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DeepWindow: Sliding Window Based on Deep
Learning for Road Extraction From
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Abstract—The road centerline extraction is the key step of the
road network extraction and modeling. The hand-craft feature
engineering in the traditional road extraction methods is unstable,
which makes the extracted road centerline deviated from the road
center in complex cases and even results in overall extracting
errors. Recently, the road centerline extraction methods based
on semantic segmentation employing deep neural network greatly
outperformed the traditional methods. Nevertheless, the pixel-wise
labels for training deep learning models are expensive and the
postprocess of road segmentation is error-prone. Inspired by the
work of human pose estimation, we propose DeepWindow, a novel
method to automatically extract the road network from remote
sensing images. DeepWindow uses a sliding window guided by a
CNN-based decision function to track the road network directly
from the images without the prior of road segmentation. First of all,
we design and train a CNN model to estimate the road center points
inside a patch. Then, the road seeds are automatically searched
patch by patch employing the CNN model. Finally, starting from
seeds, our method first estimates the road direction using a Fourier
spectrum analysis algorithm and then iteratively tracks the road
center-line along the road direction guided by the CNN model. In
our method, the CNN model is trained by point annotations, which
greatly reduces the training costs comparing to those in semantic
model training. Our method achieves comparable performance
with the state-of-the-art road extraction methods, and extensive ex-
periments indicate that our method is robust to the point deviation.

Index Terms—Deep learning, remote sensing images, road
extraction, sliding window.

I. INTRODUCTION

ROADS are important objects in geographic information
systems as man-made objects. Road networks are applied

in many aspects of social life, such as vehicle navigation, traffic
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management, map updating, geological disaster emergency, and
humanitarian aid. In modern life, people request higher demand
for the update speed and accuracy of road information than
before. High-resolution remote sensing imagery is an important
avenue to automatically infer the road networks. However, the
obscures by vehicles, trees, and buildings make the automatic
road extraction very difficult [1]. How to improve the efficiency
and accuracy of road network extraction is a hot issue at present.

Road extraction from remote sensing images can be divided
into two levels: road region segmentation and road network
extraction. Road region segmentation is to classify each pixel
in the image into roads and nonroads, while road network
extraction is to obtain the road centerlines and their connectivity.
In most tasks, the classification of each pixel is not the ultimate
goal of road extraction. The road network can provide more
comprehensive information, as it provides connectivity between
different pixels and the road network can be directly used in
many applications [2].

The road network extraction methods mainly include tem-
plate matching, shortest path, semantic segmentation combining
postprocessing, and road tracking based on the patched model.
Template matching methods [3]–[7] are the classic road ex-
traction methods in which several patches are cropped within
a certain direction range along the tracking direction, and the
best matching patch is determined according to the hand-crafted
matching rules, and the center of the patch is regarded as the road
central point, and finally, the adjacent road central points are
connected to obtain the road centerline. These methods work
well in good conditions. However, when the road is covered
by noise or the color changes dramatically, a large number of
matching errors will emerge. The shortest path methods [8], [9]
search the path between two seeds with the minimum cost. The
fast-matching method [10] is a classic optimization algorithm for
solving the shortest path problems. The algorithm accumulates
the reciprocal of gradient as the cost from the starting point
to the end point, and then traces the path of the minimum cost
from the end point to starting point. Thus, the extracted paths are
inclined to the road edges. Miao et al. improved the shortest path
method to extract the road centerline by computing the shortest
path twice, but greatly increase the computation cost, and also
fail to track the correct path when the situation is complicated.
Some extraction errors of template matching, shortest path, and
improved shortest path are shown in Fig. 1 from (b) to (d), respec-
tively. Template matching algorithms likely cause the problems
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Fig. 1. Problems exist in current road extraction methods. (a) Input image.
(b)–(d) Effects of traditional road tracking methods that are template matching
method, shortest path method, improved geodesic distance method respective,
where yellow points represent manually specified seed points, and red is the
extracted roads. (e)–(g) Effects of semantics segmentation combining post-
processing, which are the semantic segmentation, the binarized segmentation
overlaid on the image, and the result of postprocessing respective. (h) Effect of
our method.

of crossing roads when roads are adjacent and matching errors
in the place where roads are covered by noise. The methods of
segmentation combining postprocessing [11]–[14] first divide
pixels into road and nonroad, and then extract the road cen-
terlines by heuristic rules. Road segmentation can be acquired
by traditional segmentation algorithms, but better results can be
obtained by deep learning models [15]–[18], and then the key
decisions on how road segments are interconnected are delegated
to the error-prone postprocessing stage that relies on heuristics
algorithms [1]. It is difficult to guarantee the universality of
these algorithms. Moreover, these methods rely seriously on
the road segmentation which almost determines the result of
road extraction. Fig. 1(e)–(g) show a case that the segmentation
containing numerous gaps leads to poor graph connectivity. The
road tracking methods based on the patched models require
precise annotations (such as GPS trajectory, pixel-wise labels)
to train the CNN model and to predict the global road probability
map for guiding the tracking process, which increases the cost
of model training.

