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A Cloud and Cloud Shadow Detection Method Based
on Fuzzy c-Means Algorithm

Ping Bo

Abstract—Cloud and cloud shadow detection is an important
preprocess before using satellite images for different applications. It
can be considered as a classification process, in which the objective
pixels are partitioned into cloud/cloud shadow or non-cloud/non-
cloud shadow classes. However, some cloud pixels, especially the
thin cloud pixels, can be considered as a mixture of reflectances
of clouds and land objects. In fuzzy clustering, the data points
can belong to two or more clusters; hence, fuzzy clustering may
better characterize the status of one given pixel belonging to clouds
or non-clouds. The fuzzy c-means method (FCM), one typical
fuzzy clustering method, was utilized in this study for cloud and
cloud shadow detection. In addition, the “flood-fill”” morphological
transformation may misclassify some clear-sky areas surrounded
by clouds as cloud shadows as a whole, so a modified cloud shadow
index calculation was proposed. Moreover, a cloud and cloud
shadow spatial matching strategy based on the projection direction
and spatial coexistence was used to exclude some pseudo cloud
shadows. Fewer predefined parameters and spectral bands are
needed is one characteristic of the proposed method. In this study,
41 scenes including 27 Landsat ETM+ images in eight latitude
zones and 14 Landsat OLI images comprising seven land cover
types, including barren, forest, grass, shrubland, urban, water,
and wetlands areas, with percentages of cloud cover from 4.99 %
to 97.63%, were utilized to confirm the validity of the FCM. The
detected results demonstrate that the thick and thin clouds along
with their associated cloud shadows can be precisely extracted by
using the FCM. Compared with the function of mask (Fmask)
method, the FCM has relatively lower producer agreement rates,
but it misclassifies as clouds fewer clear-sky pixels; compared with
the support vector machine (SVM) method, the FCM can achieve
better cloud detection accuracy. The results demonstrate that the
FCM can attain a better balance between cloud pixel detection and
non-cloud pixel exclusion.

Index Terms—Cloud and cloud shadow detection, fuzzy c-means
algorithm, multiple features, multispectral sensors.

I. INTRODUCTION

HE spectral bands of optical sensors are commonly influ-
I enced by clouds and cloud shadows [1]-[4]. In light of
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the International Satellite Cloud Climatology Project-Flux Data
(ISCCP-FD), the global annual average cloud cover is close to
66% [5]. The surface of the Earth, when covered by clouds and
cloud shadows, cannot be correctly presented in the satellite
images; this could, in turn, affect many types of studies, such as
those on atmospheric correction, land cover classification and
change detection, and feature extraction [2], [6]. Hence, cloud
and cloud shadow detection is an essential preprocess before
using satellite images for different applications.

During the last two decades, many automated methods for
screening clouds and cloud shadows have been developed and
widely applied to various satellite images. Generally, existing
methods for cloud and cloud shadow detection can be roughly
grouped into two main classes: multi-temporal methods and
single-image methods. Multi-temporal methods [7]-[13] mainly
use the temporal continuity in time series as a principal criterion
for enhancing the cloud detection accuracy. However, the tem-
poral discontinuity caused by the land cover change can affect
the effectiveness of the multi-temporal methods; meanwhile,
a cloud-free reference image may be not available directly or
be difficult to generate. Hence, single-image methods are more
popular, to some extent, because of the reduced requirement
for input data [6], [11], [14]-[15]. In this study, we focus on
single-image methods.

Spectral analysis methods have been widely used to sepa-
rate clouds from clear-sky pixels. The automatic cloud cover
assessment (ACCA) algorithm [1] has been utilized officially
for cloud cover assessment of Landsat-7 imagery and been
introduced in the Landsat-7 Science Data User’s Handbook
[16]. The ACCA algorithm has 2 individual tests and more
than 30 parameters to separate clouds and snow from clear
observations. The haze optimized transformation (HOT) method
[17] utilized the distances to the “clear-sky” line generated from
regression of DNs or reflectance values from clear-sky pixels
in the blue-red spectral space to separate clouds and non-clouds
pixels. However, it could not effectively eliminate the influences
from bright clear-sky ground objects, such as rocks and snow
[2]. Chen et al. [18] proposed an iterative HOT (IHOT) method
to improve haze detection under the help of a cloud-free image.
Later, Chen et al. [19] used the IHOT method and the cloud
removal of cloud trajectory (IHOT-Trajectory) to rectify cloud
contamination. Zhu and Woodcock [2] proposed the function
of mask (Fmask) method to detect clouds, snow, and cloud
shadows in Landsat images. There are more than 20 predefined
and adaptive thresholds in the Fmask method. After that, some
modified versions of Fmask method have been proposed to
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enhance the detection accuracy [20]-[22]. Li et al. [6] used a
multi-feature combined (MFC) method to mask the clouds and
cloud shadows of Gaofen-1 wide field of view (GF-1 WFV) im-
agery. After obtaining an initial cloud mask by employing three
spectral tests, the guided filter was used to detect the thin clouds
around the cloud edges; moreover, the geometric and texture
characteristics were then incorporated to lessen the commission
errors. An improved cloud and cloud shadow matching method
was also used in the MFC cloud shadow detection step. Sun et al.
[23] presented a cloud detection algorithm-generating (CDAG)
method for satellite images in the visible to short-wave infrared
(SWIR) bands. Zhai et al. [24] utilized the spectral indices
(CSD-SI) to detect the clouds and cloud shadows for diverse
multi/hyperspectral satellite images. Generally, the thresholds
are decisive parameters in spectral analysis methods; however,
setting these thresholds seems to be subjective and numerous
experiments are needed before the best thresholds are acquired.
In addition, some methods cannot be used directly for other
satellite images. For example, the Fmask method uses the visible
and infrared bands of Landsat images to mask clouds, but it will
fail to screen clouds for satellite images without thermal infrared
bands, such as the GF-1 WFV and HJ-1A/B CCD imagery
of China. Hence, to improve the applicability of the proposed
method, only visible and NIR bands were used in this study,
even though the involvement of more appropriate bands, such
as the thermal and cirrus bands of Landsat 8, can enhance the
accuracy of cloud detection.

