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Abstract—Recently, ultrawideband (UWB) near-field synthetic
aperture radar (SAR) imaging has been proposed for pipeline
penetrating radar applications thanks to its capability in providing
suitable resolution and penetration depth. Because of geometrical
restrictions, there are many complicated sources of clutter in the
pipe. However, this issue has not been investigated yet. In this
article, we investigate some well-known clutter removal algorithms
using full-wave simulated data and compare their results consid-
ering image quality, signal to clutter ratio and contrast. Among
candidate algorithms, two-dimensional singular spectrum analysis
(2-D SSA) shows a good potential to improve the signal to clutter
ratio. However, basic 2-D SSA produces some artifacts in the image.
Therefore, to mitigate this issue, we propose “modified 2-D SSA.’
After developing the suitable clutter removal algorithm, we propose
a complete algorithm chain for pipeline imaging. An UWB near-
field SAR monitoring system including an UWB M-sequence sensor
and automatic positioner are implemented and the image of drilled
perforations in a concrete pipe mimicking oil well structure as a case
study is reconstructed to test the proposed algorithm. Compared to
the literature, a comprehensive near-field SAR imaging algorithm
including new clutter removal is proposed and its performance is
verified by obtaining high-quality images in experimental results.

Index Terms—Clutter removal, imaging, near-field, pipeline
penetrating radar, synthetic aperture radar (SAR), two-
dimensional singular spectrum analysis (2-D SSA), ultrawideband
(UWB).

1. INTRODUCTION

OWADAYS, pipeline penetrating radars (PPR) has been
N considered for pipeline condition assessment in various
areas such as water pipeline, asbestos cement pipeline in sewer
pipeline, gas pipelines, etc. In these applications, the PPR is
used for mapping the wall thickness, corrosion area, pipe wall
fractures, and every anomaly within or outside of the pipe wall

[11-[7].
Recently, ultrawideband (UWB) near-field synthetic aperture
radar (SAR) imaging as a PRP has found a new application in
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oil well monitoring [8]-[14]. The oil and gas companies take
care to preserve functionality of oil well, extend its life time,
and decrease maintenance cost by monitoring of oil well. To
this aim, they regularly inspect oil well wall to prevent possible
phenomena such as fracturing well wall, clogging drilled per-
forations in the well wall, and any anomaly in well wall. The
perforations allow the oil flows from the natural reservoir into
the well, and their condition in terms of opening, clogging, or
partial clogging affect directly on the oil well efficiency [8]. Due
to the complexity of the medium and imaging in the near-field,
oil well monitoring like other pipeline monitoring applications
faces various sources of clutter that must be reduced to monitor
the perforations condition.

Several clutter reduction techniques have been applied for
ground penetrating radar (GPR), through wall imaging (TWI),
and near-field imaging in the literature [15], [16]-[25]. However,
based on our knowledge, clutter removal problem for oil well
monitoring and more generally pipeline monitoring has not been
considered, yet.

The clutter removal techniques are classified as statistical
signal processing, model-based methods, and classical filtering
[22]. The main drawback of model-based methods is that their
ability highly depends on how well the real scenario fits the
assumed model. Therefore, we focus our attention on statistical
signal processing and filtering methods.

According to the literature, the capability of these meth-
ods strongly depends on the environment and clutter source
types. For example, in GPR and TWI, one clutter source is
air ground and air wall interference, respectively; and in these
cases, filtering methods have good performance for removing
this interference if the surface is smooth and homogenous. The
classical filtering method of mean subtraction is also a good
candidate for Tx/Rx cross talk and extracting background signal.
Another source is scattering from neighboring unevenly dis-
tributed objects in the scene. In this case, blind source separation
methods, i.e., singular value decomposition (SVD) [19]; princi-
pal component analysis [23]; independent component analysis
(ICA) [26]; matrix pencil method (MPM) [16]; and singular
spectrum analysis (SSA) are usually used for separating their
contribution [27]. However, in pipeline monitoring, the medium
is more different and complex. In this case, many clutter sources
including electromagnetic waves due to excitation of waveguide
modes in broadband spectrum, scattering from whole interior
surface of pipe, coupling between Tx/Rx antenna, radiation of
guided/surface waves, and the presence of other objects near the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-2077-599X
https://orcid.org/0000-0002-8588-1382
mailto:a.akbarpour@mail.kntu.ac.ir
mailto:somayyeh.chamaani@tu-ilmenau.de
mailto:Juergen.Sachs@tu-ilmenau.de
mailto:Giovanni.DelGaldo@tu-ilmenau.de

1528

antenna such as sensor holder contribute in the received signal.
Therefore, to remove the clutter in oil well monitoring, as a new
medium, more complex algorithms or series of algorithms are
required.