Given the problems of existing road tracking methods, we pro-
pose DeepWindow, an approach that uses a patched CNN model
for tracking the road network from remote sensing images.
Different from previous ones, our method extracts the accurate
road centerlines directly from images without the guidance of
road segmentation. Most importantly, we do not need to prepare
a precise road mask. Each training sample is only labeled by
a few points, which greatly reduces the cost of model training.
Besides, our algorithm can auto search tracking seeds, which
makes the tracking algorithm fully automated. Specifically, we
train a CNN model in advance, which outputs a probability map
containing the confidence of each pixel as a road central point
in a patch. Then, the CNN model is used to seek road seeds
automatically, which are the starting points of our road tracking
method. We also use the CNN model to infer the confidence map
of each patch centered at each sliding step and pick out some
points by NMS [19] as the candidate road central points from
the map. The optimal point is determined according to the local
characteristics of roads. Finally, we connect the selected point

Fig. 2. Road network extraction from aerial images. (a) Input image. (b) Road
extraction via our method.

and previous road central point using a straight line and step
forward with a fixed distance. The above process is executed
iteratively, and finally, a complete and fine road network is
tracked, as shown in Fig. 2. More samples are available in,1

The contributions of this article are summarized as follows.
1) A patched-based road center estimation model is designed

and trained by point annotations, which predicts the road
central points in a local patch.

2) An algorithm of road direction estimation is proposed to
increase the automation of our tracking process, which
estimates the road direction according to the Fourier spec-
trum of canny edges.

3) An algorithm of automatic seed searching is implemented,
which makes the tracking process fully automated com-
bining with the road direction estimation algorithm.

4) A large and challenging road patch dataset with manually
sampled road center points for road extraction will be
publicly available for further studies of weakly supervised
learning.

II. RELATED WORK

Road extraction from remote sensing images can be divided
into two levels: road area segmentation and road network extrac-
tion. Road area segmentation classifies each pixel of the image
into roads or nonroads. Road network extraction is to obtain the
road centerlines or boundaries, and, finally obtain the topology
of the network.

Road area segmentation: Road area segmentation is the pre-
liminary task of road extraction, which can be used as guidance
of the topology delineation. Manually classifying the road ar-
eas is generally time-consuming and contains abundant errors
introduced by the operator [20]. In recent years, deep learning
technologies have made great progress in computer vision, and
many of them have been introduced into road area segmentation
in remote sensing images. Mnih et al. [21] and Rezaee et al.
[22] proposed a patch-based deep neural network to label road
regions in aerial images. These methods infer the road map of
an image patch by patch. These algorithms are computation
consuming, because the correlation of adjacent pixels is not fully
utilized, and the overlapping patches centered at adjacent pixels
are computed repeatedly. Zhong et al. [23] introduced the fully
convolutional network into the segmentation of the road area

1Online. [Available]: https://github.com/rob-lian/DeepWindow
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and achieved dense end-to-end reasoning. But the simple linear
interpolation upsampling of FCN made the model performance
poor. Evolved from FCN, UNet has a symmetric encoder–
decoder structure and the decoder uses parameter-learnable
deconvolution, which makes the semantic segmentation more
accurate. Zhang et al. [17] and Alexander et al. [24] proposed
an improved UNet network for road area segmentation, which
achieved higher performance using ResNet as its encoder. To
expand the feature reception field without sacrificing the feature
space resolution, the literature [16], [18], [25], [26] designed a
UNet-like network with atrous spatial pyramid pooling (ASPP)
to further improve the accuracy of road segmentation.

Road network extraction: Compared with road segmentation,
road network provides more extensive and meaningful informa-
tion [2]. It is also the ultimate goal of the road extraction task and
can be used to update and optimize road database [27]. Cao et
al. [28] proposed a method that locates the rough road positions
using GPS initially and then adjusts the GPS coordinates to the
road center or extracts the road shape exploiting the intensity of
the local region. With the help of OpenStreetMap (OSM), Mat-
tyus et al. [13] regard road topology extraction as a parametric
Markov random field reasoning problem of road location and
width, and the extracted vector data, in turn, optimizes OSM
data. The above works are devoted to the refining of the road
network using the existing vector data. In paper [1], a dynamic
graph construction method is proposed to track the road network
iteratively. Under the guidance of OSM, this method trains a
decision network by dynamically generating training samples.
Then an iterative road tracking is implemented depending on the
direction estimation inferred by the decision network according
to the local region. Other works are devoted to road centerlines
extraction based on the road segmentation. Miao et al. [11]
presented a Gaussian mixed model for extracting the centerlines
from the segmented road regions. The road regions are cut into
different road segments that are fitted with a Gaussian mixture
model, and the long axis of each Gaussian ellipse is the initial
centerline of the corresponding road segment. Finally, the SCMS
[29] algorithm is used to adjust the initial centerline to the exact
position. Mattyus et al. [13] proposed an approach that directly
estimates road topology from aerial images, taking advantage
of the latest developments in deep learning to have an initial
segmentation of the aerial images. Ventura et al. [2] provided an
iterative tracking method for road topology extraction under the
guidance of initial road segmentation, in which a CNN network
was trained to predict the local connectivity among the central
pixel of an input patch and its border points. There are many
other studies devoted to extracting road topology directly from
remote sensing road images without any auxiliary information
(e.g., GPS, DEM, and segmentation), and template matching
is a family of classical methods [5], [7], [30]–[32]. Lin et al.
[32] employed a least-squares rectangular template matching
to track the road axis with lane markings in urban areas. An
adaptive circular template was proposed by Lian et al. [7],
which automatically adjusts the seeds to road center and extracts
road topology by iterative interpolate template matching. Most
of the traditional template matching methods are designed by
artificial specified descriptors and matching rules which cannot

