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Abstract—Inshore ship detection from very high resolution
(VHR) optical remote sensing images has been playing a critical
role in various civil and military applications. However, it brings
up an important challenge, which is difficult to complete effective
and robust feature extraction when valid inshore ship training
sample acquired is limited, and the severe imbalance problem
exists of positive and negative samples. In order to tackle the
abovementioned difficulties, the structured sparse representation
model (SSRM) is proposed to achieve inshore ship detection in
more effectively and robustly way by circumstances of the small
sample set. Here, SSRM has two steps that include inshore ship
region proposal (RP) and orientation prediction (OP). Related to
the RP process, the error matrix embedded in SSRM not only
prevents to build the high-dimension background subdictionary
and imbalance problem of positive and negative samples, but also
achieves an effective intraclass robustness description of inshore
ships and background. For the OP stage, the low-rank constraint
of common sharing atoms in SSRM can make inshore ship direction
be extracted by their sparse coding. In addition, based on RP and
OP guidance, the proposed comprehensive structure voting can
achieve an accurate contour detection of inshore ships. Finally,
several experimental results employ that Google Earth service,
HRSC 2016, and DOTA datasets proved the effectiveness of the
proposed method. The results show that proposed inshore ship
detection method can provide approximately 83.7% Recall and
72.3% Precision by using only over 100 positive training samples,
which outperforms the state of the art methods.

Index Terms—Inshore ship detection, optical remote sensing,
sparse representation (SR), small sample set, very high resolution
(VHR).

I. INTRODUCTION

W ITH the development of very high resolution (VHR)
remote sensing technology, it has been widely used

for the ship salvage, port traffic trade control, and ship oil
spill monitoring applications [1]–[5]. Related to these applica-
tions, automatic ship detection technology has been attracted
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Fig. 1. Optical remote sensing images annotation. (a) HRSC 2016 image with
a refined pixel-level annotation. (b) DOTA image with a bounding box-level
annotation. (c) Google Earth image with image-level annotation.

more attention. In particular, inshore ship detection is a critical
technology for civil and military investigations or monitoring
systems [2], [4]. However, it is a challenging task, because
sometimes the valid inshore ship training sample acquired is
limited, and there is a severe imbalance problem of training
samples when building a robust detection model. First, it is
hard or impossible to annotate massive inshore ship samples
from large view scale VHR optical remote sensing images, as
shown in Fig. 1. Therefore, we have to explore the small sample
set learning way to achieve effective and robust inshore ship
detection. On the other hand, some unpredicted interferences
(i.e., jetties, convex banks, rectangular roofs, etc.) from com-
plex background contain more categories, and they all have a
great probability to be false alarms. Thus, considering these
issues, various automatic inshore ship detection methods have
been proposed [6]–[30], and these methods can roughly divided
into three categories: manually designed feature (MDF)-based
methods [6]–[12], parameter space transformation (PST)-based
methods [13]–[17], and automatically feature learning based
methods [18]–[30].
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Fig. 2. Proposed structured SR inshore ship detection framework.

MDF-based methods employ low-level feature descriptions
(e.g., length–width ratio, parallel lines, hull texture, fore “V”
shaped structure, contour edge, and HOG) for local or global
feature description to achieve inshore ship detection. Then, due
to the description capability limitation of low-level feature, these
methods cannot perform well for inshore ship detection. To
provide accurate inshore ship detection results, the PST-based
methods are often considered for refined inshore ship detection
against complex harbor background. Although these method has
a certain ability for inshore ship detection when the valid training
sample acquired is limited. However, when they face the com-
plex and cluster harbor background interferences, these methods
are difficult to balance the over- or underfitting feature descrip-
tion in the parameter space domain. Therefore, these PST-based
methods often lead to inshore ship leakage or produce a lot
of false alarms. In order to improve the inshore ship detection
performance, several convolution neural network (CNN) and
sparse representation (SR)-based methods have been proposed.
Because of their outstanding feature description ability, they are
becoming the main object detection framework. Zhang et al. [19]
proposed an S-CNN-based inshore ship detection method, which
used the “V” structure and parallel line characteristics to achieve
inshore ship candidate proposals. Lin et al. [21] also proposed
a fully convolutional network (FCN) with a task partitioning
strategy for inshore ship detection. Li et al. [23] proposed the
multiscale deep feature embedding way in a faster-RCNN frame-
work to achieve the inshore ship detection from optical remote
sensing images. In addition to CNN-based methods, Yokoya and
Iwasaki [27] proposed the SR-Hough object detection method
consisting of the inshore ship and background subdictionaries.
Here, the inshore ship patches were extracted by sparse coding
feature, and Hough voting was employed for inshore ship refined
locations. Chen et al. [29] proposed the label constraint SR
model combining with a semisupervised superpixel clustering
training strategy of multiple-category backgrounds to achieve
object detection. However, including CNN- and SR-based in-
shore ship detection methods, they all require a large number
of training samples to train the CNN architecture and high-
dimensional SR dictionary. Especially for the SR-based method,

they have to use the abundant inshore ship and background train-
ing samples to update atoms and their sparse coding coefficients
alternately and achieve an intraclass completeness description
in high-dimensional subdictionary. Since the lower dimensional
subdictionary, which needs less training samples to setup, has
a certain lack of target and background feature description
ability. Therefore, for SR-based inshore ship detection methods,
the challenge problem is to use the small sample set to train
a powerful lower dimensional SR dictionary and achieve the
inshore ship detection from optical remote sensing complex
harbor background.