Recently, machine learning methods, such as neural network-
based methods [25]-[26], Markov random field-based methods
[27], support vector machine (SVM) [28]-[32] or k-means [13]
classification methods have become more and more popular
in cloud detection. For most machine learning methods, an
appropriate training dataset which is, to some extent, subjective
and time-consuming to select is indispensable for constructing
the classifier. Moreover, some pixels, such as the thin clouds
surrounding thick opaque clouds, can be deemed as a mixture of
reflectances of clouds and land objects, so certain membership
grades that represent the degree to which they belong to cloud or
non-cloud clusters may better characterize the statuses of these
pixels. Therefore, we used a fuzzy c-mean clustering method
(FCM), one typical fuzzy clustering method, to identify the
clouds and cloud shadows in this study.

The FCM method was also used in cloud shadow detection.
Because cloud shadows cannot exist without clouds, a spatial
matching method is often applied to refine the initial cloud
shadow pixels. The matching methods can be roughly grouped
into two classes. The first class is based on the projection law
[2], [6]. By obtaining the solar and sensor azimuth and zenith
angles and the height of the cloud, the cloud shadow location
corresponding to one given cloud can be predicted based on a
geometric relationship. However, although the first four factors
can be acquired from the metadata files, the height of the cloud
is commonly unknown. Hence, in practice, the height of cloud is
usually set from 200 to 12000 m and the cloud shadow location
is calculated iteratively based on the predefined height until it
meets a shape similarity criterion. Actually, different clouds may
have different heights; thus, the iteration above should be applied
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TABLE I
CLOUD AND CLOUD SHADOW MASKING DATASETS AND THEIR
CHARACTERISTICS
Name  Scenes Spatial Sensor  Cloud Thin Cloud
resolution Cloud  shadow
L7 27 30m ETM+ Yes Yes Some
L8 14 30m OLI Yes Yes Some

for each cloud object. Therefore, the computational cost may
be fairly high. The second class considers that if some cloud
pixels can be found in the neighborhood of cloud shadows,
the cloud shadows can be regarded as real; otherwise, they are
not and can be removed. Methods in this category can acquire
cloud shadow masks in a short time, but their accuracy may
be affected by factors including local window size setting, and
searching direction. In this study, we combined these two types
of matching schemes, i.e., the former was used to determine
the searching direction and the latter was used to find the cloud
shadow pixels. In addition, we also proposed a new cloud shadow
detection strategy to enhance the detection accuracy of the
regions surrounded by clouds.

II. EXPERIMENTAL DATA

Two existing cloud and cloud shadow masking datasets called
“L7 Irish” and “L8 Biome” were used in this study to validate
the effectiveness of the FCM (Table I). The “L7 Irish” images,
which were chosen by Irishetal. [ 1] and digitized by Scaramuzza
et al. [34], were divided into nine subsets according to their
different spatial locations; the “L.8 Biome” images, which were
digitized by Foga et al. [35], were divided equally into eight
groups according to different land cover types. These masks all
contain cloud and thin cloud classes, and some of them contain
a cloud shadow class. All the “L7 Irish” and “L8 Biome” masks
can be freely downloaded online [36]-[37].

In this study, we selected 27 “L7 Irish” masks and 14 “L8
Biome” masks from all the subsets of the two validation datasets.
The percentages of cloud cover range from 4.99% to 97.63%
in this study. The L7 Irish scenes were acquired from January
to December 2001 in eight latitude zones, and the L8 Biome
scenes were obtained from June 2013 to August 2014 and
covered seven land cover types, including barren, forest, grass,
shrubland, urban, water, and wetlands areas. The digital number
(DN) values of all input data were first converted to top of
atmosphere (TOA) reflectance for all experimental bands, i.e.,
blue, green, red, and NIR. Converting the DN values into the
TOA reflectance can reduce the between-scene variability [6]. To
improve the applicability of the proposed method, only visible
and NIR bands were involved in this study (explained in the
Introduction part). We acknowledge that only these bands cannot
perfectly detect all clouds, especially for surfaces covered by
snow or bright buildings. Hence, some images with obvious
snow or bright buildings were excluded. It seems to be unfair
to compare the proposed method to Fmask (used as a reference
method) based on these images, because Fmask was fulfilled
in the ENVI software and operated by using all Landsat bands.
Also, the proposed method can be deemed as a classification
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Fig. 1. Flowchart of the fuzzy c-means cloud and cloud shadow detection.

issue, so it may be not suitable for some images with extreme
high (such as 98%) or low (0% or 1%) percentages of clouds,
and these masks were excluded.

III. METHODOLOGY

There are four main steps in FCM cloud detection and three
main steps in cloud shadow detection. The four main steps of
cloud detection are as follows: (1) three cloud features including
spectral, statistical and texture features are first computed by
using the blue, green, red and NIR bands to highlight cloud
pixels; (2) the spectral and statistical features are used for the
initial cloud detection by using the FCM; (3) all cloud features
of the pixels belonging to the non-cloud class after the first
FCM classification are then employed for the secondary cloud
detection by operating the FCM again; (4) the cloud pixels
obtained from the secondary cloud detection are verified to
determine whether the secondary cloud detection is necessary.
If the secondary cloud detection is valid, then the cloud pixels
from the initial and secondary cloud detection can generate the
final cloud mask; otherwise, only the cloud pixels from the initial
cloud detection are deemed as clouds.

The three main steps of cloud shadow detection are as follows:
(1) the water pixels are separated by using the water test and
the NIR band is used for calculating the cloud shadow index
for non-water pixels; (2) the initial cloud shadow pixels can be
acquired by applying the FCM to the cloud shadow index; (3)
a rapid cloud and cloud shadow matching method is applied to
acquire the final cloud shadow pixels. The flowchart of the FCM
is shown in Fig. 1.