fulfill the various complicated conditions in remote sensing
imagery.

III. METHODOLOGY

This section presents our approach which traces the road
network with a sliding window, as shown in Fig. 3. More
precisely, when a seed point (e.g., O) and marching direction
(e.g., �d =

−−−−⇀
e1e2) are initiated automatically, our approach crops

a patch from the image along the direction �d with a step forward
(e.g., e1). The trained road center estimation model outputs the
road center probability map taking the patch as input. We pick
some peaks above a hard threshold (we set the threshold to
0.05 for all experiments, see Section IV-C) and finally retain
the one (e.g., Ô) which is closest to the direction of the road
extension, note that roads present slowly curved stripes in a
small patch. Then, the points of O and Ô are simply connected
by a straight line because the shape of the road is a straight line
in a sufficiently local area expect for the T-junction or L-turn
which will be discussed later. After that, our approach repeats

the process along the direction of
−−→
OÔ .

Section III-A presents a modified stacked hourglass networks
that learn to predict the road center probability of each pixel in
the patch. The model is used to find initial seeds and also embed
into the tracking process as kernel decision function to estimate
the road central points in a local patch. The seeds searching
are introduced in Section III-B. Section III-C describes the road
direction estimation based on a patch centered at the seed. The
road network is tracked by a sliding window, as explained in
Section III-D.

A. Road Center Estimation Model

As mentioned above, the function of the model is to estimate
the road central point of a given patch. To solve this issue, we
consider the road central point as a special point in the context of
a patch. Our goal is to design a deep neural network to infer the
possible road central points according to the local texture. We
found that special points estimation has already been researched
for decades in the human pose estimation field. To estimate the
human pose, the position of human joints such as head, neck,
shoulders, and elbows need to be located first which are regarded
as the special points according to the local context of the image.
These points are encoded as heatmaps with Gaussians center on
them. Inspired by the idea, we also encode the road central points
with Gaussians if there are roads in the patch as the ground truth
for model training. We find in the experiments that the model is
indeed capable of learning the relation between the road central
point and the local texture.

A research team of Michigan University proposed a stacked
hourglass networks for human pose estimation [33]. This model
employees a fully convolutional network to output the precise
pixel position of a human key point for a given single RGB
image and uses multiscale features to capture the spatial position
information of each joint point of the human body. The kernel
of the network is designed like an hourglass, and the top-down
to bottom-up is repeated to infer the position of the joint points
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Fig. 3. Iterative tracking process starting from a seed that is automatically searched.

Fig. 4. Architecture of the road center estimation model.

of the human body. Each top-down to bottom-up structure is
an hourglass module. Many subsequent human pose estimation
methods evolved from the hourglass networks structure. It can be
said that the hourglass networks structure has been approved by
the industry. We also take the architecture of stacked hourglass
networks to build our road center estimation model, as shown in
Fig. 4. More specifically, we stack two hourglass models in the
network and replace the first convolutional layer as kernel size
7 × 7, the stride 1 and padding 3 pixels to keep the resolution
consistent as the input patch. Furthermore, we reduce the depth
of the output of each hourglass model to 1, that is, we force the
network to encode the probability of each pixel in one channel
no matter how many road centers in the patch. The dotted box in
Fig. 4 details our modified hourglass model, in which the input
is gradually downsampled four times and each scale keeps the
consistent number of features across the whole hourglass.

We propose a weighted cross-entropy loss (WCELoss) for the
model training, which can be written as (1), where N is the
number of pixels in a sample patch, yi is the ith value in
the ground truth, which is close to 1 near the road centers and
close to 0 in other position, see Section IV-A for detail, and ŷi is
the ith value of output map. eyi is the weight factor to penalize

the error occurs near the road centers. λ is a scale factor, which
is used to control the ratio of the loss coming from the errors
near the road centers. The simple idea behind the WCELoss is to
consider the problem of extreme imbalance labels in supervised
training. All the labels in the ground truth are almost zeros except
for a small number of nonzeros around the road centers, which
depresses the output of the model. In other words, the model can
achieve lower loss by predicting the outputs approaching zeros
if the error of each position in the patch is measured equally.
We can increase λ to raise the global output of the model, but
the increment of global output does not affec the judging of the
road centers because we choose them by screening the peaks of
the output, therefore, λ is fixed to 1 in our experiments

WCELoss =
1

N

N∑

i=1

eyi [λyilog (ŷi) + (1− yi) log (1− ŷi)] .