In this article, related to the problems mentioned before, the
small sample set structured SR model (SSRM) for inshore ship
detection is proposed, as shown in Fig. 2. Here, the SSRM
is built for inshore ship region proposal (RP) and orientation
prediction (OP). First, for RP, the error matrix embedded lower
dimensional structured SR dictionary can adapt the intraclass
variation descriptions of inshore ships and backgrounds. Then,
related to OP stage, the low-rank constraint of common sharing
atom structure for lower dimensional SR dictionary can provide
the accurate OP results from RP results. Finally, based on RP and
OP guidance, the comprehensive structure voting (CSV) method
is proposed to achieve the refined inshore ship contour detection.
Finally, we employed inshore ship datasets of Google Earth
service, HRSC 2016, and DOTA to demonstrate that the pro-
posed SSRM and CSV methods can achieve the refined inshore
ship contour detection and reach approximately 83.7% Recall
and 72.3% Precision by using only over 100 positive training
samples than the state-of-the-art methods. In general, the major
contributions of this article can be summarized as follows.

1) The proposed SSRM and CSV can achieve better refined
inshore ship contour detection by the challenging small
sample set than the state-of-the-art methods.

2) We addressed the imbalance problem of training samples
between inshore ships and backgrounds by the constructed
special structure of low-dimensional SSRM than the tradi-
tional SR dictionary designing, which is high dimensional
and hardly be trained by a large number of various training
samples.
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3) We also proposed the rapid and effective CSV method
for refined inshore ship contour detection based on the
RP and OP guidance without complex parameter space
calculation.

The rest of this article is organized as follows. In Sec-
tion II, we briefly introduce the basic principle of SR. Then, in
Section III, we describe the proposed SSRM and CSV inshore
ship detection framework in detail. Next, extensive experiments
of the proposed method are presented in Section IV. Finally, in
Section V, the comparative performance of small sample set are
discussed.

II. BASIC CONCEPTS OF SR

This research study aims to achieve and demonstrate the
refined inshore ship detection by a small sample set. In this
article, the SR principle is employed. Recently, the SR-based
method is widely used for object detection [27]–[29], [33], [34],
image enhancement [35], [36], and classification [37]–[39]. The
SR principle can be explained as a given set of input data, and
it can be combined with a few linear elements from a set of
representation patterns. Here, these representation patterns are
called atoms, the set of all atoms is called a dictionary, and the
coefficients of the linear combinations are called sparse coding.
A classification example can be provided by considering a set
of input signals{y1, y2, . . . , yp} ⊂ RN and then determining
a set of atoms {d1, d2, . . . , dM} ⊂ RN together with a set of
sparse coding coefficient vectors {x1, x2, . . . , xp} ⊂ RM [40].
Therefore, each input vector yi can be approximated by a linear
combination yi ≈

∑M
l=1 xj(l)dl, where most entries of xjare

zeroes or close to zeroes. Here, ‖ · ‖1 denote the L1-norm con-
straint of sparse coding. Then, the classic sparse coding problem
can be expressed as follows:

min
D,C

‖Y −DX‖2F , s.t. ∀i, ‖xi‖0 ≤ T (1)

where D = [d1, d2, . . . , dM ] ∈ RN×Mdenotes the learned dic-
tionary, and Y = [y1, y2, . . . , yP ] ∈ RN×P denotes input sam-
ples as column vectors in a matrix. X = [x1, x2, . . . xP ] ∈
RM×P denotes the matrix containing the corresponding sparse
coding vectors. Then, the threshold T determines the sparsity
degree on each sparse coding vector. Here, the normalization
constraint can prevent possible unbounded solutions, which
states that ‖dj‖2 = 1 for all indexes j. Equation (1) is the
dictionary learning regulation rule, which considers only the
approximate error between the input data and their resultant suc-
cinct expression. In recent years, for the sparse coding process,
an abundance of literature has focus on discriminating sparse
coding generation to improve the sparse coding discriminative
ability [38], [39], [41]. Here, the basic idea of discrimina-
tive sparse coding is generated by some supervised learning
strategies in the sparse coding process. Then, the most existing
approaches for discriminative sparse coding are based on the
following expression:

min
D,C

‖Y −DX‖2F + γJ (X;L) . (2)

Subject to ‖xi‖0 ≤ T ,‖dj‖2 ≤ 1, for all i and j, where γ is the
impact weight. L is a matrix that encodes the label information
of training sample, and J(·;L) denotes a penalty function that
measures the discriminative error between the codes and related
to labels. A lot of research studies are developing J(·;L) to
achieve many works [33]–[39]. In this article, we utilize the
basic SR principle to build the structured SR and generate the
discriminative sparse coding to achieve inshore ship detection
based on a small sample set.

III. PROPOSED METHODOLOGY

As shown in Fig. 2, this article proposed the small sample set
inshore ship detection framework that is consist of three major
components.

1) SSRM for inshore ship RP;
2) SSRM for inshore ship OP;
3) CSV for refined inshore ship contour detection.
These three components are detailed as follows.

A. SSRM for Inshore Ship RP

For inshore ship RP, the proposed SSRM is shown in Fig. 3.
Here, it contains three subdictionaries, which represent the cat-
egories of inshore ships, background, and error matrix. Then,
in SSRM, the inshore ship and background subdictionaries
can jointly ensure their interclass discriminative description of
sparse coding by sparsity and priori labeled sparse coding con-
straints. Next, the error matrix embedded in SSRM can reflect
intraclass variances of inshore ship and background, which can
leverage inshore ship or background completeness description
and small sample set learning. In order to train the special SSRM
for inshore ship RP, the small training sample set has to be
setup. First, similar to Fig. 2 step 1, we manually select 350
image-level inshore ship samples with identical direction and
different types. Then, we rotate these samples in six directions
(i.e., 30°, 60°, 90°, 120°, 150°, and 180°) to adapt the orientation
changes. Next, based on selected positive inshore ship training
samples, we randomly select enough background samples and
utilize the zero-mean normalized cross correlation [27] method
to automatically find an equal number of background samples
that are more similar to the 350 rotated inshore ships. When
we set up the balanced image-level small sample set, an 8×8
cell HOG feature descriptor [29] and the principle component
analysis algorithm are employed for basic atom expression and
then regulated all atoms into 576×1. Similar to Fig. 2 step 2, in
Fig. 3, the blue matrix Dt is the inshore ship subdictionary, and
the gray matrix Db is the background subdictionary. Where the
white matrix Er is the error matrix that is the important part of
SSRM to leverage the intraclass completeness description and
lower dimensional dictionary training by a small sample set.
Therefore, the SSRM can be expressed in three parts as follows:

DE = [Dt, Db, Er] . (3)

whereDt andDb are the trainable dictionary, andEr is the fixed
matrix of diagonal unit array. The dimension of Er is according
to the atom vector’s. Then, Let DE = [D′

E , Er]; next, D′
E =

[Dt, Db]. From the SR principle introduced before, if given an
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Fig. 3. Structured SR for inshore ship RP.

observation sample Y, we can reconstruct Y by using DE and
D′

E , as calculated in the following equations:

Y1 ≈ DEX = (d1,tα1,t + · · ·+ dn,tαn,t)

+ (d1,bα1,b + · · ·+ dn,bαn,b)

+ (e1,rα1,r + · · ·+ en,rαn,r) . (4)

Y2 ≈ D′
EX = (d1,tα1,t + · · ·+ dn,tαn,t)

+ (d1,bα1,b + · · ·+ dn,bαn,b) . (5)

From (4) and (5), Dt = [d1,t, d2,t, . . . dn,t], Db = [d1,b,
d2,b, . . . dn,b], and Er = [e1,r, e2,r, . . . en,r]. X = [α1,t, . . .
αn,t, α1,b, . . . αn,b, α1,r, . . . αn,r] and X=[α1,t, . . . αn,t, α1,b,
. . . αn,b] represent the sparse coding coefficients of DE and D′

E ,
respectively. There are two optimum solutions Y1 and Y2, both
of which are similar to observation sample Y. Here, Y1 is more
similar to Y because of its higher dimensional SR dictionary.
Then, assume that Y1 is equal to Y. Therefore, the reconstruction
error Err can be calculated as follows:

Err = Y − Y2 = Y1 − Y2 = e1,rα1,r + · · ·+ en,rαn,r. (6)

In (6), the reconstruction error can be expressed by the error
matrix in DE. Here, an example of Er can be expressed as (7)
when the atom vector is 6× 1. The error matrix can be embedded
into SSRM to measure the intraclass variance of inshore ships or
background by its sparse coding coefficients distributed in error
matrix part

Er =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

Then, before the intraclass variance investigation by error
matrix, we have to train the discriminative structured dictionary
of inshore ship and background parts to make inshore ships be
detected from complex harbor background. Inspired by the label
consistent K-SVD algorithm [38], [42], we fixed the error matrix
Er and trained D′

E = [Dt, Db] as

〈D′
E , A,X〉 = arg min

D′
E ,A,X

‖Y − [Dt, Db]X‖22

+ α ‖Q−AX‖22 + γ‖x‖1. (8)

For the D′
E dictionary training process, several inshore ship

and background samples are individually employed to initialize
each subdictionary by using the K-SVD algorithm [42]. Then,
following (8), K-SVD and LASSO algorithms [43] are used to
train D′

E and generate discriminative sparse coding alternately.
Here, first term in (8) is the reconstruction error of observation
sample Y, and the second term can force the sparse code X set
toward the expected sparse coding set of Q. The third term is the
L1-norm constraint for each sparse code x in X. The example of
the expected sparse code Q can be expressed as follows:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

In (9), each column of Q is the expected sparse code of trained
D′

E . Here, the example considers that the first three column
elements in Q are expected sparse code coefficients of the inshore
ship and that the last three column elements are background
expected sparse code coefficients. The priori sparse coding Q
expects that if the observation sample is an inshore ship, its
nonzero sparse code coefficients have to occur in the inshore ship
subdictionary. Otherwise, its nonzero sparse code coefficients
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have to occur in the background subdictionary. Then, when the
observation function is minimized in (8), D′

E could generate
more discriminative sparse codes by their expected Q constraint.
Related to D′

E updating training process, it would alternatively
update D′

E and the relevant sparse code coefficients by K-SVD
and LASSO algorithms. However, in the updating process, we
also have to initialize A as follows:

A = argmin
A

‖Q−AX‖2 + λ ‖A‖22 . (10)

By using multivariable ridge regression [44], quadratic loss,
and L2-norm regularization, A can be initialized as follows:

A = QXt
(
XXt + λI

)−1
(11)

when the dictionary D′
E is initialized, the sparse code X can

be generated. In (11), X is used to initialize transformation
matrix A. When A is initialized and meets the minimum re-
construction error with L1-norm sparsity constraint of X, we can
follow the observation function (12) to optimize (10). In (12),
Li(D′

E , yi, A, qi) = ‖Q−AX‖2

min
D,A

∑

i

Li (D′
E , yi, A, qi) +

v

2
‖A‖2F

s.t. xi = argmin
x

‖yi −D′
Ex‖22 + γ‖x‖1, i ∈ {1, . . . , N}

‖dj‖22 ≤ 1, j ∈ {1, . . . ,K} . (12)

With respect to (12), the dictionary D′
E and transform matrix

A updating process can be formed as follows:

D
′(t)
E = D

′(t)
E − ρt

∂Li

∂D′
E
(t)

(13)

A(t) = A(t) − ρt
∂Li

∂A(t)
(14)

where ρt is the learning rate for the updating process. Then, the
stochastic gradient descent algorithm [45] is used for gradient
optimization. However, sometimes the sparse coding coeffi-
cients perform all zero values, which lose the gradient infor-
mation. Therefore, we have to lead the auxiliary variable φ and
φ ∈ RK . If the sparse code coefficients are all zeroes, then φ =
0. Otherwise, φ = (D′

E
tD′

E)
−1 ∂Li

∂xi
and ∂Li

∂xi
= At(Axi − qi).

