methods: Kalman filter to estimate the structural model
parameters, including trend and seasonality; a spike and slab regression to predict
with selected predictors; and Bayesian model averaging to estimate the best
performing prediction model with an estimate of uncertainty.

clustering approach, and an MCMC algorithm to objectively
select main predictors while the model is being trained.

A. Data Clustering

To assess the relationship between SST over the Red Sea
and the different large-scale climate variability indices, we first
identified interconnected subregions that display distinct SST
variability over the Red Sea and then find links between them
and climate indices. The subdivisions are obtained by means of
a hierarchical clustering approach [49] applied to the acquired
monthly SSTA time series.

Hierarchical clustering is based on the agglomerative scheme
to merge the time series into distinct clusters. Initially, each time
series is assigned to its own cluster. The clustering algorithm
iteratively merges two most similar clusters, and the process is
repeated until similar time series can no longer be identified
and a single cluster is consequently formed. The clusters to be
merged are chosen such that the increase in inner variability
(the sum of the squared Euclidean distance matrix of pairwise

TABLE II
AGGLOMERATIVE COEFFICIENT (AGG. COEF.) MEASURING THE AMOUNT OF

CLUSTERING STRUCTURE ESTIMATED FOR DIFFERENT LINKAGE METHODS

Note: The selected linkage method corresponds to the highest
agglomerative coefficient.

dissimilarities) of the resulting cluster is minimal (Ward’ s
minimum variance criterion [50]).

Ward’s minimum variance merging criteria are selected after
assessing its agglomerative coefficient that has the highest value
among the main linkage methods (see Table II).

The relevant number of clusters corresponds to the optimal
score of a set of 15 quality indices proposed in the literature
[51]. These indices determine how well each time series lies
within its cluster.

A concise description of quality criteria used to select the
optimal number of clusters using a hierarchical clustering based
on Ward’s minimum variance merging method is summarized
in Table III. According to the majority rule, we identified three
interconnected subregions of SSTA shown in Fig. 4.

Characteristics of SST and SSTA of each region are sum-
marized in Table IV and the corresponding time series are
superimposed on Fig. 5.

B. BSTS Model

We consider a BSTS model per clustered region to predict
monthly mean SSTA, denoted herein yt. Thanks to the modular-
ity and flexibility of structural models [31], the predictive model
is expressed as a superimposition of a time series component,
where the general trend (μt) and the seasonal patterns (ξt) in
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TABLE III
LIST AND DESCRIPTION OF THE STATISTICAL INDICES USED TO SELECT THE OPTIMAL NUMBER OF CLUSTERS AFTER APPLYING A HIERARCHICAL CLUSTERING

BASED ON WARD’S MINIMUM VARIANCE LINKAGE METHOD

Note: Optimal number of clusters is identified according to the majority rule, fixed to three clusters.

TABLE IV
STATISTICS OF SST AND SSTA IN INDIVIDUAL REGIONS

Note: The monthly data for the time period 1979–2016 (456 time steps) was used to obtain the estimates provided. Q1 and Q2 are the main
quantiles.
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Fig. 4. Longitude–latitude map showing three clustered regions of SSTA over
the Red Sea. The Southern Red Sea [SRS, Region 1, between 12.9◦N and the
dashed circle (40.8◦N, 15◦N, 1.8)] is depicted in dark red, the Central Red Sea
(CRS, Region 2, between limits of the circle and 21.8◦N) in orange, and the
Northern Red Sea (NRS, Region 3, between 21.8◦N and 28◦N) in grey.

the data are captured, and a regression component where the
contribution of the climate indices (predictors, denoted as xt) is
incorporated. This model is formulated as follows:

yt+1 = μt + ξt + βTxt + Vy

μt+1 = μt + δt + Vμ

δt+1 =

⎧
⎪⎨

⎪⎩

δt + Vδ

or

D + ρ (δt −D) + Vδ

ξt+1 = −
S−1∑

s=1

ξt−s + Vξ (1)

where Vy ∼ N(0, σ2
y), Vμ ∼ N(0, σ2

μ), Vδ ∼ N(0, σ2
δ ), and

Vξ ∼ N(0, σ2
ξ ).