(1)

B. Automatic Searching of Tracking Seeds

Once the road central point estimation model is trained, we
can automatically find the seeds for road tracking. Patches with
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the resolution 64× 64 are consecutively cropped from the image
from left to right and top to bottom without overlap, and the
road central points of each patch are inferred using the road
central point estimation model. For one patch, we only keep one
point as the seed whose confidence is the max and exceeds a
certain threshold. It is noteworthy that we empirically set the
confidence threshold to a high value to ensure the precision of
seeds. For a 1500× 1500 image, there may be numerous seeds
found automatically, while many of them may not be used. When
we start tracking from a seed, many automatically searched seeds
will be visited during the tracking process and these visited seeds
will be discarded later.

C. Road Direction Estimation

Usually, most tracking algorithms used to track filaments need
the starting point and the initial tracking direction. In order
to reduce the artificial intervention, we estimate the tracking
direction automatically. According to the priori of a road in
high-resolution remote sensing image, the edges of a road are
obvious and sharp contrast to the texture of the surrounding
environment. Especially in the scenario of this article, the road
direction is estimated only at the locations of road seeds based
on a small patch, in which the road edges are more obvious and
with fewer interferences. Thus, the road features in these local
areas are naturally more prominent. We can estimate the main
direction robustly.

It is ubiquitous that meaningful structures are formed by or
appear over textured surfaces, which could be regular, near-
regular, or irregular [34]. The texture is directional, and the
direction of the texture is a regional concept. It is meaningless
to talk about directionality for an isolated pixel. In other words,
the road direction refers to the direction of the regular texture
inside a patch. The regularity and periodicity of the regular
texture make it possible for texture primitives to embody some
characteristics on the whole, such as direction. Edges have great
influence on human vision, and the predominant direction of
the edges represents the orientation of the texture. From the
perspective of Fourier spectrum, for a regular texture with the
same directionality, its energy in Fourier spectrum is concen-
trated on a line passing through the origin, and the direction of
the line is perpendicular to the orientation of the texture. More
specifically, canny [35] is used to scan the edges of the grayscale
patch after bilateral filtered [36], and then the scanned patch is
converted into discrete Fourier spectrum. Finally, the direction
of the principle spectrum energy θmax is computed according to
(2) and (3), in which w is the patch width, fft_img is the Fourier
spectrum of the canny edges of the patch, and the spectrum
energy E is calculated every 1 degree. The orthogonal direction
of θmax is regarded as the direction of the road, as shown in
Fig. 5

E(θ)|θ∈[0,π) =
w/2∑

r=1

ff t_img
[ w

2
+ r × sin θ,

w

2
+ r × cosθ

]

(2)

θmax = argmax (E) . (3)

Fig. 5. Predominant direction estimation. Left: a bilateral filtered image patch
with the superposition of initial seed. Middle: edges scanned by canny and its
principle spectrum energy direction marked by a blue line. Right: Road direction
estimated by our method and the two red crosses are the extension seeds for our
sliding window algorithm.

Fig. 6. Sliding window for road topology tracking. (a) Input image. (b) Seed
is shown in yellow dot and the extension points estimated by the local spectrum
analysis are shown in blue crosses. (c) Current step of the sliding window where
the corresponding patch (yellow rectangle) is cropped to predict road central
points. (d) Cropped patch and the predicted road central point. (e) Corresponding
road center probability map inferred by our road center estimation network.
(f) Final result.

D. Iterative Topology Tracking

We regard the topology tracking as a sliding window process
depending on the patch-level road center estimation model. First,
numerous seeds are searched automatically using the road center
estimation model. Starting from one of the seeds, a patch with
resolution 64× 64 centered at the seed is cropped. Then, the
predominant direction of the road in the patch is estimated by
the spectrum analysis algorithm. After that, the window steps
forward with a fixed distance along the road direction, and the
patch corresponding to the window is cropped and fed into the
road center estimation model that will output a probability map
(the output of the second hourglass) with the same size as the
input patch. The probability of each pixel in the map means the
confidence of the pixel in the patch as a road center. We regard
the location pc with the modest probability, which is closest to
the sliding direction as the most likely road center. Finally, pc is
connected to the previous road center pv using a straight line.