Next, (13) and (14) can be calculated via (15) and (16),
respectively

∂Li

∂D′
E

= −D′
Eφx

t
i + (yi −D′

Exi)φ
t (15)

∂Li

∂A
= (Axi − qi)x

t
i + νA. (16)

Following D′
E and A updating process by minimizing the

observation function (8), we use trained D′
E to generate more

discriminative sparse code according to observation sample of
inshore ship or background. Next, the trained D′

E is combined
with an error matrix, as shown in Fig. 3, and the LASSO
algorithm [43] is employed to produce the sparse coding coeffi-
cients that include the error matrix part. Finally, related to setup
SSRM and generated sparse coding coefficients, the proposed
confidence value is used to extract the inshore ship patches

from multiscale detection windows and achieve inshore ship
RP. Here, the inshore ship confidence value can be calculated
by the following equations:

confidence =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt

Nt∑

i=1

xi

Nb∑

i=Nt+1

xi+
NEr∑

i=Nb+1

xi+eps

, if wt > wb.

Nt∑

i=1

xi

wb

(
Nb∑

i=Nt+1

xi+
NEr∑

i=Nb+1

xi+eps

) , if wt ≤ wb.

(17)

S =
1

1 + exp (−confident)
. (18)

In (17), wt or wb is the maximum sparse coding coefficient in
inshore ship or background part. Nt, Nb, and NEr are the sizes
of Dt, Db, and Er in SSRM, respectively. Then, the multiscale
sliding window samples are all resized into 120 × 120 and
expressed as a 576 × 1 HOG atom vector to generate their
sparse coding coefficients. When the observation samples are
inshore ships, most of sparse coding coefficients occur in inshore
ship subdictionary, and fewer coefficients are in the background
and error matrix subdictionaries. Otherwise, due to background
containing the variance interferences with a larger intraclass
difference, there are insufficient atoms to support completeness
description of background subdictionary, and if the observation
samples are background or unseen interference samples, it would
produce many sparse coding coefficients in background or error
matrix part. Consequently, we can utilize the inshore ship or
background part combined with an error matrix part to produce
discriminative sparse coding coefficients under small sample
set training. Then, we can also calculate the confidence value
by using (17) according to their different intraclass variances.
In (17), eps is a very small number to prevent zero in the
denominator. Next, following inshore ship confidence value
calculation, (18) regulates the confidence value from “0” to “1.”
If multiscale windows provide the observation sample with an
inshore ship, (18) provides an S closer to “1.” Finally, we can
utilize a confidence threshold value of 0.9 or more than 0.9 to
achieve rapid and accurate inshore ship RP.

B. SSRM for Inshore Ship OP

Regarding refined inshore ship detection, many methods [13]–
[18] consider using inshore ship orientation to produce refined
detection results. However, orientation information is sometimes
difficult to extract from RP patches. Therefore, a novel SSRM
for inshore ship OP is proposed, which describes the feature
similarity of the proposed inshore ship patches and enhances
their orientation difference over a small sample set, as shown in
Fig. 4. The principle is also shown in Fig. 5, and it shows the
feature similarity and differential expression.

There is an example of three classes to represent the differ-
ent orientation inshore ship patches. These patches have more
similar global structure and different orientations. Therefore, in
feature representation space, we are aiming to sufficiently learn
their similarity to identify the oriented difference. Based on this
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Fig. 4. Structured SR for inshore ship OP.

Fig. 5. Principle of the common sharing atom SSRM for abundant feature
similarity expression.

principle, we set up the common sharing atom SSRM as follows:

LY

(
D,X

)

=
1

2
fY
(
D,X

)
+ λ1

∥
∥X
∥
∥
1
+

λ2

2
g
(
X
)
+ η

∥
∥D0

∥
∥
∗. (19)

D is the common sharing atom dictionary, which includes two
parts (i.e., the multiclass subdictionaries and common sharing
subdictionary). In Fig. 4, the brown section is the common
sharing subdictionary that can be expressed as D0, and other
different colors of subdictionary parts D′

nrepresent different
oriented classes. Here, n is the class index. Then, D̄ = [D′

n, D
0].

X̄is discriminative sparse code, which is produced by trained
D̄. Therefore, X̄ also has two parts X̄ = [X ′

n, X
0].X ′

n rep-
resents differential oriented sparse coding coefficients, and X0

represents common sharing sparse coding coefficients. Here, we
utilize D̄ and X̄ to achieve the implicit feature space similarity
expression for inshore ship different orientation identification,
where X̄ is generated by the fast iterative shrinkage-thresholding
algorithm (FISTA) [46]. λ1, λ2, and η are weight parameters
to control the impacts of these three terms in (19). In (19),
fȲ (D̄, X̄)and g(X̄) can leverage SSRM to generate a more
discriminative dictionary and sparse coding coefficients, which
are introduced as follows.

From (19), fȲ (D̄, X̄)is used to ensure the minimized recon-
struction error of observation samples according to common
sharing subdictionary and differential oriented subdictionaries.
Next, ‖X̄‖1 is the sparsity constraint for generated discrimina-
tive sparse coding, and λ2

2 g(X) is the common sharing sparse
coding similarity constraint. Finally, ‖D0‖∗ is a low-rank con-
straint [39], [40] to ensure that the model sufficiently learned
the common sharing atoms from different oriented inshore ship
patches, and it can also prevent D0 absorbing the discriminative
atoms from differential oriented subdictionaries [47]. Then, in
order to predict the inshore ship orientations of RP patches,
fȲ (D̄, X̄) can be obtained as follows:

fY
(
D̄, X̄

)
=

N∑

n=1
⎛

⎝
∥
∥Yn−D̄X̄

∥
∥2
2
+
∥
∥Yn−D′

nX
′
n−D0X0

∥
∥2
2
+
∑

j �=n

∥
∥DjX

j
n

∥
∥2
2

⎞

⎠.