The data trend can be seen as a superimposition of a level
μt and a slope δt. The latter is the expected increase in the
level from time t to time t+ 1. The level μt may have a linear
(local trend) or a nonlinear (semilocal trend) expression. The

Fig. 5. Time series of SSTA. Plotted are curves for South Red Sea (lined dark
red), Central Red Sea (dashed orange), and North Red Sea (dotted grey). Grey
ticks are used to indicate El Niǹo years, whereas red ticks are used to denote
bleaching events.

local trend is expressed as a random walk. A semilocal trend is
a hybrid model that modifies the local trend model by adding to
the level a slope written as an autoregressive (AR(1)) process
D + ρ(δt −D), where D is the long-term slope of the trend,
δt is the short-term autoregressive deviation from the long-term
trend and the parameter ρ (|ρ| < 1) plays a memory role, leading
to long deviations from D if its value is close to 1. If the errors
are assumed to follow a student’s t-distribution, the local trend
model is named in this case a T-local model. The latter is usually
used for its adequacy to capture dramatic changes in the data,
which makes the model robust against outliers and/or shifts in
the slope [52].

The seasonal component is expressed as the total value of a
nonfull ranked sum (< S) of a variable ξt representing the joint
contribution of the seasons to yt. The mean of ξt+1 is such as
the total effect is zero when summed over the total number of
seasons S = 12 . This quantity is subtracted at each time from
the trend of the monthly mean SSTA time series.

The regression component (βTxt) incorporates the predictors
and their lag by shifting the corresponding predictors in time.
In our case, xt includes 7 climate indices with a total of 16
predictors (the MJO index has 10 components representing its
phases) and all their time-shifted series. Therefore, the number
of potential regressors in our model is large (171 predictors) and
the design matrix X including all predictors for every time step
is a (444× 171) matrix.

In the BSTS model, the parameters are inferred based on the
observational data under prior specifications. This framework
combines three approaches to estimate the unknown parameters
as well as to perform future predictions, which as follows:

1) a Kalman filter [31], [53] to estimate the structural model
trend (level, slope and parameters of the slope if included)
and seasonality;

2) a spike and slab regression [54] for regressor selection and
regression coefficients estimation; and

3) a Bayesian model averaging [55] of multiple predictions
with the selected model.

Here, we summarize the model calibration (parameter esti-
mation) and prediction steps. The reader is referred to Scott
and Varian [52] for more details. In the following, we denote
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by θ the set of model parameters and by α = (α1, . . . , αn) the
latent space containing all state components for n time steps.
The vector αi contains concatenated state components. The
observation vector is given by y = {y1, . . . , yt}.

1) Regression Parameters Specifications: Future SST over a
given clustered region is predicted by incorporating information
from historical values of the SST time series, the time series of
the climate indices and their shifted time series (1− 9months lag
of SST and climate indices). Including past behavior contributes
to enlarging the number of potential predictors in the regression
model. When encountering a large number of predictors, a factor
selection for regressors is needed. This consists in an a priori
selection of a subset of potential predictors so that the regression
has a sparse matrix. The idea consists in inducing sparsity by
placing a spike and slab prior distribution on the regression
coefficients [54], [55]. The spike and slab regression forces many
regression coefficients to be exactly equal to zero when sampling
from the posterior distribution of the regression model [56].

By assuming the spike and slab prior, an additional parameter
is included in the model for the purpose of regressor selection.
The inclusion of a particular regressor is thus ensured by a
parameter γ, of the same length as β, that γi = 1 ⇒ βi �= 0
and γi = 0 ⇒ βi = 0.

The functional form of the spike part is assumed to follow
a Bernoulli distribution so that p(γ) =

∏
i κ

γi

i (1− κi)
1−γi for

all regressions. A common prior inclusion probability is elicited
from the expected number of nonzero coefficients k out of K
coefficients so that κ = k

K . The latter is assumed to be fixed and
to be the same to all regressors under noninformative prior.