In this article, oil well monitoring as a new application in
pipeline monitoring area are considered, and all simulations
and measurements are done considering oil well geometry and
conditions. First, to consider realistic clutter sources, an UWB
near-field SAR imaging system for oil well structure is simu-
lated in CST microwave studio (MWS) software. To address
the clutter issue, we apply some candidate methods such as
mean removal, L1norm subtraction (should not be confused
with L1-norm minimization) [28], SVD, and two-dimensional
SSA (2-D SSA) on raw data and evaluate their performance
after image reconstruction by Global Back Projection method
(GBP). Recently, 2-D SSA has been used in image processing
for reducing noise and feature extraction [29], [30]. In [27], it
was proposed for clutter removal. However, it needs further work
to be applicable in radar imaging; because it only separated the
raw data to some clusters and final image was not reconstructed
to evaluate its performance, properly. Therefore, first, we inves-
tigate its performance; and due to observing some artifacts after
applying basic 2-D SSA, we propose a complementary step for
2D-SSA to remove these artifacts. We call the complete algo-
rithm “modified 2-D SSA.” After preliminary investigation of
the nominated methods, we propose a signal processing chain to
reconstruct the image of perforations drilled in oil well wall. To
verify its performance in a semi-real scenario, an experimental
setup including a positioner, and an UWB M-sequence sensor
is implemented for oil well monitoring.

Compared to [8]-[10], which did not consider the clutter
issue, we examined many clutter removal algorithms and pro-
posed the most effective of them with a signal processing
chain to monitor pipeline easily. The results of applying the
proposed method were an impressive improvement in the image
of perforations. Thanks to proper signal processing algorithms,
the signal to clutter ratio (SCR), contrast, and the quality of
image were improved. In addition, against [8], [10] that used an
expensive impulse generator and a sampling oscilloscope, we
used a more affordable sensor which has simpler structure and
better electrical performance.

In the rest of the article, first, we introduce oil well structure
and clutter sources in this near-field SAR imaging scenario. In
Section III, we describe some clutter removal techniques applied
for imaging applications, and evaluate their performance using
oil well simulated data in Section IV. Then, in Section V, an
algorithm for oil well monitoring is proposed. In Section VI,
the experimental setup including oil well positioner, and UWB
sensor is described, and measurement results are illustrated.
Finally, the conclusion of this article is presented in Section VII.

II. OIL WELL MONITORING
A. Oil Well Structure

Oil well structure is illustrated in Fig. 1(a). It is a deep
borehole, where its depth varies from a few hundred meters to
a few kilometers depending on the reservoir type. Size of hole
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Fig. 1. (a) Oil well structure. (b) Production zone and radar imaging.

depends on reservoir characterization, but the diameter of hole
is eventually decreased in the bottom of well hole leading to a
conical shape. When a well is drilled it should be completed.
Completion is a process that prepares oil well to produce oil and
gas [31], [32].

A most important completion widely used is perforation com-
pletion. Perforation completion includes drilling the reservoir
to desired depth, running the casing to the bottom of reservoir,
cementing and perforating production casing to a design depth in
reservoir to make a channel for flowing oil and gas from reservoir
to well. Well casing as an important step in completion served
for fortifying the well hole, preventing oil and gas leakage during
pulling up to surface, and keeping other fluids and gases to seep
into well. The oil well wall is covered by metal or concrete, or
combination of them [31], [32].

Deepest region of the well is called production zone. In this
region, the casing is perforated to allow hydrocarbons flow
to well, but it provides considerable amount of protection for
the borehole. Size of the production zone casing depends on
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some considerations, but it is typically 5-28 cm. However, the
diameter about 15 cm is more common. Depending on the depth
and type of the oil well, perforation diameter varies 1-4 cm. The
crude oil alongside with various byproducts such as water, gas,
and other organic materials flows into the well. Conventional
organic materials which can be found in the oil well are asphalt,
rocks, sand, and bitumen that can block the perforations and
reduce well production. Schematic of production zone is shown
in Fig. 1(b) [31], [32].

Once the casing is completed, tubing is placed inside the well
and a packer is installed between casing and tubing to fix it [see
Fig. 1(a)]. Due to the high cost of drilling new wells, the oil
and gas companies are interested to extend the oil well life by
monitoring it [8].

In this article, a UWB SAR imaging system is proposed to
monitor the oil well casing and perforation conditions drilled in
oil well wall. These conditions can be open, fully or partially
clogged which affect directly the oil well performance. In fact,
the imaging is realized based on diversity of dielectric properties
of existing material in the oil well. The dielectric properties of
these materials are illustrated in Fig. 1(b). By regular scanning
of oil well and evaluating the status of all perforations, if any
impairment is observed, we can resolve this problem using
solvents at an early stage to protect the well [32]. To image
the oil well using SAR method, the sensor scans along its wall.
By rotating the sensor around the well axis in azimuth plane and
combining 2-D images, we can construct a 3-D image of the oil
well. However, in this article, the sensor is moved only along
well axis [see Fig. 1(b)] and does not rotate around it. So, we
only perform 2-D imaging.