A. Fuzzy c-Means Method (FCM)

The FCM developed by Dunn [38] is a typical fuzzy clustering
method that allows data points to belong to more than one
cluster. Its aim is to minimize the objective function which can
be calculated using Eq. 1 by optimizing iteratively membership
ft4; and cluster centers c¢; obtained by (2):

Im = Zzugbdib ()

a=1b=1
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where p controls the amount of fuzzy overlap between clusters,
with smaller values suggesting a less degree of overlap and it is
usually greater than 1. In this study, p equals 2. ji,y is the degree
of membership of the multi-dimension measured data of the ath
pixel in the bth cluster; n and ¢ are the number of pixels and
the number of classes in a given image, respectively; and d is
the distance between the ath measured data and the bth cluster
center ¢j.

1
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where x, is the ath measured data. When the improvement ¢
in the objective function between two consecutive iterations is
not significant, the iteration will stop. In this study, this value
was set to le-5. To avoid the iterative death loop and to save
computational time, the greatest iteration time was predefined
as 100.

B. FCM Cloud Detection

There are three types of cloud features used in this study:
spectral, statistical, and texture. Owing to the wide ranges of
reflectance values shown by the various clouds and land cover
objects, the clouds and cloud shadows may be not accurately
identified from cloud-free observations using only one given
spectral band [13]. Hence, by combining two or more individual
bands, some appropriate cloud and cloud shadow features based
on spectral information can be acquired to highlight the clouds
and cloud shadows while reducing the effects of non-cloud and
non-cloud shadow pixels. Additionally, compared with non-
cloud regions, cloud regions often have higher intensities and
fewer details [32]. Therefore, except when taking the spectral
characteristics of clouds into account, statistical features were
used in this study. Finally, texture features can reflect the spatial
arrangement of spectral information and have been successfully
employed for cloud classification and detection [39]-[41]. The
opaque clouds are obvious in the images and are easily detected;
hence, only spectral and statistical features were used in the
initial FCM cloud detection. The most obvious clouds can be
extracted through the initial FCM cloud detection, but some thin
clouds may be missed because they are not as remarkable as the
opaque clouds in the images. Thus, secondary cloud detection
may be necessary and more cloud features (the texture features in
this study) should be included in the secondary cloud detection
process to better extract the missed clouds.

C. Spectral Cloud Features

In general, clouds usually have higher reflectance than the
land surface; and thus, in the RGB space, clouds appear white
and bright. The HOT index [17] was chosen as the first spectral
cloud feature. The HOT index can be calculated as follows:

HOT = Bblue — 0.5 x Bred (3)
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where HOT represents the HOT values, and By, and Beq
indicate the reflectance values of blue and red bands.

Because the clouds are often white and bright in the RGB
space, the bright values of pixels were selected as the second
spectral cloud feature and they can be calculated as follows:

Brzght - (Bblue + Bgreen + BTEd)/3 (4)

where Bright is the bright values and B ., denotes the re-
flectance values of the green band.

Additionally, a dark channel was selected as the third spectral
cloud feature. The dark channel was originally proposed for
haze removal [42] and has been proven to be effective for cloud
detection [32]. The dark channel can be acquired as follows:

Dark = min{Bbluea Bgreenv Bred} (5)

where Dark represents the Dark values. Hence, the spectral cloud
features can be regarded as {HOT, Bright, and Dark}.

1) Statistical Cloud Features: Local means and variances
were utilized to depict the intensity and details of the original
image. For a given band, the local mean and variance can be
calculated as follows:

1 N
Ma:NZBT

reQq

]. N 2
Va= \/ ¥ Do, (Br— M) (©6)

where M, and V, refer to the mean and variance values of the
ath pixel; B, is the rth pixel of a given band in a local window
Q, surrounding the ath pixel; and N is the number of pixels in
the local window. The size of the local window was set to 3 and
5 and all the visible bands were considered in this study; thus,
12 statistical features can be acquired in total.

2) Texture Cloud Features: Instead of using the experimental
bands directly, we selected the first and second principal com-
ponents (PC), which account for more than 98% of the original
image information in the results of principal component analysis
(PCA), to calculate the texture cloud features. The Gabor filter,
defined as follows, is thought to be an effective model to identify
texture:

2 2,12 /
g(xay7)"7¢70'77) = exXp _w exp 7 27T£
202 A

2’ = xcos + ysiny

Yy = —xsinty + ycos (7)

where X is the wavelength of the sinusoidal function and, in
this study, the wavelength was set to 3 and 4; v represents the
orientation, and it was set to 0, 45°, 90°, and 135°, respectively;
o is the standard deviation of the Gaussian envelope, which is
related to the bandwidth and wavelength; v is the aspect ratio,
which controls the ellipticity of the Gaussian envelope, and it
was set to 0.5 in this study. There are 8 texture features generated
after the texture features calculation for each PC. Accordingly,
16 texture cloud features can be used further.

4) Feature fusion: After calculating the features, we needed
to combine these features into some fundamental feature sets
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as inputs for the FCM classification. The feature fusion process
involves two steps: (1) normalize a variety of features obtained
in sections 3.2.1-3.2.3; and (2) select appropriate features and
merge these normalized features into the best feature subset. The
multi-type features were normalized to [0,1] as follows:

f B fmin
fmax - fmin

where f,,,, denotes normalized feature data; fis raw feature data;
and fiax and fiyin are the maximum and minimum values of the
raw feature data.

In this study, using the multi-type fusion method [43]; we
combined the objective features from head to tail. The opaque
clouds are obvious in the optical images because of their
high reflectance in the visible bands and are relatively easy
to identify; therefore, we only used the spectral and statistical
cloud features for opaque cloud detection. Meanwhile, some
thin clouds may contain various spectral signatures from both
clouds and the surface underneath because of their translucency
[44]-[46]; thus, it may be difficult to screen them out. Therefore,
we added the texture cloud features into the secondary cloud
detection. Here, A = {al,a2,a3} are normalized spectral fea-
tures; B = {b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12} are nor-
malized statistical features; and C = {c/,c2,c3,c4,c5,c6,c7,cS,
c9,c10,cll,cl2,cl3,cl4,cl15,c16} are normalized texture fea-
tures. The combined set of A and B was used for the initial
cloud detection and the combined set of A, B, and C was used
for the secondary cloud detection.