The slab component is used for the prior value of the nonzero
coefficients. It is common to assume Zellner’s g-prior [57] to
express the conditionally conjugacy of the slab prior given the
fact that the latter is conditional on the prior knowledge on κ. It
is given by

βγ |γ, σ2
ε ∼ N

(
bγ , σ

2
ε

(
Ω−1

γ

)−1
)

(2)

where bγ is a prior guess of the regression coefficient assumed
to be zero except for the intercept, and a prior precision of the
nonzero coefficient (γi = 1) beingΩ−1

γ = κ(XTX)/n. The lat-
ter expresses the average information in κ regressions. The prior
of σ−2

ε is given by Γ (df2 ,
ss
2 ), where df and ss can be elicited

by the prior belief of the modeler. Often, ss = df(1−R2)σ2
y

where df is the number of the observations and R2 set to an
expected value in [0, 1].

2) Parameter Calibration: An MCMC technique is used
here to sample the posterior distribution of the model parameters
θ = (β, σ−2

y , γ) given by p(θ,α|y). A Gibbs sampler is applied,
by alternating draws of p(α|θ,y) (data augmentation step) and
p(θ|α,y) (parameter–simulation step), which produces a chain
of sequences (θ,α)j (j in N samples).

a) Estimate of p(α|θ,y) and the Kalman filter: The fast
mean smoothing method of Durbin and Koopman [58] is used,
which estimates the variance of p(α|θ,y) and the corresponding
expectations using the Kalman filter. The idea is to simulate from
the system (1) a set of (y∗,α∗) ∼ p(y,α|θ). The fast smoother
is then used to subtract the conditional mean E(α∗|θ,y∗) to

obtain a zero mean noise and get the correct variance [56], and
then to add the estimated conditional meanE(α|θ,y). The latter
allows to sample α with an adequate distribution p(α|θ,y).

All state components depend on variance parameters ex-
pressed in the error terms. The prior of variances fol-
low a Gamma distribution Γ (10−2, 10−2σ2

y) where σ2
y =

1
n−1

∑
t(yt − ȳ)2. Thanks to the conjugacy, the posterior dis-

tribution will remain Gamma distributed.
The variances in the error terms relative to the state com-

ponents are estimated by sampling their full conditional dis-
tributions. Here, we illustrate it for the trend and the slope
components. Their full conditional distribution is given by the
multiplication of their individual Gamma distributions so that

p
(
σ2
μ, σ

2
δ |α

)
= Γ

(
dfμ + n− 1

2
,
Vμ

2

)

Γ

(
dfδ + n− 1

2
,
Vδ

2

)

(3)
where dfμ and dfδ are the number of observations used in
estimatingVμ andVδ , respectively. The latter are estimated using
the observational data directly in the corresponding equations in
(1).

b) Estimate of p(θ|α,y): Conditional on α, the time series
y = {y1, . . . , yt} are independent from the regression com-
ponent [58], i.e., the full conditional distribution for (β, σ−2

y )
is independent from the other state components, resulting in
independent draws from p(θ|α,y). The conditional posteriors
for the regression coefficient and the variance σ−2

y can be found
in Gelman et al. [59]. They are given by normal and inverse
Gamma distributions, respectively

p
(
β|y,α, γ, σ−2

y

)
= N

(
β̃γ , σ

2
yVγ

)
(4)

and

p
(
σ−2
y |y,α, γ

)
= Γ

(
df+n

2 , ss+ S̃
)

(5)

where
V −1
γ = XTX + Ω−1

γ , β̃γ = Vγ(X
T ỹγ + Ω−1

γ bγ), S̃ =
∑n

t=1(ỹγ − xT
t β

T
γ )

2 + (β̃γ − bγ)
TΩ−1

γ (β̃γ − bγ).
The inclusion probability p(γ|α,y) assigned to the different

regression coefficient are updated using the data and its distri-
bution is given by

p (γ|y,α) ∝
∣
∣Ω−1

∣
∣−1/2

∣
∣V −1

γ

∣
∣−1/2

S̃−(df+n)/2. (6)

3) Computation and Future Predictions: Denote ϕ =
(α, β, σ−2

y , γ). We seek to estimate the posterior distribution
p(ϕ|y) by sampling a set of ϕj for j in N using a Markov chain.
These ϕj’s are estimated by the following procedures.

1) Sampling the latent space α from p(α|θ,y) using the
approach of Durbin and Koopman [58].

2) Sampling from p(γ|α,y) given by (6) using a Gibbs
sampler.