B. Scattering

In this application, we face various sources of clutter, which
complicate imaging. In the following, the clutter sources are
introduced.

First, due to imaging in a long cylinder, the medium mimics
a cylindrical waveguide either concrete casing or metal casing.
Therefore, when the Tx antenna radiates energy with a broad-
band spectrum, several waveguide modes excited simultane-
ously are received by the Rx antenna in addition to the scattered
signals from the perforations.

Surface waves are the second source of clutter. The surface
wave is a form of a traveling wave which follows the geodesic
path of the surface of an object. If the wave meets an obstacle or
a discontinuity such as gaps, slots, steps, and seams; the surface
wave will be reflected [33].

According to GPR terminology, antenna coupling is also a
source of clutter [34]. Due to size limitation, we cannot avoid
placing the Tx and Rx antenna in close proximity of each other;
so, a part of transmitted energy is induced on Rx antenna,
directly. The coupling signal can hide the scattered from the
target.

The fourth clutter source is the scattering from the interior
surface of pipe. Due to the geometry restriction, we have to
set the sensor in the middle of well, so in each scan, not only
the target region in front of Tx/Rx antenna, but also the whole
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surrounding region is illuminated and the reflected waves by
those unwanted regions are entered to the receiver as clutter. In
addition, we face multi bounce reflections in the pipe geometry.

III. CLUTTER REDUCTION ALGORITHMS

Clutter is a group of signals, uncorrelated with the target
signal, which fills the same spectrum as target signal. Therefore,
it is difficult to distinguish them from each other, and some
preprocessing steps are necessary to extract the target signal.
To the best of our knowledge, clutter removal in tube and
well imaging has not been investigated, yet. In this section, we
describe some well-known clutter reduction techniques for radar
imaging and then evaluate their performance.

In SAR imaging, we create a B-scan data matrix (Radargram)
whose dimensions is M x N (M is the number of samples in
each A-scan and N is the number of aperture positions/number
of A-scans). The A-scan is a 1-D signal obtained in each scan
position. B-scan is a 2-D signal resulted from putting A-scans
alongside.

A. Mean Scan Subtraction

A simple method for clutter reduction is mean subtraction,
which average of all A-scans or average of a part of A-scans
is subtracted from B-scan data matrix. This method is used for
removing stationary clutter [35].

B. L;Norm Subtraction

In this way, L1 norm of all A-scans is calculated and the A-scan
with the lowest L;norm is assumed as background signal. Then,
itis subtracted from all other A-scans to remove the background
signal, and similarly to the mean scan subtraction, this method
is effective only for stationary clutters [28]. L;norm of a vector
is defined as follows:

X0 =, lail. (M

C. SVD

Singular value decomposition is a matrix factorization method
in linear algebra, which is used in various applications for noise
reduction, compression, pattern detection, etc. In fact, SVD
decomposes matrix into Eigen subspaces which are assumed
to originate from different sources in each scenario [22]. The
B-scan data matrix can be decomposed as follows:

X =UxvH (2)

where U and V are unitary matrices whose columns are the
singular vectors of matrix X. H denotes the Hermitian operator
and the matrix ¥ = diag(o1,09,...,0,) is a diagonal matrix,
whose entries are the singular values of the matrix X sorted
in descending order. In imaging applications, matrix X can be
decomposed to r rank-1 subspaces as follows:

X:ZaiuiviH:M1+M2+-~'+Mr. (3)
=1
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Each matrix M; has the same dimension as the original matrix
and typically map different sources such as signal, clutter, and
noise. Therefore, by decomposing the data matrix and removing
the subspaces related to noise and clutter, we can reconstruct the
target signal. The clustering can be done manually or automati-
cally, as described in [36].

D. 2-D Singular Spectrum Analysis

SSA is a model free technique proposed for analyzing time
series. It is used for decomposing a time series to separable
components such as a sum of trends, oscillations, and noise.
This method has attracted much attention recently because of
its capability in various areas such as climatology, meteorology,
geophysics, engineering, and economics without any assump-
tion on the data to provide meaningful results. For applying
the algorithm to a set of time series, multivariate SSA was
developed, and for applying on 2-D scalar fields, 2-D SSA
version was developed. Recently, 2-D SSA has been used in
image processing for reducing noise and extracting features and
in radar area for removing clutter [37]-[45]; however, further
research in these areas is required.

The implementation of all SSA versions is divided into four
steps: embedding, decomposing, grouping, reconstructing. Var-
ious versions only differ in embedding and reconstructing steps.
In the following, these four steps are explained briefly and finally
a modified 2-D SSA for clutter reduction in oil well imaging is
proposed.