(20)

In (20), it is the Fisher discrimination dictionary learning
method [49] that maintains interclass distinguishability. N is the
number of inshore ship orientation classes. First and second
terms are reconstruction errors of observation sample Yn by
using differential orientations and common sharing atom sub-
dictionaries. The third term represents an unrelated orientation
atoms Dj with a small contribution to represent the observation
sample Yn. Related to constructed differential orientations and
common sharing atom subdictionaries, here the constraint of
sparse coding coefficients g(X) can be obtained as follows:

g
(
X̄
)
=

N∑

n=1

(∥
∥X̄n−Mn

∥
∥2
2
−‖Mn−M‖22

)
+
∥
∥X0−M0

∥
∥2
2
.

(21)
Here Mn represents the mean vector of sparse coding co-

efficients for identical orientated inshore ship samples. M is
the sparse coding coefficients’ mean vector of whole orientated
inshore ship samples. M0 is the mean sparse coding vector from
common sharing subdictionary. Then, the first term in (21) is
used to ensure the small difference of sparse coding coefficients
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in each orientation intraclass, and the second term is used to
make the big difference of sparse coding coefficients in each
orientation interclasses. The last term in (21) can ensure that
all oriented classes have more similar common sharing sparse
coding coefficients for similar structure description.

Then, by the constraints presented in (20) and (21) of ob-
servation function (19), D̄ and X̄are alternatively updated. The
trained D̄ can be used to generate X̄to predict the inshore ship
orientation from RP patches. For D̄ and X̄training process, when
dictionaryD̄ is updating, then X̄is fixed. Let D̄ = [D′

n, D
0]

solves D′
n and D0 separately. Related to D′

n updating process,

which must satisfy Yn
Δ
= Y −D0X0. D′

n can employ the on-
line dictionary learning [48] to update their atoms through the
following equation:

D′
n = argmin

D′
n

{−2trace
(
EDT

)
+ trace

(
FDTD

)}
(22)

where E = YnΦ(X
′
n
T ) and F = Φ(X ′

nX
′
n
T ). The operation

Φ(·) can be defined as follows:
⎡

⎢
⎢
⎣

A11 · · · A1n

A21 · · · A2n

· · · · · · · · ·
An1 · · · Ann

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
A

→ A+

⎡

⎢
⎢
⎣

A11 · · · 0
0 · · · 0
· · · · · · · · ·
0 · · · Ann

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Φ(A)

. (23)

Here, (23) is the given matrix A. Then, Φ(A) means double
diagonal blocks of A. Next, D0 updating follows the following
equation:

D0 = argmin
D0

{
trace

(
FD0TD0

)
− 2trace

(
ED0T

)}

+ η
∥
∥D0

∥
∥
∗. (24)

In (24), let E = [Y − 1
2D

′
nΦ(X

′
n)] · (X0)T and F =

X0(X0)T . The alternating direction method of multipliers
[50] is employed to update D0. When the dictionary D̄ is
updated, the sparse coding X̄is updated by the FISTA [46]
followed by

∇h̄
(
X̄
)
=

⎡

⎣
∂h̄X0 (X ′

n)

∂X ′
n

∂h̄X′
n
(X0)

∂X0

⎤

⎦ . (25)

For (25), the gradient of sparse coding coefficients can be
calculated by the following equations:.

∂h̄X0 (X ′
n)

∂X ′
n

=
(
Φ
(
D̄T D̄

)
+ 2λ2I

)
X ′

n − Φ
(
D̄T Ȳ

)

+ λ2 (Mn − 2M) (26)

∂h̄X ′
n

(
X0
)

∂X0
= 2D0TD0X0 − 2D0T

(

Y − 1

2
D′

nΦ(X ′
n)

)

+ λ2

(
X0 −M0

)
. (27)

For detailed derivations of (26) and (27), readers can be
referred to [51]. Next, when D̄ and X̄ are alternatively updated,
we set up the SSRM of common sharing atoms D̄ and utilize
(28) to generate discriminative sparse coding X̄ = [X ′

n, X
0].

Algorithm I: SSRM for Inshore Ship RP and OP.
1. Input: The input optical remote sensing harbor images I

and proposed RP results P;
2. For S = 1, 2, … , n do
3 Selected the detection window scale S;
4 for i = 1, 2, … , n
5 for j = 1, 2, … , n do
6 get detection windows Pij from input image I;

Calculated the confident value for each Pi by
SSRM-RP;

7 If confident value > threshold T
8 predict the orientation of Pij by SSRM-OP
9 Output the patches Pij and its’ orientation θ

10 End

Finally, let generated X̄ be substituted into (29) that can predict
the inshore ship orientation from extracted high confidence value
RP patches

X = argmin
X

1

2

∥
∥Y −DX

∥
∥2
2
+

λ2

2

∥
∥X0 −M0

∥
∥2
2
+ λ1

∥
∥X
∥
∥
1

(28)

ORIpredict = arg min
1≤n≤N

(
ω
∥
∥Y −D′

nX
′
n −D0X0

∥
∥+ (1− ω) ‖X ′

n −Mn‖
)
.

(29)

In general, related to the OP process, the inshore ship RP and
OP framework can be summarized as Algorithm I.