3) Sampling from p(β, σ−2
y |α,y) given by the product of the

conditional posteriors for the regression coefficient and
the variance specified in (4) and (5), respectively, using a
Gibbs sampler.
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TABLE V
DIAGNOSTIC VALIDATION ESTIMATES OF CALIBRATED MODELS USING LOCAL,

SEMILOCAL, AND TLOCAL TRENDS

Note: residual.sd is the posterior mean of the residual standard deviation pa-
rameter, prediction.sd is the standard deviation of the one-step-ahead prediction
errors for the training data, and R2 gives the proportion by which the residual
variance is less than the variance of the original observations. Note that standard
deviations of the original times series are 2.351, 1.99, and 2.404 for regions 1,
2, and 3, respectively.

A sequence of sampled hyperparameters ϕ drawn from
p(ϕ|y) is used to estimate the predictive distribution p(ỹ|ϕ) of
a future (unknown) ỹ after averaging

p (ỹ|y) =
∫

p (ỹ|ϕ) p (ϕ|y) p (ϕ) (7)

namely by iterating the equations in (1) given the corresponding
parameters drawn in ϕ. Note that the Monte Carlo samples from
the posterior predictive distribution take into account the sparsity
of the model as many regression coefficients will be equal to
zero. The prediction value is given by the expected valueE(ỹ|y)
of the sample drawn from the posterior predictive distribution,
and uncertainty is expressed by the sample variance V (ỹ|y).

IV. RESULTS

A. Model Selection, Verification, and Validation

We calibrated different BSTS models depending on prior
specifications, using a training dataset starting from the be-
ginning of the time series (January 1979) up to time t = 396
(December 2012). The prediction period for model verification
and validation (V&V) lasts 4 years (48 time points).

Each BSTS model includes a trend, a seasonal component
(S = 12), and a regression component in the state equation.
Regressors are included in the structural time series model in
a static framework where the regression coefficients are fixed.
The unknown coefficients and model parameters of the structural
model are estimated by first assigning priors on each of them
and then sampling from the posterior distribution using MCMC
as stated in the methodology. The samples from the posterior
distribution for the parameters are then used to construct a
posterior distribution for the time series predictions.

The validity of the three calibrated models with a local, a
semilocal, and a T-local trends, to adequately represent the data,
is verified using the residual standard deviation comparison (see
Table V). All models are valid judging by the magnitude of the
residuals compared to the sample standard deviation. The latter
constitutes a test of how close is the fit to the data; the smaller

Fig. 6. Time evolution of the cumulative relative errors in percentage of the
one-step ahead prediction. Shown are plots for regions 1–3, arranged from top to
bottom. Each plot shows curves obtained using the semilocal trend (lined blue),
the local trend (dashed red), and the T-local trend (dotted green)-based models.

the residual standard deviation, the more adequate is the model
to represent the data.

By comparing the accumulative forward prediction error
(APE) (one step prediction ahead) of each model (see Fig. 6),
the semilocal trend-based model, which has lower values over
all clustered regions, is selected and used henceforward. Note
that the rationale for using APE as a data-driven method for
model selection is discussed in Wagenmakers et al. [60].

A verification test of the model predictability consists of
comparing a one-left out observation data to the predicted data as
resulting from the BSTS model. The time series being ordered,
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Fig. 7. Top: Time series of the long-term prediction of the monthly SSTA
over Region 3 using the semilocal trend-based model. The filled (blue) area
represents 95% confidence interval. Bottom: Individual errors versus time. The
dashed horizontal lines (red) corresponds to 2σ interval bounds.

Fig. 8. Top: Time series of the long-term prediction of the monthly SSTA
over Region 3 using the semilocal trend-based model. The filled (blue) area
represents 95% confidence interval. Bottom: Individual errors versus time. The
dashed horizontal lines (red) corresponds to 2σ interval bounds.

every one-time point is predicted with the model calibrated on
the remaining dataset (prior to the prediction set).

The long-term predictions using the selected semi-local-based
model are accurate when comparing the observed SSTA with
the predicted expected means. All predictions lie inside the 95%
credible interval (filled blue area around the expected mean in top
panels of Figs. 7, 8, and 9 for regions 1, 2, and 3, respectively).