1) Embedding: Assume 2-D data with a size N, x N, as
follows [45]:

P1,1 P1,2 Pl,Ny
Py Pap P N,

X = . 4
Pn,1 Pn, 2 PN, N,

Similar to 1-D SSA [29], a window needs to move over the
data matrix to construct trajectory matrix. However, in 2-D SSA,
the window is 2-D with a size L, X L. If we determine the
window position by top-left corner(¢, j), the window must be
moved for each row 2 along all possible j column positions which
isequalto K, = N, — L, + 1. The path that window is moved,
is row scanning from top-left to bottom-right of raw data matrix.
Therefore, the number of positions is K, x K, whereK, =
N, — L, + 1. Each window data W;; can be represented as
follows:

P’L,]

Pi,jJrl }Di,j+Ly71

Pt Pit1j41 Pii1jvr,—1

Wij:

)

Piir.-1; Piyr,-1,j+1 Piip,1j+0,-1

To reconstruct trajectory matrix and avoid producing 4-D
matrix each window matrix is reshaped to a column vector A;;
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as follows:

Pijir,—1 . (6)

Pit1;

| Pitr,—1,j+L,-1 |

Finally, the trajectory matrix Y with size L, L, x K, K, is
derived as follows:

Y =[A11 Ap - Ak, Asp - Akox, | (D

The obtained trajectory matrix has Hankel block Hankel
(HBH) form and is represented as follows:

Hy, H, Hy,
Hy H3 Hy, 41
V=1 : ®)
HLm HNm
where
PT71 Png Pr,Ky
PT,2 P’r‘,S PT,Kerl
mo=| Q)
P.r, Prp,+1 P N,

Note that each H,. block has Hankel format, which must be
considered in the final step to reconstruct the desired data matrix,
properly.

2) SVD: The second step of decomposition is performing
SVD on trajectory matrix as described in Section III-C. Matrix
FE; corresponds to each set of u;, v; from U, V matrix calculated
as follows:

E; = u;v] (10)

and the data matrix X is obtained as follows:

3) Grouping: In this step, the elementary matrices [; are
jointed into 1" groups, and in each group they are added together
to reconstruct a new set of matrices D;,j =1,2,3,...,T. In
this article, we used k-means and hierarchical clustering [36] to
automatically group the elementary matrices.

4) Reconstruction: This step is also called diagonal aver-
aging. The obtained matrices D from grouping stage are not
necessarily in HBH format, so similar to 1-D case, we have to
perform Hankelization with some modifications for 2-D case
as follows. To this end, a two-step Hankelization should be

(1)
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carried out. First, Hankelization is performed between blocks
[the blocks in (8)] and then Hankelization is applied within
each block (9). Finally, as it is clear from trajectory matrix,
each element from original raw data is repeated several times in
trajectory matrix. Therefore, after Hankelization, by averaging
among the values corresponding to the same elements in the
reconstructed trajectory matrix, the reconstructed data from each
group D; is obtained as follows:

[ pJ J J
Ri1 Ri, Rl,Ny
J j J
. RQ,I R212 RQ,Ny
J _
Xrecon - . . . . : (12)
j J J
_RN¢,1 RN;E72 RvaNy i

Note that the original data can be obtained by

+ X2 4+ XT

recon recon

X =x!

recon

13)

E. Modified 2-D SSA

As described earlier, the first step of any type of SSA corre-
sponding to construct the trajectory matrix is realized by moving
a window on the original data. Therefore, because of embedding
step, the target effect is distributed on the trajectory matrix. Since
each cluster is representative of different sources in the imaging
scene including clutter, multipath, nearly object, etc., or in other
words, different eigen values; the reconstructed image from
each cluster are illustrating these different sources of scene. To
alleviate this effect, we add an additional step to clutter removal
method using 2-D SSA as follows: after applying 2-D SSA on
the raw data and constructing the image of different clusters
using GBP, the images related to target, are multiplied by each
other to remove artifacts. Since the real image is constant in
all selected clusters and artifacts usually appears with different
placements in different clusters, this multiplication removes
artifacts and keeps the real image. Note that the target we want
to reconstruct its image has a simple geometry; so the image
multiplication does not corrupt the shape of target. As stated in
[46], this method is applicable only for simple target geometries
not the complex ones. We call the whole algorithm—2-D SSA
and image multiplication—as “modified 2-D SSA.”

In the literature, image multiplication was introduced for
different goals such as clutter removal, multipath suppression,
and artifact removal [46]—[48]. In [46], to eliminate artifacts,
which are created during image reconstruction, two images from
different view are multiplied to each other. One image is recon-
structed from front view of target and the other is reconstructed
from rear view. In [47], to remove multipath in through wall
imaging applications, two sub aperture images multiplied to the
original full aperture image. In [48], a Ground Base-SAR is
used for foreign object detection, and the clutter is removed by
multiplying reconstructed original image and a filtered image
with some processing.