5) Cloud Detection: After acquiring the combined subsets,
we can use the FCM to identify the clouds. As mentioned above,
the FCM was used twice in the cloud detection procedure. At
each time, the objective pixels were classified into two classes:
clouds and non-cloud pixels. The sum of the degrees of mem-
berships of a given pixel in the two clusters was equal to 1.
The degree of membership of a given pixel in each cluster was
employed as a decision factor to determine which cluster a pixel
belonged to. In the initial cloud detection, pixels with larger
degrees of memberships in the cloud cluster were deemed as
cloud pixels, i.e., the classification threshold was set to 0.5 in
the initial detection because of the obvious difference between
the cloud and non-cloud pixels. In the secondary cloud detection,
the clouds were probably not as easily detected as in the initial
detection, so we used (9) to calculate an adaptive threshold in
the secondary cloud detection.

Thres = mean{U} + sd{U} )

fno’r = (8)

where Thres is the threshold value, U is the set of degrees
of membership of the non-cloud pixels after the initial cloud
detection in the cloud cluster, and mean{.} and sd{.} are the mean
and standard deviation values. If the degrees of membership of
non-cloud pixels after the initial cloud detection in the cloud
cluster were greater than the threshold value, they were deemed
potential cloud pixels.

A cloud verification step based on the cluster centers was
operated to determine whether the potential cloud pixels were
real ones. If the dissimilarity between the cloud cluster and the
non-cloud cluster is relatively large, we can deduce that the
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Fig. 2. Locations of four cluster centers on the axis of multi-dimension
features.

cloud and non-cloud pixels are reasonably separated; otherwise
the cloud and non-cloud pixels may be mistakenly classified.
In this study, the cloud and non-cloud cluster centers in the
initial cloud detection were denoted Cenl-H and Cenl-L, and
the cloud and non-cloud cluster centers in the secondary cloud
detection were denoted Cen2-H and Cen2-L. The lengths of the
cluster centers are equal to the number of features used in each
FCM classification. Because the cloud feature subsets used in the
initial and secondary cloud detection were different, the cluster
centers with the overlapped features were used for distance
calculation. The locations of these four centers on the axis of
multi-dimension features are shown roughly in Fig. 2. If the
distance between Cen2-H and Cen2-L is large enough, then we
can deduce that the secondary cloud detection is necessary and
the cloud pixels obtained from the initial and secondary cloud
detection are both deemed as clouds; otherwise, we can deduce
that the cloud and non-cloud pixels from the secondary cloud
detection cannot be effectively classified and only the cloud
pixels obtained from the initial cloud detection are deemed as
clouds. We used the normalized distance to indicate the distance
between Cen2-H and Cen2-L as follows:

Cen2—H — Cen2—L
Cenl—H — Cen2—L

where Dis is the normalized distance between the cloud and
non-cloud cluster centers in the secondary cloud detection. If
the normalized distance is larger than a threshold, the secondary
cloud detection can be considered to be necessary. In this study,
the threshold was set to 0.25.

Dis = (10)

C. FCM CCloud Shadow Detection

1) Spectral Cloud Shadow Feature: In cloud shadow detec-
tion, given that the solar radiation is blocked by clouds, the cloud
shadows are mainly illuminated by scattered light. Hence, the
shadowed pixels of the NIR band are much darker than their
surroundings because of the weaker atmospheric scattering at
longer wavelengths [2]. However, water bodies are also easily
considered as cloud shadows in NIR band because they can
absorb more radiation at longer wavelengths [6]. Hence, the
water pixels were excluded from the cloud shadow detection in
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this study. As water is generally dark whereas land is relatively
bright in the NIR band, the NIR band reflectance is suitable for
identifying water. Moreover, the normalized difference vegeta-
tion index (NDVI) and the normalized difference water index
(NDWTI) are also good indices for differentiating water pixels
from land pixels [33], [47]. In general, the NDVI values of water
pixels are less than 0.1 and the reflectance of the NIR band of
water pixels is usually less than 0.05. However, the influence of
thin clouds and turbid conditions may cause the water pixels to
have large reflectance values [2]; therefore, another water test
based on NDVI values and the reflectance of the NIR band is
also used. Additionally, due to the influence of the reflectance
of thick cloud shadow in the NIR band [33], the threshold for
NDWI was set to 0.1.

water_pixels = NDWI > 0.1
((NDVI < 0.01 Byrr < 0.11)|[(NDVI

< 0.1 Byir < 0.05)) (11)

where water_pixels refers to the pixels indicating water and
B g is the reflectance values of the NIR band. NDVI and NDWI
are calculated as follows:

Bynir — Brea
BNnig + Bred

Bgreen - BNIR
Bgreen + BNIR

As cloud shadows are usually darker than their surroundings,
they are mostly located at places with regional minima. Hence, a
“flood-fill” morphological transformation [48] was employed to
extract potential local cloud shadow areas. For grayscale images,
this transformation can increase the intensity values of dark areas
surrounded by lighter areas to the same intensity level as the
surrounding pixels. Then the dissimilarity between the original
image and the filled image after the transformation can be used
to determine the potential cloud shadows. The cloud shadow
index for non-water pixels can be acquired using the following
calculation:

NDVI =

NDWI = (12)

SI:FZOOd—f’ill(BN[R>—BN]R (13)

where SI represents the cloud shadow index and Flood-fill
indicates the “flood-fill” morphological transformation. Even
though the “flood-fill” morphological transformation has been
used in cloud shadow detection [2], [6], there is still a limita-
tion when using this transformation to detect cloud shadows.
An example of cloud shadow detection is shown in Fig. 3.
The area marked by the yellow square is a small clear-sky
region surrounded by clouds, which is treated as a “hole” in
the morphological transformation; thus, this whole clear-sky
region will be labeled as either cloud shadow or non-cloud
shadow. However, only some parts of this region are virtually
cloud shadows. Hence, using the “flood-fill” morphological
transformation directly may mislabel the clear-sky pixels. Here,
we modified the cloud shadow index calculation. First, we used
the “flood-fill” morphological transformation to fill the “holes”
in the image; and then we extracted the filled and non-filled
areas; next, the cloud shadow index was individually calculated
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Fig. 3.  Example of initial cloud shadow detection. (a) Original Landsat OLI
scene (p102_r80 and 20140410). (b)-(c) Normalized cloud shadow indices
by using the modified scheme (MS) and using the “flood-fill” transformation
directly (OS). (d) Reference image of the cloud shadows. (e)-(f) Initial cloud
shadow pixels acquired by applying the FCM to the normalized cloud shadow
indices obtained from MS and OS. (g) Initial cloud shadow pixels by using
Fmask method.