The predictability of the selected model, semilocal BSTS
model, assessed by the standardized individual predictive error,
is satisfactory and the model is reliable as more than 95% of

Fig. 9. Top: Time series of the long-term prediction of the monthly SSTA
over Region 3 using the semi-local trend-based model. The filled (blue) area
represents 95% confidence interval. Bottom: Individual errors versus time. The
dashed horizontal lines (red) corresponds to 2σ interval bounds.

TABLE VI
ESTIMATES OF THE CALIBRATION ADEQUACY FOR THE SEMILOCAL

TREND-BASED MODEL

errors remain within the 2σ intervals (bottom panels of Figs. 7,
8, and 9 for regions 1, 2, and 3, respectively).

The analysis below is performed using a semilocal-based
BSTS model, calibrated and validated (see Table VI) using the
observational time series from January 1979 to April 2017 of
the different specified data. For each clustered region, the SSTA
data over the prediction period (May 2017–September 2018)
have been processed first by estimating their anomaly on the
basis of the mean over the calibration period, and second by
determining the cluster to witch each time series belongs based
on Ward’ s minimum variance criterion, as stated in Section II.

B. Factor Selection per Region

Predictors of SSTA per region are selected if their posterior
inclusion probabilities are greater than 0.1. They are represented
in violin plots in Fig. 10 (left-hand side panel). 10% of the total
5.104—MCMC runs were discarded as burn runs.

The red dot represents the median, the thick grey bar in the
center represents the interquartile range, and the thin grey line
represents the 95% confidence interval. On each side of the grey
line is a kernel density estimate to show the distribution shape
of the data in light pink. In the wider sections, members of the
population have the higher probability to have a given value, the
opposite is for narrower sections.
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Fig. 10. Left panels: Violin plot of selected factors from Regions 1–3, arranged from top to bottom. Factors with inclusion probability ≥ 0.1 are specifically
selected. Violin plots include a marker for the median of the data and a box indicating the interquartile range. Right panels: Bar plots of the posterior inclusion
probabilities for the most likely predictors in the regression for Regions 1–3. White bars correspond to positive coefficients and black bars to negative coefficients.

The signed contribution of each factor per region to SST
variability is summarized in bar plots of Fig. 10 (right-hand
side panel), summarized in Table VII and explained in the
following.

The analysis enables us to show, in a systematic and reli-
able fashion, that among the seven climate indices considered,
MEI–ENSO and AO have the most important impact on the
SST variability of the Red Sea, which when combined with
the respective lagged SSTA (either 8 or 9 months) per region,
constitute the most important predictors of future SSTA. The 8
or 9 months lagged SSTA contribute positively to variations of
SSTA, except over the central region (Region 2).

TABLE VII
SUMMARY OF THE INCLUSION PROBABILITY (INC.PROB) IN THE BSTS MODEL,

MEAN, AND STANDARD DEVIATION OF THE MAIN SELECTED FACTORS PER

CLUSTERED
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MEI–ENSO index lagged by 5 months contributes positively
to variations of SSTA over Region 1. Note that predictions of
SSTA over Region 1 are not only based on past memories of
its local region but also SSTA values of Region 3 lagged with 8
months.

The three MJO modes at 70◦E, 80◦E, and 120◦W (not in-
cluded in this study) have inclusion probability greater than 0.05,
whereas all remaining indices have low inclusion probability. If
the inclusion probability was reduced to 0.05, the three MJO
modes at 70◦E, 80◦E, and 120◦W may appear in the probable
predictors of SST over the Southern part of the Red Sea (Region
1). Their possible contributing effect on SST variations over
this region is probably linked to ENSO, through their impact on
the atmospheric circulation and surface temperature around the
subtropics. This can contribute to the speed of development and
intensity of ENSO episodes.

SSTA over Region 2 is mainly predicted using its 9-month-
lagged value where the past has a positive impact on future
predictions. This region could be a transition region for SST
exchanges between the northern and southern Red Sea, where
the indices have a direct lagged effect on the latter [26].

Our study shows that AO index lagged by 9 months is an
important predictor of SSTA over the northern Red Sea. It affects
negatively variations of SSTA over this region. It is known that
AO is the leading mode in the Northern Hemisphere winter
circulation pattern. This pattern is well documented in the winter
time series of a coral record from the Northern Red Sea [61].