Then, the window steps forward with the fixed distance again
along the direction of vector −−→pcpv like inertia and repeat the
above process. On the other hand, during the sliding window
process, If the maximum value of the output probability is below
a certain threshold, which means that the road center estimation
model cannot find a road center in the patch. In this situation, we
stop the current tracking process and pop another seed to restart
tracking if the seed is unvisited. A tracking sample is shown in
Fig. 6
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Fig. 7. First-row: Illustration of the solution when model outputs multi points.
From left to right: The current state of sliding window, the road center probability
of the patch, the estimated road centers marked by dots, and the final linking
result. Second-row: Solution when sliding window encounters the T-junction.
From left to right: The current state of sliding window, the road center prob-
ability of the patch, the estimated road centers marked by dot, turning to the
perpendicular direction.

There are several other situations that we need to pay attention
during the tracking process. When multiple parallel roads are
close to each other, the cropped patch will contain more than
one road. The road center estimation model will output multiple
road centers with high confidence. At this moment, as shown in
the first row of Fig. 7, we choose the point which is closest to the
extension direction of the current topology as the optimal point
because road direction changes slowly in the local area according
to the road priors. Other points are pushed into the seed stack
as new seeds. Another case is that when the tracking process
encounters a T-junction or a sharp turn, the road central point
predicted by the model will be very close to the previous one.
At this situation, we can judge that the road has been tracked to
the end or the sliding window encounters a T-junction, as shown
in the second row of Fig. 7. To continue tracking, we try to find
the road center in the perpendicular direction against the current
tracking direction. The tracking process will continue if a road
center is found in the perpendicular direction. For clarity, our
algorithm is shown in Table I.

IV. EXPERIMENTS

To evaluate our approach, we carry out extensive experiments
on two publicly available datasets, which are Massachusetts
roads dataset [37] and a dataset collected from Google Earth
[38]. The Massachusetts roads dataset is an aerial imagery
dataset containing 1108 images for training, 14 images for
validation, and 49 images for testing. Each image consists of
1500 × 1500 pixels with spatial resolution 1 m. The Google
Earth dataset contains 224 VHR images that manually labeled
the road segmentation reference maps and corresponding cen-
terline reference maps. The original images in Google Earth
dataset are with a spatial resolution of 1.2 m per pixel and
there are at least 600 × 600 pixels in each image. As Fig. 8
shows, the images in Massachusetts roads dataset are under
complex backgrounds and occlusions of cars and trees, and the
road segmentations constructed from maps are suffered from
omission and registration noise [39]. Although the reference

TABLE I
SLIDING WINDOW FOR ROAD NETWORK TRACKING

Fig. 8. Illustration of some representative images in two datasets. (a)–(d)
Examples from Massachusetts Roads Dataset. (e)–(h) Samples from Google
Earth. (a) Example of omission noise. (b) Example of registration noise.
(c) Example with large invalid area. (d) and (h) Examples of Occlusions of
trees. (e) and (f) show the brightness contrast. (g) Example of different color on
one road.

maps in Google earth dataset are accurate, the brightness of
different images varies greatly and the color of different road
parts is different as black and white in an image. All these
problems make the road extraction task very challenging.

A. Preparing Training Samples

To train the road center estimation model, taking Mas-
sachusetts roads dataset as an example, we randomly cut 50
patches with the resolution of 64× 64 from each image in the
training set, and finally, obtain 55 400 training samples. In the
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Fig. 9. Some training samples and visual prediction results of the road center
estimation model applied to patches from the Massachusetts Roads dataset.
First-row: Some training samples shown in the composition of the patch and
ground truth. Second-row: Some of the prediction samples, and the road centers
are marked by red cross.

Massachusetts roads dataset, Mnih et al. intentionally placed
large blank areas in many images in order to study the problem
of annotation noise, as shown in Fig. 8(c). In order to reduce
the impact of these anomalous annotations, we discard the con-
tinuous blank parts of each image, i.e., sampling from its valid
regions. To ensure the diversity of training samples, we ensure
the road existence in half of the samples and do not guarantee
the road existence for another half. More importantly, the road
center points must not be fixed in the patch center, or the model
will learn the location characteristics, which makes the model
has a strong preference to regard the patch center as a road center.
For the first half samples, we first skeletonize the ground truth
mask corresponding to the training image, randomly pick a point
p within a certain range away from the skeleton. Then, we crop
a patch from the training image centered at p. Meanwhile, we
crop the same patch from the ground truth and capture the central
point of each road segment in it. After that, we generate a mask
of Gaussians centered at each road central point as the ground
truth of the patch. Another half of the samples are randomly cut
from the valid region of the training images, and then generate
the training ground truth with the same rule mentioned above.
These samples guarantee that the model can output a lower
confidence map when there are no roads in the patch, which plays
an important role in judging the end of the tracking process. In
the same way, we cut 50 patches from each validation image for
model evaluation. Some training samples are shown in Fig. 9.
It is worth noting that the sample preparation described here is
to automatically obtain point annotations from the global mask
to avoid manual labeling. However, we need to manually mark
the road central points in a new dataset because we can easily
obtain a large number of remote sensing images but struggle to
acquire the precise pixel-wise labels. The samples from Google
Earth dataset are generated in the same rules, but we adjust
the brightness of origin images using histogram equalization
before cropping the training samples, which reduces the impact
of brightness differences.