d

for the filled areas and non-filled areas; then, the cloud shadow
index was normalized by using (8); finally, the FCM was ap-
plied to the cloud shadow index to acquire the initial cloud
shadow pixels. We set a higher priority for cloud in this study.
Fig. 3(b) and 3(c) show the normalized cloud shadow index using
the modified scheme (MS) and the “flood-fill” transformation
directly (original scheme (OS)). For the areas surrounded by
clouds, such as the marked area, the cloud shadow index values
obtained from OS are relatively larger than those obtained from
MS, so these areas are more likely to be classified as cloud
shadows as a whole. Fig. 3(d) depicts the reference image of
cloud shadows; Fig. 3(e) and 3(f) present the initial cloud shadow
pixels acquired by applying the FCM to the normalized cloud
shadow indices obtained from MS and OS; Fig. 3(g) shows
the initial cloud shadow pixels by using the Fmask method.
As shown in Fig. 3(f), the relatively large cloud shadow index
values at the “hole” regions means that these are mislabeled as
cloud shadows while the real cloud shadow pixels in the upper
part of the image are missing. The initial cloud shadow pixels
obtained from the Fmask method can detect the cloud shadow
pixels in the upper part of image, but the “hole” regions are also
classified as cloud shadows. Even though some clear-sky pixels
atthe “hole” regions are mislabeled as cloud shadows, compared
to the other two results, the initial cloud shadow pixels obtained
from MS are closer to the reference image of cloud shadows. In
the FCM cloud shadow detection, the pixels with larger degrees
of memberships in the cloud shadow cluster were deemed as
cloud shadow pixels.

2) Cloud and Cloud Shadow Matching: The initial cloud
shadow pixels may contain some mislabeled pixels, such as
dark objects and topographic cloud shadows. The cloud shadows
cannot exist without clouds [2]-[3]; thus, the spatial geometric
relationship between the clouds and cloud shadows can reduce
commission errors of cloud shadow detection. For most whisk-
broom sensors, the projection of cloud shadows on the surface
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can be acquired as follows [49]:
Ts_img = Lc_img + hc(tan eviewing sin ¢'uiewing
— tan Osp14, sin (bsola'r')
Ys_img = Yc_img + hc(tan eviewing Cos ¢viewing

— tan esolar COs ¢solar) (14)

where X¢ img andy, ;.. indicate the coordinates of a given
cloud pixel; xs img and y, ;. represent the coordinates of its
corresponding cloud shadow pixel; /. is height of the cloud
above the surface; 0yicwing and 0,054, are the viewing and
solar zenith angles, respectively; and ®;cping and D q1q, are
the viewing and solar azimuth angles (clockwise from the true
North), respectively. The values of 0yicwing, Osotars Puiewing
and @, can be found in the metadata files, although 4. is an
unknown parameter usually set with the help of the thermal band
[2]. Even though the heights of clouds are difficult to estimate,
the directions of the cloud shadows can be obtained accurately
as follows:

Tair = tan em'ewing sin ¢'uiewing — tan esalar sin ¢sola7‘
Ydir = tan em'ewing COos ¢viewing — tan esolar Cos ¢solar
(15)
where x 4;,- and y 4;,- are the projection direction of cloud shadows
that do not change at different places in one image. As shown
in Fig. 4, in this study, we defined four reprojection directions
including 45°, 135°, 225°, and 315° based on the values of x4,
vair- For the cloud shadow pixels, a searching window along
the searching direction, which is opposite to the corresponding
reprojection direction, was constructed. If cloud pixels exist in
the searching window, then the cloud shadows can be deemed
as real ones; otherwise, they are considered as pseudo cloud
shadows and removed. The window size can be determined
visually, and we will discuss the influence of the searching
window size on the cloud shadow detection in Section 5.3. After
cloud and cloud shadow matching, the holes in the cloud shadow
mask were filled to obtain the final cloud shadow mask.

D. Accuracy Assessment

Four metrics including producer agreement rate (PAR), user
agreement rate (UAR), non-agreement rate (NVAR), and the ratio
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of PAR to NAR (RER) were used to quantitatively assess the
effectiveness of the FCM. They are defined as:

NCS

Pro—Agreement = NCST (16)
NCS

—A = 1
User—Agreement NCSR (17)
CSN + NCS
Non—Agreement = — N7 (18)
Pro—A
RER — ro—Agreement (19)

Non—Agreement

where NCS is the number of correct cloud (cloud shadow) pixels,
NCST is the number of cloud (cloud shadow) pixels in ground
truth, NCSR is the number of cloud (cloud shadow) pixels in
the detected results, CSN indicates the number of clouds (cloud
shadow) pixels classified as non-cloud (non-cloud shadow) pix-
els, NCS indicates the number of non-clouds (non-cloud shadow)
pixels classified as cloud (cloud shadow) pixels, and NT is the
number of pixels of the original image.

Because some methods may obtain a high PAR but also bring
many errors, while some methods can have low NAR but also
low PAR, one combined metric (RER) based on PAR and NAR
is used to measure the performance [30]. The higher it is, the
better.