NAO is not an important predictor of SSTA over the northern
region, but NAO variability was shown to be highly correlated
with patterns of winter SST in the Red Sea [47], [62], [63].
The NAO strongly affects the ocean through latent and sensible
heat exchanges [64] and it affects the Middle Eastern climate
by inducing changes in the Atlantic westerly heat/moisture
transport and Atlantic/Mediterranean SST [65]. Based on coral
paleo records for the Central Red Sea, Rimbu et al. [66],
[67] hypothesized that during winter, AO/NAO control this
connection.

C. SSTA Predictions

To evaluate the predictability of the BSTS model calibrated
with the training dataset (January 1979–April 2017) and the se-
lected predictors, we predict SSTA for the following 22 months,
till February 2019. The predicted SSTA per region is plotted in
Fig. 11.

Note that for the design of the predictive data matrix, zeros
were assigned to all predictors except for the important ones
selected during the calibration step.

The comparison between the observations and predictions
is conducted over all the prediction period up to September
2018. Observational monthly SSTs for the following months
after April 2017 were retrieved from the same source as for the
historical data. They are represented by dashed grey lines in
Fig. 11.

Prediction errors, calculated as the differences between the
predicted and observational SST over each clustered region, all
fall in average below 0.5 ◦C (see Table VIII). Moreover, the

Fig. 11. Predicted SSTA for five seasons for Regions 1–3, arranged from top.
The filled area represents the 95% confidence interval. The prediction cover the
period from May 2017 to February 2019. Quantiles of observational SSTA for
each month are superimposed in green.

TABLE VIII
SUMMARY STATISTICS OF THE PREDICTION ERRORS PER REGION

Note: Q1 and Q2 are the main quantiles.

predictions lay within the 95% confidence interval (see shaded
grey area in Fig. 11), supporting the predictive ability of the
model.

For the remaining 5 months, from October 2018 up to Febru-
ary 2019 (plotted in dark red in Fig. 11), no data are available
for validation. The predictions are compared to the observa-
tional data distribution to test their significance for each month,
inprimis the (min,max) interval and mean of the data (plotted
in green segments). Recall that the choice of the 5 months is
justified by the minimum time lag shared between the selected
predictors. Thus, future predictions are possible for a time laps
of a maximum of 5 months ahead of the available observational
data for the whole Red Sea.
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V. CONCLUSION

In this study, we explored the predictive ability of Red Sea
surface temperature to climate indices variations, and more
specifically, the seasonal predictability. We also investigated the
most important predictive factors of SST, and the corresponding
time delays, which may drive climate predictions.

The predictability of the SST in the Red Sea is assessed using
both global climate indices and local SST conditions, using a
structural time series model over three main regions, clustered-
based on long-term variability dissimilarities. The model was
calibrated following a Bayesian perspective to account for un-
certainty in the different parameters and in the predictions.

The structural time series model is a powerful predictive
tool, being modular and flexible. Systematically and efficiently
selecting which components to include in the model structure
makes it more reliable and interpretable, and in addition, pre-
vents overfitting [68]. The semilocal trend-based model with a
preserved past memory is found to be the most suitable for our
application.

Efficiency in the prediction approach proposed here is en-
forced by avoiding redundancy and predicting over the clustered
regions of the Red Sea, and by selecting a small set of the most
important predictors at the same time as model training using a
Bayesian paradigm and an MCMC algorithm with a structural
time series model.

The new insights gained from applying this approach are that
large-scale spatial patterns of ENSO (and at some extend MJO)
are an important predictive factor over the southern Red Sea,
whereas AO is a predictor of monthly SSTA over the Northern
Red Sea. SST over the central region of the Red sea may be
predicted based on its past memory only (9 months earlier). We
also showed that a time lag of 8–9 months is an important lag
for predictors of monthly SST. Moreover, our future predictions
are reliable 5 months ahead.

Our findings are further supported by long coral record over
the Northern Red Sea [61]. This record provides evidence that
interaction between tropical and extratropical modes of the
global climate system has an important control on the Middle
East climate variability on interannual longer time-scales since
at least 1750.
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