B. Training Details

We construct the CNN model by stacking two hourglass
modules according to the paper [33], refer to Section III-A for

Fig. 10. (a) Relationship of the CNN performance and the confidence thresh-
old, in which a pixel with the peak confidence above the threshold is regarded
as a road central point. (b) Statistics of max road center confidence of validation
samples grouped by with roads and without roads.

detail. The model used in Massachusetts roads dataset is trained
for 250 epochs with a min-batch size of 64 using Root Mean
Square Prop [40] and 1000 epochs with a min-batch size of 32
using the same optimizer for Google Earth dataset. The learning
rate is fixed to 1e-5, the parameter alpha equals 0.99, momentum
equals 0. The weights of convolutional kernels are initialized
with the normal distribution with a mean of 0 and standard
deviation of 2

√
2/n where n is the number of the parameters

of the convolutional kernels. We train the CNN network on a
single NVIDIA RTX2080Ti GPU.

C. Model Evaluation

Taking Massachusetts roads dataset, for example, the trained
road center estimation model (trained by manual sampled points
set, see Section IV-D) gets 92.1% F1-score on the validation
set when the confidence threshold is set to 0.12, as shown in
Fig. 10. More specially, we regard the inference of the road
centers as correct if all of the points (selected by NMS [19])
are located on road mask (the ground truth in Massachusetts
roads dataset), and we regard the patch as road nonexistence
if none of the peaks exceeds 0.12. It worthy to note that we
cannot calculate the precision as the ratio between the correctly
predicted centers and all the predicted centers because there are
a lot of samples without roads. The calculation of recall also has
the same concern. We regard a prediction is true positive if a
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sample has roads in the patch and all the predicted points fall
on the roads, and false positive if any of the predicted points are
outside the roads. Meanwhile, we define a prediction is a true
negative if the patch has no roads and all the confidence peaks
are below 0.12, otherwise false negative. The precision, recall,
and F1 score are calculated by (4). It can be seen from Fig. 10(a)
that when the threshold is set between 0.04 and 0.15, F1-score
remains high and stable, indicating that our model is not sensitive
to the confidence threshold, which also means that the setting of
confidence threshold can be more flexible in the process of road
tracking. We also infer each validation patch and count the max
outputs group by roads and nonroads, respectively. The statistics
show that the mean of the max outputs of the patches with roads
inside is 0.286 and 0.053 to those without roads, and the standard
deviations of the max values are 0.121 and 0.085, respectively,
as shown in Fig. 10(b). The statistics indicate that there is a
wide confidence gap between the patches with roads and those
without roads. These statistics further provide the basis for us to
set the confidence threshold to judge the road existence during
the road tracking, and we fix the confidence threshold to 0.1 in
the following experiments:

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 =
2× precision× recall

precision + recall
. (4)

In Google Earth dataset, the road center model gets the best
F1-score of 92.0% on the validation set when the confidence
threshold is set to 0.1.

The second row of Fig. 9 shows the predicted results of some
validation samples. We found that the model indeed learned the
features of the road inside the patch. Our model can accurately
predict the location of the road center regardless of the road
direction, curvature, modest tree occlusion, or similarity with
the background. In particular, if there are multiple road segments
in the patch, the model can output the central point of each road
target separately, which provides a more robust discriminant
basis for the following road tracking.

D. Point Sensitivity Evaluation

As mentioned in Section IV-A, the training samples are gen-
erated from the skeletons of the ground truth mask. For each
training patch, an undirect graph is constructed to calculate
the center point sets, in which the nodes are the pixels of the
skeletons corresponding to the patch and the edges connect
between the adjacent pixels. The center point set consists of the
nodes with eccentricity equal to the radius in each connected
component. Finally, we select a point from each center point set
for the corresponding road segment in the patch. However, the
center points need to be placed without the guidance of ground
truth in practice. It is difficult to manually locate the exact center
points of the road segments. In order to evaluate the impact of
the inaccuracy of road center points, we intentionally deviate
the road center point from the road center. First, an exact center

Fig. 11. Training and validating loss curves are shown in (a) and (b), respec-
tively. The “precise” curve in (a) shows the training loss trained on the precise
points. The “hand-sampled” curve in (a) shows the training loss on the points
sampled manually. The legends ‘sigma-x’ represents the training loss on the
deviated points auto-sampled by normal distribution in which σ is set to 1.0,
2.0, and 4.0, respectively.