IV. RESULTS
A. FCM Results

As shown in Fig. 5(a), the estimates of percent cloud cover
obtained from the FCM and manual interpretation are similar,
with a correlation coefficient of more than 0.97. The slope of
the regression line is 0.9339, with an interception of 4.06% and
a relatively small root mean square error (RMSE) of 4.8193.
Meanwhile, the difference of the estimates of percent cloud
shadow cover between the FCM and manual interpretation is
not obvious (Fig. 5b), with a correlation coefficient of 0.8955.
The slope of the regression line is 1.0011, with an interception of
3.4638% and a small RMSE of 4.0481. Hence, the percentages
of cloud and cloud shadow cover can reflect that the FCM is
effective on cloud and cloud shadow detection.

Except for the statistical analysis, we also took two Landsat
7 ETM+ and one Landsat 8 OLI images as examples to show
the performance of the FCM.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Objecti
E

] @
hencias

) ® 0

Fig. 6. Landsat image scene and cloud and cloud shadow detection results
of applying the fuzzy c-means (FCM) algorithm. (a) NIR-red-green composite
image of Landsat 7 (Scene ID: p138r16_20010613). (b) Reference map. (c)
Cloud and cloud shadow detection results obtained using the FCM algorithm.
(d)—(f) Corresponding local zoomed maps labeled using the yellow square in
(a). (g)-(h) Clouds after the initial and secondary detections. (i) Cloud shadow
mask. (j)-(1) Objective function values of the initial and secondary cloud and
cloud shadow detections.

The NIR-red-green composite image of the Landsat 7 ETM+
image (Scene ID: p138r16) on June 13, 2001, the reference
map, and the result obtained by using the FCM are given in
Fig. 6(a)-(c) and the local zoomed area marked by a yellow
square in Fig. 6(a) is also used to highlight the performance
of the FCM [Fig. 6(d)-(f)]. Both thick and thin clouds can
be found in the image and the small patches of clouds are
evenly distributed. The cloud masks obtained from the initial
and secondary cloud detection are shown in Fig. 6(g)-(h) and
the cloud shadow mask is shown in Fig. 6(i). The searching
window size for cloud shadow detection was set to 70 pixels
through visual determination. As shown in Fig. 6, from the
whole scene maps, the clouds and cloud shadows are precisely
identified, and the detected output is similar to the reference map.
Especially, the thin clouds around the opaque clouds, which
are difficult to detect, are also well extracted. From the local
zoomed maps, it can be observed that the identified clouds and
their accompanying cloud shadows are both consistent with the
reference image. The shapes and spatial locations of thick and
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Fig. 7. Landsat image scene and cloud and cloud shadow detection results
of the FCM. (a) NIR-red-green composite image of Landsat 7 (Scene ID:
p31r43_20010615). (b) Reference map. (c) Cloud and cloud shadow detection
results by using the FCM. (d)-(f) Corresponding local zoomed maps labeled
using the yellow square in (a). (g) Cloud mask. (h) Cloud shadow mask. (i)-(j)
Objective function values of the cloud and cloud shadow detections.

thin clouds are well described, which suggests the effectiveness
of the FCM. Additionally, it can be noted that the obvious and
thick clouds can be accurately detected by using the initial cloud
detection, whereas the thin clouds around the thick clouds can
be further detected in the secondary cloud detection. Finally,
as shown in Fig. 6(j)-(1), the objective function values in cloud
and cloud shadow detection using the FCM converge quickly,
and thus, the proposed method can be used for large-scale
images.

Another Landsat 7 ETM+ image (p31r43) on June 15, 2001
was also used to evaluate the performance of the FCM. The
clouds are distributed along the northwest-southeast direction
and the patches of clouds are relatively small. In this exper-
iment, the secondary cloud detection was excluded because
the distance between the cluster centers obtained in the sec-
ondary cloud detection was not greater than the predefined
threshold. Therefore, only the cloud pixels from the initial
cloud detection were deemed as clouds. The NIR-red-green
composite ETM+ image, the reference map, and the output
of the FCM are shown in Fig. 7(a)-(c). A local zoomed area
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marked by the yellow square in Fig. 7(a) was used to demon-
strate the detection performance (Fig. 7(d)-(f)). The cloud and
cloud shadow pixels are individually shown in Fig. 7(g)-(h). In
this experiment, the searching window size for cloud shadow
detection was set to 50 pixels. The FCM performs well by
precisely identifying the clouds and cloud shadows and reducing
the confusions caused by bright surface objects, even though
some land pixels in the right-upper image are mislabeled as
clouds. Moreover, we can see that although only the cloud pixels
from the initial cloud detection were deemed as clouds, the
output of the FCM can still capture the main clouds. The local
zoomed maps show that the shapes and locations of clouds and
cloud shadows are well preserved and the bright background
in the middle of the zoomed image does not affect the perfor-
mance of the FCM. Similarly, the objective function values in
cloud and cloud shadow detection converge rapidly after several
iterations.

A Landsat 8 OLI image (p16r50) from February 10, 2014
was used to assess the performance of the FCM. The clouds are
evenly distributed and in relatively small patches in the image.
The NIR-red-green composite OLI image, the reference map,
and the output of the FCM are shown in Fig. 8(a)-(c). A local
zoomed area marked by the yellow square in Fig. 8(a) was used to
demonstrate the detection performance (Fig. 8(d)-(f)). The cloud
and cloud shadow pixels are shown individually in Fig. 8(g)-(i).
In this experiment, the size of the searching window for cloud
shadow detection was set to 55 pixels. As shown in Fig. 8, most
clouds and their accompanying cloud shadows were precisely
detected, with edges and details of both pretty preserved. As in
the first experiment, the initial cloud detection can capture the
main obvious clouds, and the thin clouds around the thick clouds
can be identified in the secondary cloud detection. Additionally,
with the help of the modified cloud shadow index calculation,
“hole” areas—such as the area marked by the dark blue circle
in Fig. 8(b)—were not deemed as cloud shadows as a whole.
However, many pseudo cloud shadows were not removed be-
cause of the influence of dark land objects and the existence of
clouds in neighboring areas, which may decrease the accuracy
of cloud shadow detection. Additionally, the objective function
values [Fig. 8(j)-(1)] in cloud and cloud shadow detection also
converge rapidly after several iterations.