C. CSV for Refined Inshore Ship Contour Detection

In order to rapidly obtain the refined inshore ship contour
detection results and eliminate false alarms, the CSV method is
proposed followed by RP and OP guidance. Here, we consider
using hull parallel lines and inshore ship symmetric texture
distribution to achieve the inshore contour detection. These
discriminative structures of the inshore ship had been proven
in previous works [6]–[12]. Then, these parallel lines can be
extracted by the line segmentation detection (LSD) method [52],
which follows the OP guidance to rapidly find any two longest
lines in each scale RP patch. Between these two lines, there
is a great probability of inshore ship interior texture, which is
composed of several symmetrical basic structure elements (i.e.,
lines and corners), as shown in Fig. 6.

Then, Hough line [53] and Harris corner [54] detections are
used for symmetry element analysis, which can be expressed as

PG =
{
HT (ρ, θ) , R = |M | − k · tr2 (M)

}
(30)

where PG represents the detected point group of lines and cor-
ners, HT (·) represents the Hough transform for line detection,
and R = |M | − k · tr2(M) is the Harris corner detection. Here,
M is the eigenmatrix of the pixel’s gradient between the parallel
line area, and it can be expressed as M = [I2x, IxIy; IxIy, I

2
y ]. Ix

and Iy are the horizontal and vertical gradients, respectively, and
k is the controlling parameter of corner detection performance.
The detail steps of refined inshore ship contour detection is
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Fig. 6. CSV process for refined inshore ship detection.

Algorithm II: Comprehensive Structure Voting Method for
Refined Inshore Ship Contour Detection.

1. Input: The proposed inshore ship patches P and
predicted orientation θ;

2. For i = 1, 2, … , n do
3 LSD [52] lines detection for Pi;
4 If line degree is equal to θ
5 Mark the area A between the two longest parallel

lines;
6 Obtain the PG points group of lines and corners

detection for Ai.;
8 Generate the saliency map: SMj = PG·G(μ,σ)
9 Winner take all and region growing analysis based

on Pi and SMi

10 End

shown in Algorithm II. Following the lines and corners analysis
in the parallel lines areas, we can obtain the PG of the interior tex-
ture features. Then, the Gaussian weight is assigned to each point
to generate the inshore ship saliency map from the proposed
multiscale patches by aggregation of Gaussian weight overlap
adding. Finally, based on each saliency map, the original patch
region growing and saliency map winner-take-all algorithms are
used to generate a refined inshore ship detection binary mask.

IV. EXPERIMENTS AND ANALYSIS

To demonstrate the effectiveness of the proposed small sample
set inshore ship detection framework. Here, several relevant
datasets and evaluation indexes are involved, and the optimal

parameter discussion and comparisons are described in detail as
follows.

A. Dataset and Evaluation Indexes

To demonstrate the method proposed in this article, Google
Earth service, HRSC 2016 [31], and DOTA [32] are employed.
Here, Google Earth service data were manually downloaded
from remote sensing browsing platform by using geographic
coordinate information (i.e., Mombasa, Kenya, Baltimore, and
the California Santiago naval base). Then, we randomly select
233 VHR optical remote sensing harbor scene testing images
from Google Earth service, HRSC 2016 [31], and DOTA [32],
which include the 1021 inshore ships. Next, we train all the
comparison methods based on a built small sample set. Here,
the small sample set contains 350 identical orientation train-
ing samples of inshore ships, and the total number of rele-
vant false alarms are 2100. Then, we also employ indexes of
accuracy, precision, recall, and Overall Accuracy to evaluate
comparison methods’ performance. They can be expressed as
follows:

accuracy =
TP+ TN

P +N
(31)

precision =
TP

TP + FP
(32)

recall =
TP

TP + FN
(33)

overall accuracy =
PL

M
. (34)
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TABLE I
DIFFERENT SIZES OF STRUCTURED SR MODEL DISCRIMINATIVE DESCRIPTION

WITHOUT ERROR MATRIX PERFORMANCE

Here, TP is the true positive. FP is the false positive. FN is the
false negative. P is the total number of positive samples in the
testing dataset, and N is the total number of negative samples in
the testing dataset, PL is the number of correctly predicted, and
M is the total number of samples in testing dataset. In addition,
to evaluate refined inshore ship contour detection, if IoU [56] is
more than 0.7 comparing with ground truth, the actual detection
window should be considered. Otherwise, it should be the false
alarm. Finally, the SR-based methods were performed on Win-
dows 10 environment by using MATLAB 2016b. The computer
configuration is an Intel Corel i7-4500U CPU with 2.00 GHz
and 7.71 GB RAM. Then, deep learning based methods were
performed on an Ubuntu 16.04 operation system, which includes
Python 4.0, CUDA 8.0, cudnn 7, and Pytorch 1.0. Then, the
experiments were performed on an NVIDIA TITAN XP GPU
workstation.

B. Optimization Parameter Discussion

1) SSRM for Inshore Ship RP: In the proposed SSRM for
inshore ship RP, the error matrix is a very important part, which
can ensure intraclass completeness description and facilitate to
build lower dimensional structured SR dictionary. Thus, first, we
set different sizes of structured SR models without error matrix
part to discuss their dimension impact, as shown in Table I.
Here, when the structured SR dictionary sizes are 600 (e.g., 300
inshore ship atoms and 300 background atoms) and 960 (e.g.,
480 inshore ship atoms and 480 background atoms), they could
not provide better inshore ship RP performance because of their
insufficient dictionary dimensions. Then, when the dictionary
dimensions increase to 1320 (e.g., 660 inshore ship atoms and
660 background atoms) and 1680 (e.g., 840 inshore ship atoms
and 840 background atoms), we can see that they can obtain good
performances. Otherwise, in Table I, the results show that 1680
dimensions require the considerably more time and training

TABLE II
PERFORMANCE OF THE PROPOSED STRUCTURED SR MODEL

samples for its model convergence than 1320 dimensions’, and
performances of 1680 and 1320 also could not support practical
detection systems. To further improve the inshore ship RP per-
formance and achieve intraclass completeness description, error
matrix is embedded into 1320 and 1680 dimensional structured
SR models. Table II shows RP performances of structured SR
model with error matrix embedded or without error matrix
embedded.