The next section will investigate the performance of these
clutter removal methods for oil well imaging problem.
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Fig. 2. (a) Schematic of strip map SAR system. (b) Sampling criteria.

IV. EVALUATION OF CLUTTER REMOVAL ALGORITHMS

In this section, first, SAR system parameters are introduced
briefly. Next, full-wave simulation of an oil well is performed
using CST MWS software to investigate the performance of
clutter reduction algorithms.

A. SAR System

The schematic of SAR system is shown in Fig. 2(a). In
SAR, the transceiver is moved along the aperture and receives
the reflected signal from target scene. Two important design
parameters that should be considered are sampling distance and
image resolution.

1) Spatial Sampling: Spatial Nyquist sampling criteria en-
sures alias-free image. Based on this theory, the phase difference
between two successive aperture positions must be less than 7.
In quasi monostatic scenario like Fig. 2(b), the maximum phase
difference occurs between opposite edge of target scene and
aperture. In this way, the maximum sampling distance can be
calculated as follows:

A
dr =
* 4 sin o

(14)

where A is the maximum frequency, and « is depicted in
Fig. 2(b). In the worst-case scenario (o = 90°), to ensure an
alias free image, the maximum distance between two aperture
positions must be less than A /4 [49].

2) Image Resolution: In SAR imaging, two important factors
are cross-range and down range resolution. The cross-range
resolution is defined as resolution alongside the aperture and
is calculated as follows:

AR
2L

Oxr = (15)
where A is the wavelength of center frequency, R is the per-
pendicular distance between aperture line and scene, and L is
the effective aperture length. The down range resolution is the
resolution of radar in direction perpendicular to aperture and
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depends on signal bandwidth as follows:

_C
- 2Bw
where C' is the speed of light in medium and Bw is 3 dB
frequency bandwidth [49].

3) Image Reconstruction: The SAR image reconstruction
algorithms are divided in two categories of frequency domain
and time domain. Among frequency domain approaches, the
wavenumber-domain approaches e.g., holography [50] has high
accuracy [51]. However, for wavenumber-domain algorithms, it
is necessary that the data to be resampled in k. — space. To avoid
this resampling, and improving the accuracy, Amineh ez al. [52],
[53] proposed putting 2-D slices of holographic image together
and reconstruct a 3-D image, which make the procedure com-
plicated. To avoid this complexity, here, we use GBP (without
any far-field approximation in phase) which is a time domain
approach. The disadvantage of GBP is its time consumption.
However, since the scene in pipe monitoring is not too large,
GBP still provides real-time image. In order to implement GBP,
first, the scene is gridded based on desired resolution. Then, the
intensity of each pixel is calculated by coherent summation of
related time sample of all aperture positions. In each pixel, the
relative time samples are obtained by calculating round trip time
from the pixel to every aperture position. From mathematical
view, the image of scene is reconstructed by the integral

Sar (16)

+L

2
h(zo,70) =/ g9(z, R)dx
-L
2
where h(zg, 7o) is the backprojected signal as a function of pixel
position (z, ro), L is the aperture length, g is the radar echo as
a function of aperture position x and distance between pixel and
aperture position R.

B. Full-Wave Simulation and Algorithms Performance

The simulated oil well structure is shown in Fig. 3. The pipe
casing is made of concrete; the diameter of well is 20 cm and
its thickness is 2.5 cm. As illustrated in Fig. 3, two holes with
diameter of 4 cm have been perforated in the well wall with
25 and 45 cm distance, respectively, from right edge of pipe.
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Fig. 4. E-Field distribution in the well in a plane 7 cm below the antenna at
(a) 2, (b) 3, and (¢) 5 GHz.

The transmitter/receiver antenna is a Vivaldi antenna with the
impedance bandwidth from 2.2 to 12 GHz separated 5 cm from
each other. Their distance from the interior surface of well wall is
7 cm. Since the simulation structure is big (70 cm well length) we
reduce the simulation bandwidth to run our simulation in lower
time. Therefore, in each aperture position, a broadband pulse
with the bandwidth of 2.2-6.7 GHz is emitted by Tx antenna,
and Rx antenna receives: reflections from target, coupling from
transmitter antenna and other unwanted clutter signals. The radar
system is quasi monostatic, and Tx/Rx antennas are shifted along
the well wall every 1 cm which satisfy Nyquist spatial sampling
criteria.

E-Field distribution in the well in XZ plane [see Fig. 3(b)]
7 cm below the antenna in Y direction is illustrated in Fig. 4 for
2, 3, and 5 GHz. As can be seen, in a limited region, the field
is approximately uniform which mimics plane wave. It is an
important criterion in imaging; all targets in this region receive
approximately the same in phase signal. Therefore, the size of
this region is the effective footprint of antenna.