B. Comparisons With Other Methods

In this section, the FCM results are compared with the results
obtained from two state-of-the-art methods: Fmask and SVM.
The Fmask method [2] has been used by the USGS to generate
the standard cloud mask for Landsat images, and the SVM
method can be regarded as a hard clustering technique and
has been widely used. The Fmaks method was implemented
using the Calculate Cloud Mask Using Fmask Algorithm module
in ENVI 5.3 and all spectral, statistical and texture features
were used in SVM method for training. Similar with [32], Ostu
method was first used to determine the cloud/non-cloud pixels,
and then 5000 cloud pixels and 5000 non-cloud pixels were
selected for model tuning. The results of these two methods are
typical and representative. Fig. 9 shows the reference maps used
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Fig. 8. Landsat image scene and cloud and cloud shadow detection results
of the FCM. (a) NIR-red-green composite image of Landsat 8 (Scene ID:
p16r50_20140210). (b) Reference map. (c) Cloud and cloud shadow detection
results by using the FCM. (d)-(f) Corresponding local zoomed maps labeled
using the yellow square in (a). (g)-(h) Cloud masks after the initial and secondary
cloud detections. (i) Cloud shadow mask. (j)-(I) Objective function values of the
initial and secondary cloud and cloud shadow detections.

in Section 4.1 and the results obtained from the FCM, Fmask, and
SVM methods. The local zoomed images marked in Fig. 6(a),
7(a), and 8(a) are also used to show the differences among these
three results. In general, the results obtained from the FCM
are closer to the reference maps for these three images with
regard to spatial details, suggesting that the proposed method
has stronger stability and better performance than the other two
methods. Obviously, the results of the Fmask method seem to be
overestimated: although the main clouds can be captured, many
clear-sky pixels are mislabeled as clouds pixels, and thus, the
PARs and NARs are both relatively high. The results obtained
from the SVM method are similar to those from the FCM.
However, as the classification process is operated only once,
some thin clouds and details are missed.

As shown in Table II, for all Landsat 7 ETM-+ and Landsat 8
OLI scenes, although the average PAR obtained from the FCM
is a little lower than that from the Fmask method, but the average
NAR of the Fmask method is relatively higher; in addition, the
average PAR and NAR of the FCM are both superior to the SVM
method. Hence, the FCM has the highest average RER among
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Fig. 9. Results of three Landsat scenes (p138r16, p31r43, p16r50). (a), (e),
(i) Reference maps. (b)-(d), (f)-(h), (j)-(1) Results of cloud detection by using
the FCM, Fmask, and SVM methods. The lower images in each row are the
corresponding local zoomed maps marked in Fig. 6(a), 7(a), and 8(a).

TABLE II
STATISTICAL COMPARISONS OF THESE THREE METHODS

Sensor Average Average Average Average
PAR NAR UAR RER

Landsat 7 FCM 0.9367 0.0611 0.8745 24.0387
Fmask 0.9819 0.1108 0.6490 13.6749

SVM 0.8794 0.0842 0.8915 22.2956

Landsat 8 FCM 0.9363 0.0517 0.9616 21.3313
Fmask 0.9762 0.1481 0.7104 7.1552

SVM 0.7902 0.1064 0.9960 8.6884

these three methods, followed by SVM method. The Fmask
method has the highest average PAR and NAR, suggesting that
Fmask can capture most of the clouds but also misclassify many
clear-sky pixels as clouds. Compared to the FCM method, the
SVM method has lower average PAR but higher average UAR,
which means some real cloud pixels may be undetected by the
SVM method. Similarly, the lowest average UAR obtained from
the Fmask method indicates the results may contain some pseudo
cloud pixels.

The PAR and NAR of each scene are similar [Fig. 10(a) and
(c)]. The PARs of the FCM are slightly lower than those of Fmask
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Fig. 10. (a), (c) PARs and NARs obtained from the three methods for Landsat
ETM-+ scenes and OLI scenes. (b), (d) RERs obtained from the three methods
for Landsat ETM++ scenes and OLI scenes.

method, but they are higher than those of the SVM method.
Moreover, the NARs of the FCM are relatively lower than those of
the other two methods. In addition, the RERs of the FCM are the
highest among these three methods for most scenes, especially
for Landsat 8 OLI scenes. All the statistical results show that
the FCM can acquire a better balance between the cloud pixel
detection and non-cloud pixel exclusion.
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Fig. 11. (a-b) PARs and NARs of initial and secondary cloud detections.
(c) RERs of initial and secondary cloud detections. *indicates Landsat 8 OLI
scences.

V. DISCUSSION

A. Contributions of the Initial and Secondary Cloud
Detections

Because there are two cloud detection processes in the FCM,
the contributions to cloud detection of these two processes
are discussed. The secondary cloud detection was not applied
to eight Landsat 7 ETM+ scenes, so these images were not
discussed in this section. As shown in Fig. 11, for most scenes,
the initial cloud detection can obtain relatively higher PARS
and RERs and lower NARs than the secondary cloud detection,
suggesting that the initial cloud detection has better detection
accuracy. This is because the obvious clouds are mostly de-
tected in the initial cloud detection, whereas the secondary
cloud detection aims at screening the thin clouds around the
thick clouds which are more difficult to detect. Additionally, the
secondary cloud detection seems to be more significant for the
scenes with massive thin clouds, such as the Landsat 7 ETM+
scene (p170r77). Meanwhile, even though the secondary cloud
detection can mislabel some clear-sky pixels as clouds, it can
also enhance the PARs. When the secondary cloud detection is
considered, the average PAR increases from 0.7190 to 0.9506,
and the average RER increases from 7.6931 to 18.2154. Hence,
the secondary cloud detection seems to be necessary if the
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distance between the cluster centers in the secondary cloud
detection is greater than the predefined threshold.