Here, we employ selected 233 VHR harbor area images that
contain 1021 inshore ships to test these structured SR models
in Table II, and inshore ship RP confidence value S is set more
than 0.9. For inshore ship RP confidence value calculation, the
structured SR model without error matrix does not consider error
matrix sparse coding weights in formulas (17) and (18). Results
presented in Table II show that the error matrix embedded into
structured SR could improve the inshore ship RP performance,
because error matrix sparse code coefficients significantly reflect
inshore ship and background intraclass variance difference, and
they can also ensure the intraclass completeness description.
When some observation samples are not included in small
training sample set, the proposed SSRM can utilize the intra-
class variance difference to discriminate whether they belong
to inshore ships or backgrounds by formulas (17) and (18), as
shown in Fig. 7, because the inshore ship has a smaller intraclass
difference than background’s, which make inshore ship regions
more discriminable.

In Fig. 7, these 12 sparse coding distributions are from
576 × (1320 + 576) dimensional SSRM. For sparse coding,
blue color represents sparse coding coefficients that are located
in the inshore ship part. Red color represents sparse coding
coefficients that are located in the background part. Green color
represents sparse coding coefficients that are located in the error
matrix part. In Fig. 7, six inshore ship observation samples are
shown, and their sparse coding is shown in Fig. 7(a) and (b).
We can see that the most of large sparse coding coefficients are
located in inshore ship part, and a few of small coefficients are
located in background and error matrix parts. For six background
observation samples shown in Fig. 7(c) and (d), most of large
sparse coding coefficients are located in the background part,
and many coefficients appear in the error matrix part. Following
the phenomena mentioned before, it has been proved that the
priori information of presetting Q in (8) can certainly leverage
the interclass discriminative description of inshore ships and
background. These results also show that background usually
has a larger intraclass variance than inshore ships, and we
can utilize this character with a small sample set to build a
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Fig. 7. Proposed SSRM sparse coding coefficients character analysis. (a) and (b) Inshore ship sparse coding coefficients distribution. (c) and (d) Background
sparse coding coefficients distribution.
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TABLE III
COMMONLY SHARED ATOM MODEL PARAMETERS

Fig. 8. Inshore ship OP performances with different common sharing atoms
and impact factors setting.

powerful low-dimensional dictionary with completeness intr-
aclass description. Finally, the proposed SSRM can rapidly
extract inshore ship regions based on thresholding of confidence
score.

2) SSRM for Inshore Ship OP: After the inshore ship RP
stage, the SSRM for the inshore ship OP from each RP patch
should be discussed in detail. As introduced in Section III-B, the
impact factors of common sharing atoms and their low-rank con-
straint are mainly effects of OP performance according to (19).
First, these multiorientation inshore ships, which are generated
from small sample set, are used to test the proposed common
sharing atom structured model. For sample set partition, we set
40 atoms for each oriented inshore ship to create the common
sharing atom structured model and use 210 training samples
for training. Next, we use the rest of 140 testing samples of
each oriented inshore ship sample set to demonstrate the inshore
ship OP performance. Before testing common sharing atom
SSRM, some impact weights in (19) have to be set. Table III
shows the seven different parameter settings that are used to
demonstrate the effectiveness of each regulation term constraint
in (19). Related to parameter settings in Table III, when the total
number of atoms in common sharing subdictionary is changed,
their performances are shown in Fig. 8.

TABLE IV
CSV ANALYSIS OF THE PROPOSED INSHORE SHIP DETECTION FRAMEWORK

From Fig. 8, we can see that parameter 7 in Table III is
proved to be more accurate parameter setting of inshore ship
OP. Therefore, the three terms in (19) are important to affect the
OP accuracy. Then, from Fig. 8, when more common sharing
atoms are absorbed in the low-rank subdictionary, it can provide
better OP performance, which means they have to use more than
28 common sharing atoms combined with low-rank constraint
to make SSRM sufficiently learn the commonly shared part in
feature description space and figure out the different inshore ship
orientations.

3) CSV for Inshore Ship Contour Detection: Following
inshore ship RP and their oriented information guidance, the
effectiveness of the refined inshore ship detection CSV method
is discussed. Here, the CSV method can avoid the false alarms
and provide refined inshore ship detection results rapidly. In
Table IV, structures of hull parallel lines, internal line, and
corner distributions in the CSV method are tested on selected
233 harbor images. Here, from Table IV, first line shows that
hull parallel lines are effective structures for refined inshore
ship detection, because compared with the RP stage, the
precision rate is improved from 82.5% to 84.4%, and the recall
is kept as 91.3%. Then, second and third lines show the texture
distributions of interior lines and corners also having false-alarm
removing ability because of inshore ships having rich textural
and symmetrical structural features. Finally, in fourth line, the
proposed CSV method provides the precision and recall indexes
of 87.2% and 90.2%, respectively. Fig. 9 shows some inshore
ship detection examples by the proposed CSV method. In
Fig. 9(a), there are four 1024× 1024 harbor images with a 0.5-m
spatial resolution. In Fig. 9(b) shows manually labeled GTs of
Fig. 9(a). Fig. 9(c) and (d) shows inshore ship Gaussian voting
saliency maps and their corresponding binary masks generated
by the proposed CSV method. From Fig. 9(e), we can see that
the proposed CSV method can provide more refined inshore ship
detection results based on inshore ship RP and OP guidance.