Raw data and reconstructed image by GBP—without any
clutter removal—are illustrated in Fig. 5. Fig. 5(a) is image
of B-scan matrix. In all images, the dashed line squares show
the position of real perforations. As can be seen, the strongest
received signal is the coupling from Tx antenna.

Now, we apply the proposed clutter removal techniques on
raw data and then apply GBP to reconstruct the image. The
reconstructed image resulted from mean scan subtraction and
L;norm techniques are shown in Fig. 6(a) and (b), respectively.
As can be seen, in this scenario, the mean subtraction method
shows better result.

Here, we perform SVD on raw data and decompose it to
some singular values and singular vectors correspond to different
sources in simulated scenario, i.e. clutter, target, and noise.
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Fig. 5. (a) Raw data and (b) reconstructed image without any clutter removal.

We define o0;/01 < 0.001 as a noise subspace. Therefore, we
removed related singular values to this subspace. We found
that the first two singular values correspond to static clutter
of antenna coupling and reflection from interior surface of the
wall; so, they were removed. Finally, the reconstructed image by
remained singular values is shown in Fig. 6(c). As shown, mean
subtraction and SVD show almost similar performance while
SVD result is a little better.

One of the principal parameters of SSA is window length
selection that affects the orthogonality of subseries of primary
series and closeness of singular values. However, there is no
general rule for determination of window length in imaging
applications, though some general principles for some appli-
cations such as trend extraction, smoothing, and periodicity
extraction reported in the literature [40], [54]. Therefore, we
evaluate the effect of window length in perforation imaging. It
is seen that by increasing the window length, some replicas of
perforation appear in the reconstructed image. On the contrary,
very small lengths leads to missing of information. Finally, we
choose L, = L, = 15 as the windows length. For the sake of
brevity, we only present the results of investigation; not their
images. Similar to window length, there is no theoretical rule to
find optimal number of clusters. After testing various number of
clusters, we found that to attain good results in terms of minimum
artifact, the number of clusters should be more than half of
their maximum number. In this simulation, it is assumed 16. In
Fig. 7, the reconstructed images after applying basic 2-D SSA
and modified 2-D SSA are illustrated. Among different clusters,
the image of two clusters of 14 and 15 are related to coupling and
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scan subtraction, and (c) SVD.

TABLE I
SCR AND CONTRAST OF DIFFERENT CLUTTER REMOVAL METHODS

Linorm Mean SVD Modified

subtraction 2D-SSA
SCR -7 10.28 13.03 22.99
Contrast -19.7 -2.3 4.87 15.38

reflection from interior surface of wall, clusters 11-13 include
target and some artifacts, and the remained clusters present
images including too much artifacts which are not shown for the
sake of brevity. As can be seen, in clusters 11-13, some artifacts
due to applying 2-D SSA are produced. These artifacts are
removed by multiplication of image of clusters 11-13 (Modified
2-D SSA). The results of modified 2-D SSA is shown in Fig. 7(f).

To compare these algorithms in this application quantitatively,
SCR and contrast of each image are listed in Table 1. The SCR
is evaluated by (17) [19], and the contrast is defined as the ratio
between value of two pixels with highest intensity in the target
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region and background.

L 2

N Lamyea, P (@:2)]
SCR = = € 2

N 2w )eA, 1P (2, 2)]

where A; and A, are target and clutter regions, respectively, IV;

and N, are number of pixels in target and clutter regions, and p
is the intensity of pixel. As can be seen in Table I, modified 2-D
SSA outperforms the other clutter removal methods.

The observed behavior is explainable by mechanism of each
algorithm. Both L1-norm and mean subtraction are only suitable
for stationary clutter removal. However, mean subtraction is
better than L1-norm subtraction. The reason is that in L1-Norm
subtraction, we subtract the A-scan with minimum L1-norm
from all data matrix. In this case, if one aperture position get very
weak signal, e.g., physical phenomena or even noise/random
error, that position would be the determinative and if it does not
see the effect of a stationary clutter, that stationary clutter would
not be removed by this method. As can be seen in Fig. 6(a), the
effect of wall has not be removed by this method. However, in
mean scan subtraction, the average of all signal in all aperture
positions is determinative and if the effect of a stationary clutter
isn’t sensed in some points, it could still be removed because
of its effect in other points. As can be seen in Fig. 6(b), this
method removes the effect of wall. SVD and SSA as blind
source separation algorithms, can differentiate among different
targets in the scene and are effective on both stationary and
nonstationary. Compared to SSA, SVD needs less computational
times but is less powerful.