pointpc is selected as mentioned above. Second,pc is vibrated on
both sides of its original position along the road skeleton, and the
vibration amplitude subjects to normal distribution of 1/4 road
length, named pv . Third, pv is further deviated from the road
skeleton in the orthogonal direction of road in accordance with
the same distribution, and the deviation amplitude is 1/2 of road
width, called pvv . Finally, a 2-D Gaussians mask centered at
pvv is generated as the ground truth of the patch. The parameter
in normal density function determines the overall deviation of
sampled points. In our experiments, we set σ to 1.0, 2.0, and
4.0 and the average deviation is 3.75, 5.08, and 5.90 pixels,
respectively. Moreover, we implement a program2 to sample
the road center points from the original images manually. The
manually sampled point dataset will be publicly available for
further studies. We stipulate that in a small patch, if there are
multiple roads, a point needs to be placed in each road, which
is roughly the center position of the road measured by human
eyes. We trained the CNN models from scratch separately on the
different road center point sets. Fig. 11 shows the training and
validating loss curves, which means that all the trained models
converge to the same state. From these comparative experiments,
we conclude that the CNN model is not sensitive to the accuracy
of road center points. More importantly, we found that the model
trained on the manual sampled points set performs better. The
explanation is that when the computer automatically generates
the samples, it only considers the center of the road skeleton,
but neglects to consider the situation of multiple road segments
overlapping each other in a patch, and at the same time, it also
regards the patches as positive samples when the roads in the
patch are totally covered by trees, which causes a degree of
confusion of the model.

E. Patch Size Evaluation

In the process of tracking the road network, the texture inside
the small patch is the sole basis for our model to predict the road
center points. Therefore, the more obvious the road features, the
more it can help the model determine the road center points.
The features of the road are generally reflected by the internal
characteristics of the road and the background around the road.

2Online. [Available]: https://github.com/rob-lian/DeepWindow/
PointSampleTool
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TABLE II
COMPREHENSIVE COMPARISON OF DIFFERENT PATCH SIZE

“Size” denotes the patch size; “ratio” equals the width of the road divided by patch
width; “roads” represents the average road segments in a patch; “F1-score” is the tradeoff
precision and recall of the trained model performed in valid patch set. F1R is the road
tracking performance using the trained model. “W/wo” stands for the ratio of the mean
value of the max outputs group by the patches with roads and without roads inside.

Therefore, the picture inside a patch should contain as much
information as possible about the road itself and the background
around the road, but the optimal ratio of road and background
in a patch needs to be verified by experiments. To this end, we
fixed the spatial resolution of the image and verified the F1-score
and the road tracking performance of the model by changing
the size of the patch on Google Earth road set, because the
data set has accurate road segmentation ground truth, which
is shown in Table II. It should be noted that all the scores
in Table II are achieved by the models that are all trained by
automatically sampled point sets with the same setting except
for the patch size, e.g., 1000 epochs, 32 min-batch size, and
1e-5 learning rate. As can be seen from Table II, The ratio
of the road in the patch must be appropriate to highlight the
features of the road, so that the model can better determine
the existence of road (see w/wo index) and infer the position
of the road center (see F1-score index). Higher w/wo means
the model has a better distinction of road and background, and
higher F1-score denotes the better performance of road center
prediction. But, larger patch size means more road segments in
a patch, although the model can identify the road center points
in the patch, our algorithm is agnostic to the connection of these
road center points in the absence of the prior of the road map,
the simple straight connection introduces a lot of FPs, which
leads to low F1R index. To sum up, the size of the patch should
consider both the density of the road in the image and the width
of the road itself. Generally, in practice, we simply set the patch
size to 5–7 times the road width for convenience.

V. COMPARISON

A. Comparing Algorithms

To verify the performance, the proposed method is compared
with three state-of-the-art road extraction methods. The basic
information about these methods is summarized as follows.

1) Ours(acc): The CNN model is trained on the points auto-
matically calculated with the accurate center position.

2) Ours(σ = x): The CNN model is trained on the points
automatically calculated with deviation subject to normal
distribution parameterized by σ.

3) Ours(manual): The CNN model is trained on the manually
sampled points.

4) CasNet: Cheng et al. [38] proposed a cascaded end-to-
end convolutional neural network to simultaneously cope

Fig. 12. Evolution of the road network by sliding window. The progress is
displayed from left to right and from top to bottom.

with the road detection and centerline extraction tasks.
In their method, one UNet-like network was used for road
detection followed by another UNet-like network for road
centerlines extraction.

5) Ventura: Ventura et al. [2] designed a CNN model that
predicts the local connectivity among the central pixel of
an input patch and its border points. The global topol-
ogy of the road network was inferred by iterating this
local connectivity prediction guided by the global road
segmentation.

6) ASPP-UNet: He et al. [16] improved the standard UNet
by integrating ASPP, in which a structural similarity loss
was combined for the first time with the BCE loss to train
the network.

It should be noted that we take the output of the second
network in CasNet and the skeleton of the road area predicted
by ASPP-UNet as the final results.