C. Results and Comparison

After optimal parameter discussion, we select several state-
of-the-art methods to compare with our proposed inshore ship
detection method. First, these SR-based methods of SR-Hough
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Fig. 9. Results of the proposed structured SR refined inshore ship detection. (a) Original harbor images. (b) GTs of inshore ships. (c) Saliency maps generated
by the CSV method. (d) Region growing binary mask from saliency maps. (e) Refined inshore ship detection results of the proposed method.

[27], multilayer sparse coding (MLSC) [28], and SR-superpixels
[29] are considered as comparison methods, because they use
the SR principle to construct the structured SR dictionary and
achieve detection, and these comparisons can better demonstrate
the improvement and innovation of our work. Then, we also
choose the PST methods, including weight pose voting (WPV)
[17] and ship rotated bounding box space (SRBBS) [16], as
comparison methods to prove that the proposed method has
a better refined inshore ship locating ability. Finally, several
famous deep learning networks are also involved because they
perform well in object detection tasks. These methods are based
on single-shot multibox detector (SSD) [55], FCN [21], and
fast-RCNN [56].

Aiming at exploring the small sample set learning ability, we
gradually reduce the number of training samples to train and
test all of comparing methods. During the testing processing, all
methods are tested on selected 233 harbor images from Google
Earth service, HRSC 2016 [31], and DOTA [32]. Related to 1021
inshore ships of 233 harbor images, they can be roughly divided
into two categories, which are the docking and moving ships.
Performances of comparison methods are shown in Fig. 10. In

Fig. 10(a), when training samples are expanded by selected 350
identical oriented inshore ships, here, most of the comparing
methods have acceptable performances. However, related to
deep-learning-based methods, these samples are not enough to
train the robust CNN architectures. Therefore, deep-learning-
based methods produce many false alarms and have the lower
recall ratios, as shown in Table V. Next, following reducing
training samples shown in Fig. 10(b)–(d), all comparing methods
show severely decreasing precision and recall ratios. Only the
method proposed in this article produces 72.3% precision and
83.7% recall with 170 identical oriented inshore ship training
samples presented in Table V.

From Fig. 10 and Table V, the results demonstrated that the
small training sample set can severely affect the inshore ship
detection performance. First, related to SR-based comparison
methods, the sizes of the training sample set and SR dictionary
are important factors that affect detection performance. How-
ever, in our small sample set inshore ship detection experiments,
there are insufficient samples to train 3000-dimension inshore
ship subdictionary for setup SR-Hough [27]. In addition, its
100-dimension background subdictionary presented in [27] also
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Fig. 10. Performances of comparison methods with different sizes of small sample set. (a) Performances of 350 training samples. (b) Performances of 290 training
samples. (c) Performances of 230 training samples. (d) Performances of 170 training samples.

TABLE V
PERFORMANCE OF INSHORE SHIP DETECTION WITH COMPARISON METHODS
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Fig. 11. Proposed inshore ship detection framework results from large view scale optical remote sensing images.

cannot satisfy the intraclass completeness description of un-
certain interferences from variance harbor background. These
problems also exist in most SR-based object detection methods,
such as SR-superpixel [29] and MLSC [28], because it is also
difficult to train the background subdictionary with the infinity
dimensional to adapt uncertain interferences by using these
methods. Otherwise, in general SR-based detection methods,
the lower dimensional dictionary or a few training samples has
the certain limitation for inshore ship detection model training.
Therefore, these state-of-the-art SR-based methods could not
provide a good detection performance under small sample set.
Next, related to PST-based methods, WPV [17] and SRBBS [16]
have a certain ability for small sample set learning. However,
these methods are seriously affected by docking ships, because
the docking ships hardly achieve a completed contour edge
extraction for robust parameter space description. Finally, the
one-stage detector SSD [55] and two-stage Fast R-CNN [56]
methods heavily rely on large quantities of data annotations,

and therefore, they produce a poor detection performance by a
small sample set. Then, the FCN [21] method considers the task
partition of fore and aft distinguish parts to detect inshore ships,
but these characters would also lead the extra false alarms from
complex harbor background. By experimental analysis, these
selected state-of-the-art methods could not provide good detec-
tion performance under inshore ship sample access limitation
situation. Therefore, the proposed SSRM combined with the
CSV method not only can achieve the small sample set learning
for inshore ship detection, but also have better performance than
state-of-the-art methods. Fig. 11 shows several large view scale
inshore ship detection results that are produced by the proposed
structured SR method.

V. CONCLUSION

In this article, we presented a novel inshore ship detection
method for VHR optical remote sensing images by using the
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proposed SSRM combined with the CSV method. First, related
to small sample set, we constructed the SSRM with data argu-
ment. Here, SSRM contains three parts, which are target, back-
ground, and error matrix subdictionaries, and it can achieve rapid
and accurate inshore ship RP from complex harbor background.
Second, following built small sample set, the common sharing
atom SSRM was proposed to predict inshore ship orientation
based on RP results by low-rank constraint. Third, based on
inshore ship RP and OP guidance, the CSV method used parallel
lines, corner, and line distribution characteristics to highlight
inshore ship regions. Then, the winner-take-all strategy and
region growing algorithm were employed to generate refined
inshore ship contour detection results. Finally, the proposed
inshore ship detection framework was tested on selected datasets
of the Google Earth service, HRSC 2016 [31], and DOTA [32].
Then, comparison experiments demonstrated that the proposed
method can provide a better inshore ship detection performance
based on a small sample set. It can be applied to a practical de-
tection system, regardless of some inshore ship samples cannot
be obtained, and harbor background includes various unknown
interference situations.

The future work of this article will concentrate on the small
sample set semisupervised way for inshore ship detection. Then,
some problems, for example, the small inshore ship has unclear
visual features and uncertain direction information, which can
lead to small inshore ship miss detection, also need to be ad-
dressed in the future work. In addition, the inshore ship intensive
parking situation is a hard example to occur leakage detection.
Therefore, we will continue to address these problems in our
future work.
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