A7)

V. PROPOSED ALGORITHM FOR IMAGING

In the previous section, we investigated different clutter re-
moval methods. However, in addition to clutter removal, some
preprocessing steps have to be done on raw data. The proposed
comprehensive algorithm is shown in Fig. 8. The first step
is coupling removal. Actually, we have two general types of
clutter in this SAR imaging case: stationary & nonstationary.
Stationary clutters are those constant clutters in all scan point
of SAR, e.g., coupling and holder scattering. Nonstationary
clutters are those that vary over different SAR scan points, e.g.,
effect of well edge and higher-order scattering in the waveguide.
Although SVD-based algorithms are able to remove both sta-
tionary and nonstationary clutters, removing the coupling effect
which usually has the highest energy contribution and highest
singular value, makes the dynamic range of remaining part of
signal smaller and therefore, handling of the remaining singular
values becomes easier. There are different methods for coupling
removal. In the literature, typical method is that the received
signal is measured without target in desired medium (ambient
measurement); however, it is hardly possible in real scenario of
oil well monitoring. Instead, we choose L;norm for coupling
removal.

In the second step, we should determine optimum scan length.
In oil well monitoring which mimics a strip map SAR, depending
on the antenna footprint, we have a limited effective length. It
means that because of the limited footprint of antenna on scene,
Rx antenna only receives reflection of each perforations in a
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Fig. 8. Flowchart of the proposed algorithm.

limited scan length and the received signals from outside of this
effective scan length play role of clutter for that part of image
[see Fig. 2(a)]. Therefore, we should reconstruct image of each
perforation separately with limited scan length, not using all
A-scans. For far-field SAR imaging, there are analytic formulas
for integration angle [6 in Fig. 2(a)]; however, there is not
any formula for near-field SAR imaging. On one hand, higher
integration angles increase the clutter level and we have to reduce
integration angle. On the other hand, the cross-range resolution
depends on scan length or integration angle and we are not
allowed to overcut the integration angle. Therefore, to find the
optimum scan length, we propose sliced SAR imaging whereas
we slice the scan length to some equal parts and construct the
image of each slice, separately.

After calculating the optimum scan length, we perform spatial
windowing. To this end, we window each A-scan signal and
select a part of signal scattered from the desired perforation
neither scattering from closer nor farther objects. The next step
in signal processing chain is applying a clutter reduction method.
According to results of the previous section, modified 2-D SSA
has the best performance. Therefore, we use it as clutter reduc-
tion method whereas, first 2-D SSA is applied. Then, the image
is reconstructed. Since 2-D SSA creates some artifacts, the last
step of modified 2-D SSA (artifact removal, i.e., multiplication
of image of different clusters) is applied.

In order to verify the effectiveness and repeatability of the
proposed method in pipeline monitoring, another full wave
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simulation using CST Microwave Studio is done. The simulated
oil well structure is shown in Fig. 9. All simulation parameters
are like previous simulation, but the only difference is concerned
with one of the perforations. In this scenario, the second hole is
clogged by an asphalt cylinder which its electrical characteriza-
tion is assumed as €,, = 2.1, 0 = 0.05. The asphalt cylinder fills
the second hole, completely.

Like previous simulation, the window length and the number
of clusters in 2-D SSA are assumed as L, = L, = 15, and
n. = 16, respectively. Final image is reconstructed by multi-
plying images produced by clusters 9-11 which include target
information. The reconstructed image using proposed algorithm
is illustrated in Fig. 10. For the sake of brevity, only the final
image is shown and not the image of all clusters. As it can
be seen, the intensity of the second hole is weaker than the
first hole which means the second hole is clogged by a foreign
object. Since asphalt and concrete have different permittivities,
it makes sense that footprint of the second hole in the image
has a weaker intensity compared to the first hole because of the
lower permittivity difference between concrete and asphalt.

VI. MEASUREMENT

In this section, to verify the proposed algorithm, a practical
setup is developed. Due to executive difficulties, we do not
fill the well with oil. However, since the oil is almost lossless
and nondispersive [55], considering it will not affect the results
except a possible improvement due to its permittivity which
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Fig. 11.

Qil well positioner. (a) Side view. (b) Cross view. (c¢) UL

makes near-field range shorter. Different parts of measurement
setup are described as follows.

A. Oil Well Positioner

The oil well positioner is shown in Fig. 11. Itincludes concrete
pipe, stepper motor, ball screw, boring, a standing structure, and
Arduino board as a processor. We first describe the mechanic
and then electronic section.

First, rotational movement of stepper motor is transformed on
ball screw using two pulleys and timing belt. Ball screw trans-
lates rotational movement of motor to transitional movement.
Screw is fixed using two borings at the beginning and end to
rotate around itself. Ball screw is connected to a linear motion
guide that carries a Plexiglas shaft. On the top of pipe, a groove is
cut; so, the shaft can enter the pipe and move freely along it. The
Tx/Rx antennas are attached to the end of the shaft. The motor
model is chosen such that to transform the shaft with precision
of the order of sub millimeter. On the top of ball screw, a planar
platform is fixed to carry UWB sensor during scan.