B. Evaluation Metrics

First, we use the F1 metric, a classic measure that evaluates
the precision and recall of segmentation. In our theme, the
precision represents the ratio between the number of pixels
correctly tracked as road and the total number of pixels are
tracked as roads. The recall refers to the fraction between the
pixels correctly detected as road and the total pixels labeled
as a road in the ground truth, and the F1 is the tradeoff of
precision and the recall. Inspired by Ventura et al. [2], we further
evaluate the connectivity performance, and we also use the F1
measure combining precision and connectivity, because high
connectivity can be obtained by classifying all pixels into the
road. The tradeoff measure can prevent this from happening [2].
For the rest of the paper, F1C represents the F1 measure of
precision and connectivity, and F1R stands for the F1 measure
of precision and recall.

C. Comparison of Road Extraction Algorithms

According to the description of tracking algorithm in
Section III-D, we carried out experiments on the Massachusetts
road set and Google Earth using the CNN models trained by the
different point datasets which are mentioned in Section IV-D.
Fig. 12 demonstrates the tracking evolution of our algorithm.
Fig. 13 shows some qualitative results in comparison with
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Fig. 13. Qualitative comparisons of road extraction results with different comparing algorithms. The first three rows are from the Massachusetts road dataset, the
last two rows are from Google Earth. (a) Original image. (b) CasNet. (c) Ventura. (d) ASPP-UNET. (e) Ours-manual. (f) Ground truth.

other state-of-the-art methods. Though CasNet has two cascaded
UNet, the final road centerlines are heavily dependent on the
segmentation of the first network. Moreover, the standard UNet
does not work well in such a complex situation as the Mas-
sachusetts road set, which results in more missing of the final
road centerline. The ASPP-UNet achieves much better results
taking advantage of ASPP’s ability to extract multiscale features.
Ventura et al. introduce much more FPs because it connects
multiple points detected in a small piece, and these points maybe
not really connected, which is especially worse in the parallel
roads. On the other hand, the result of Ventura depends on
the segmentation of VGG net, which does not perform well in
the Massachusetts road set, and results in some missing in the
complex position, e.g., covered by trees. Our algorithm obtains
similar results compared to the best method in most situations.
However, as can be seen from Fig. 14, our algorithm performs
worse at certain intersections with large spacing, because at these

positions, the large road ratio in the patch weakens the road
features and makes our model regard these places as parking
lots or the roofs of large buildings, which is why our algorithm
has a low connectivity index.

To evaluate the effectiveness of the DeepWindow on road
extraction, quantitative comparisons with the other three state-
of-the-art methods are summarized in Table III. As can be seen
from Table III, we conduct comparative experiments on two
databases and achieve competitive performances compared to
the state-of-the-art methods. To better illustrate the robustness
of our model, we also evaluate the quantitative performances
of the models trained by different accuracy point datasets, in-
cluding manually sampled point datasets. It can be seen that the
performance decreases as the accuracy of the data decreases,
but the reduction is marginal, which means our method is not
sensitive to the accuracy of the points. The most important
is that our method performs best when the training dataset is
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Fig. 14. Some false examples, where green, red, and blue represent correct, error, and missing, respectively.

TABLE III
QUANTITATIVE COMPARISONS AMONG DIFFERENT METHODS ON ROAD

CENTERLINES EXTRACTION, WHERE THE VALUES IN BOLD ARE THE BEST AND

THE VALUES UNDERLINED ARE THE SECOND BEST

manually sampled, which guarantees the practical feasibility of
our method. Although our algorithm does not achieve the best re-
sults compared with the fully supervised semantic segmentation
algorithms, but the gap is small. The advantage of our method is
that we only need to train a road central point estimation model
using weak annotations, which greatly reduces the training cost
and extracts the road network directly from images without the
auxiliary information such as road segmentation.

However, our method also has disadvantages, e.g., it fails
to extract the roads when they are seriously covered by trees
or mistakes road-like objects as roads because the information
inside a small patch is the only basis of our judgment. Fig. 14
shows some false examples where the roads seriously covered
by trees are missing and some road-like objects are wrongly
traced limited by the small receptive field of the sliding window.

VI. CONCLUSION

In this article, a patch-based road central point estimation
model is proposed for the prediction of the road central points
in a patch. Based on the model, we present a fully automatic
road network tracking method in a sliding window mode. Most

importantly, the proposed method discards the guidance of the
global road segmentation and, thus, our method is free from
the large amount of pixel-wise annotations that are required
by the training of the semantic segmentation model. Moreover,
for training the road central point estimation model, we only
need to point out the central point of each road segment in
the training patches, which greatly reduces the labeling cost.
Experiments show that our method can accurately track the road
centerlines even if they are interfered by noise. The tracking
process of our method needs a certain amount of time unlike
the methods based on the semantic segmentation model which
output the global road segmentation in a flash; however, the
mode of the point supervised training combining the iterative
tracking process provides a practicable scheme for the weakly
supervised training of the semantic segmentation model for road
extraction. Finally, our method fails to extract the road segments
when they are fully covered by noise, which will be improved
in future studies.
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