B. Necessity of the Secondary Cloud Detection

The secondary cloud detection was not applied to eight Land-
sat 7 ETM+ images because of the relatively small distance
between the cluster centers obtained in the secondary cloud
detection. In this section, the secondary cloud detection was also
applied to these eight images to analyze whether the exclusion
of the secondary cloud detection is correct. The PARs and NARs
with and without the secondary cloud detection are presented in
Fig. 12a and their corresponding RERs are depicted in Fig. 12b.
It can be easily observed that the secondary cloud detection can
enhance PARs and NARs, simultaneously. When considering
the secondary cloud detection, the average PAR can increase
from 0.8788 to 0.9811, and meanwhile, the average NAR also
increases from 0.0254 to 0.1731. Additionally, the RERs without
the secondary cloud detection are much higher than those with
the secondary cloud detection, and the average RER decreases
from 43.3221 to 7.3263 when the secondary cloud detection was
operated. Hence, it is reasonable that the secondary cloud detec-
tion was not applied to these scenes. Besides, it can be noted that,
except for these eight images, the secondary cloud detection can
enhance the average RER from 7.6931 to 18.2154, suggesting
that the exclusion of the secondary cloud detection for these
eight images is necessary and the threshold for determining the
necessity of the secondary cloud detection is reasonably set.

A Landsat 7 scene (Scene ID: p230r94_20011226) was used
as an example to demonstrate the necessity of the secondary
cloud detection. In this study, the secondary cloud detection
was not operated on this image because the normalized distance
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Fig. 13. Results with and without the secondary cloud detection. (a) NIR-
red-green composite image of Landsat 7 (Scene ID: p230r94_20011226). (b)
Reference map. (c) Result of FCM method without the secondary cloud detec-
tion. (d) Result of FCM method with the secondary cloud detection.
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between the cloud and non-cloud cluster centers in the secondary
cloud detection was smaller than the predefined threshold. In
this section, we regarded the cloud pixels generated in the
secondary cloud detection as clouds. As shown in Fig. 13, most
real clouds can be extracted in the initial cloud detection, while
some pseudo clouds can be found during the secondary cloud
detection. Hence, the exclusion of the secondary cloud detection
for this scene is reasonable.

C. Searching Window Size for Cloud Shadow Detection

The influence of the searching window size on the cloud
shadow detection are discussed based on a number of experi-
ments. In total, 14 reference maps including 8 Landsat ETM+
and 6 Landsat OLI scenes contain manual cloud shadow masks,
so they were selected in this section. Both PAR and UAR were
utilized to discuss the influence of the searching window size.
The change trend curves of PARs and UARs with various search-
ing window sizes for the 14 scenes are shown in Fig. 14. As
shown in Fig. 14, it can be observed that with the increase in the
searching window size, PARs increase steeply at the beginning,
and then they stabilize when the searching window sizes reach
some specific values. As for UARSs, they slightly increase at the
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beginning, and then they change little with the increment in
the searching window sizes. Additionally, UARs may slightly
decrease for some images with the increase in the searching
window sizes, which is probably caused by the misclassification
in the initial cloud shadow detection using the FCM. Some dark
land materials, such as water bodies, may be mislabeled as cloud
shadow pixels and larger searching window sizes may contain
more mislabeled cloud shadow pixels, thus causing UARS to
decrease. Actually, when the searching window sizes reach
some specific values, PARs and UARs are both stable and less
sensitive, and hence, the searching window sizes can be visually
determined and easily fine-tuned. Additionally, it is better not
to set the searching window size too large or too small. If the
searching window size is too small, some real cloud shadow
pixels may be excluded; and if the searching window size is too
large, many pseudo cloud shadow pixels may be included, thus
lowering the UARs.

VI. CONCLUSION

In this work, we proposed a cloud and cloud shadow detection
method based on the fuzzy c-means algorithm for multi-spectral
satellite sensors with visible and NIR bands. Instead of classify-
ing the objective pixels into one specific class, in fuzzy cluster-
ing, the data points can belong to more than one cluster, and are
each associated with certain membership grades that represent
the degree to which they belong to the different clusters. Hence,
fuzzy clustering can better characterize the status of one given
pixel belonging to clouds or non-clouds. By operating the FCM
twice, not only can the thick and obvious clouds be detected,
but the thin clouds around the thick clouds can also be better ex-
tracted. Additionally, a modified cloud shadow index calculation
was proposed to characterize the cloud shadow features better.
Taking the reprojection direction and the spatial geometric rela-
tionship between clouds and their accompanying cloud shadows
into account, a rapid cloud and cloud shadow matching strategy
was used to exclude some pseudo cloud shadows. In total, 41
scenes including 27 Landsat ETM+ images in eight latitude
zones and 14 Landsat OLI images comprising seven land cover
types, including barren, forest, grass, shrubland, urban, water,
and wetlands areas, with percentages of cloud cover ranging
4.99% to 97.63%, were utilized to validate the effectiveness of
the FCM. The thick and thin clouds along with their associated
cloud shadows can be precisely detected by using the FCM.
Compared with the Fmask method, the FCM has relatively lower
PARs, but fewer clear-sky pixels were misclassified as clouds;
compared with the SVM method, the FCM has higher PARS
and lower NARs, which means that the FCM can achieve better
cloud detection accuracy. The results demonstrate that the FCM
can acquire a better balance between cloud pixel detection and
non-cloud pixel exclusion. Additionally, the FCM is designed
for sensors with both visible and NIR bands, and therefore,
it can also be applied for other satellite images with similar
spectral channels. Therefore, the lower requirement of input
bands can enhance the applicability of the proposed method.
In addition, fewer predefined parameters in the FCM is also a
typical characteristic.
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However, there is still space for the enhancement of the FCM.
First, if the satellite image is totally clear-sky or is completely
occupied by clouds, the classification process may fail. In addi-
tion, the threshold for determining the necessity of the secondary
cloud detection and the searching window size for cloud shadow
detection are both set subjectively, and thus, some errors may
be included. Third, the FCM does not currently have a snow
detection module, which means that the snow in the image may
be mislabeled as clouds. Actually, most cloud detection methods
with a snow detection module may be similarly affected by
snow [13]. Fourth, some bright land objects may be identified as
clouds, as in the FCM results shown in Fig. 7(c). Hence, more
appropriate cloud features, such as features obtained from the
IHOT algorithm, should be incorporated in the FCM to reduce
the influence of very bright pixels. All of these issues will be
addressed in future work.
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