In the electrical section, a user interface is developed to be
a bridge among user, sensor, and motor. The user can set mea-
surement parameter and control positioner by a user interface
(UI). The Ul sends current position of the antenna to the Arduino
board based on positions entered by user including start position,
stop position, and step. The Arduino board translates these
commands for motor driver in a form of pulsewidth modulation
pulse. When the UI sends the commands to Arduino and motor
relaxes in the desired position, it sends the “save” command to
Sensor.
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Fig. 12.  Block diagram of M-sequence sensor.
TABLE II
PLACEMENTS AND RADIUSES OF PERFORATIONS FABRICATED IN OIL WELL
PIPE MODEL
L1l(cm) Rl1(cm) L2(cm) R2(cm)
20 2 52 1.5

B. UWB Sensor

A Maximum length sequence (M-sequence) sensor (m: ex-
plore form Ilmsens company [56]) is used. It has simple struc-
ture, high measurement speed, high stability, and low crest factor
signal. In this technique, energy of pulse is distributed over the
time, and therefore, maximum amplitude of signal is low. The
low amplitude simplifies circuit and improves RF behavior. The
block diagram of sensor is shown in Fig. 12. A binary divider
controls subsampling. In this method, thanks to steep pulse edges
of binary divider, drift and jitter are suppressed significantly, and
it avoids nonlinear sample spacing. The shift register with its
feedback produces a M-sequence signal with high instantaneous
bandwidth. This signal is periodically applied to the target and
data gathering is implemented by undersampling method. A
brief description of sensor will be described as follows [57].

Maximum length binary sequence is one of the pseudo ran-
dom binary sequence signals used as stimulus in several ap-
plications due to its short triangular autocorrelation function
that provides acceptable resolution and low side lobe level. The
M-sequence signal, its spectrum and autocorrelation are shown
in Fig. 13.

fe is the clock frequency of shift register with length of
n. Regarding to length of shift register, signal is constructed
from N = 2™ — 1 chip in each period of M-sequence. Spectrum
envelope of M-sequence signal is sin ¢? function, and 80% of
signal energy is distributed between DC — %

VII. RESULTS

In this section, some measurement scenarios are implemented
and the results are illustrated. The concrete pipe length is 98 cm
and the inner and outer diameter are about 22 and 25 cm,
respectively. The perforations position (L1 cm and L2 cm from
right edge of pipe) and radius (R1, R2) are illustrated in Table II.

During the scan, the distance between aperture positions
is set to 5 mm, which satisfies (14). The clock frequency of
M-sequence sensor, fc, is 18 GHz; therefore, the effective band-
width is 9 GHz. The length of shift register is 9 bit; thus, in each
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Fig. 13.  M-sequence signal. (a) Its time shape signal, (b) spectrum, and (c)
auto correlation function, reprinted from [57].

period of signal, we have 511 chip. Autocorrelation is done in the
sensor hardware, so the shape of received signal is like Fig. 13(c).
Note, to reconstruct the image properly, we have to adjust zero
time in GBP algorithm for picking up the samples from each
aperture position signal, based on this zero time. The first time
that the amplitude of received signal reaches more than noise
level can be supposed as zero time.

For 2-D SSA, the window size is L, = L, = 15 and the
number of clusters is assumed 16. Our goal is to reconstruct
image of well wall with at least 1 cm cross-range resolution.
Therefore, based on (15) as a rough estimation of resolution
and explanation given in Section V about finding optimum scan
length, after some tuning, we selected 30 cm as the optimum
scan length.

The raw data and some measured signals in different aperture
position are shown in Fig. 14. As can be seen in Fig. 14(a)
and (b), there is a strong coupling which is almost constant
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Fig. 15. Reconstructed image using proposed algorithm (a) perforation P1,
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in different scan points. After this strong coupling, signals
including the information of target, clutters and noise are visible.
As can be seen, this part varies for different position and after
processing and clutter reduction, provides image of perforations.
The reconstructed images after proposed algorithm are shown
in Fig. 15. The image of two perforations related to each slice
are shown in Fig. 15(a) and (b).

VIII. CONCLUSION

Oil well monitoring faces various clutter sources due to
geometrical restrictions which complicates imaging. For the
first time, we compared some clutter removal algorithms in oil
well imaging using UWB near-field SAR method, and proposed
modified 2-D SSA for clutter removal. The performances of
algorithms were investigated using full wave simulation data in
where perforations are all open. Finally, a comprehensive algo-
rithm for oil well imaging was proposed and its performance was
verified by a different simulation case where perforations were
open and clogged by asphalt material. Also, the performance
was evaluated by experimental results.
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