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Change Detection in Heterogeneous Optical and
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Abstract—Change detection in heterogeneous remote sensing
images is crucial for disaster damage assessment. Recent meth-
ods use homogenous transformation, which transforms the het-
erogeneous optical and synthetic aperture radar (SAR) remote
sensing images into the same feature space, to achieve change
detection. Such transformations mainly operate on the low-level
feature space and may corrupt the semantic content, deteriorating
the performance of change detection. To solve this problem, this
article presents a new homogeneous transformation model termed
deep homogeneous feature fusion (DHFF) based on image style
transfer (IST). Unlike the existing methods, the DHFF method
segregates the semantic content and the style features in the het-
erogeneous images to perform homogeneous transformation. The
separation of the semantic content and the style in the homogeneous
transformation prevents the corruption of image semantic content,
especially in the regions of change. In this way, the detection per-
formance is improved with accurate homogeneous transformation.
Furthermore, we present a new iterative IST strategy, where the
cost function in each IST iteration measures and thus maximizes
the feature homogeneity in additional new feature subspaces for
change detection. After that, change detection is accomplished
accurately on the original and the transformed images that are
in the same feature space. Real remote sensing images acquired
by SAR and optical satellites are utilized to evaluate the perfor-
mance of the proposed method. The experiments demonstrate that
the proposed DHFF method achieves significant improvement for
change detection in heterogeneous optical and SAR remote sensing
images in terms of both accuracy rate and Kappa index.

Index Terms—Change detection, heterogeneous, image style
transfer (IST), remote sensing.

I. INTRODUCTION

CHANGE detection in remote sensing images is becom-
ing increasingly important for rapid evaluation of natural
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disasters [1]. In many cases, the pre- and post-remote sensing
images are collected by heterogeneous sensors. Among them,
optical sensors and synthetic aperture radar (SAR) are the most
commonly used. Optical sensors capture ground objects with
high resolutions and multiple spectra [2], [3], but their sensitivity
to weather and sunlight conditions leads to difficulties of imme-
diate acquisition of post-event qualified images [4]. In contrast,
SAR is an active microwave sensor independent of weather and
sunlight conditions, but it provides less information compared
with optical sensors [5], [6]. The complementary properties
make them frequently used as a pair of pre-event monitoring
(optical sensor) and rapid post-event acquisition (SAR) means
[7]. Therefore, there exist strong needs for change detection in
heterogeneous optical and SAR remote sensing images.

Change detection in heterogeneous remote sensing images
is challenging due to their disparate feature representations of
ground objects. It leads to infeasibility of direct comparisons
(e.g., pixelwise difference and ratio) between heterogeneous
images, which are commonly used for homogeneous images
[8], [9]. A number of methods have been proposed to address
the issue. Jensen et al. [10] introduced a post-classification
comparison (PCC) method based on unsupervised clustering
to detect wetland change in heterogeneous aircraft images. In
PCC, the pixels of the multitemporal heterogeneous images are
classified into different categories, such as wetland, forest, and
rivers, to derive the corresponding classification maps. Then,
the classification maps are compared to generate the regions
of change. Mubea and Menz [11] later developed the PCC
method by using support vector machine (SVM) for classifica-
tion instead of unsupervised clustering. The performance of the
PCC methods is susceptible to the classification accuracy and
thus may be degenerated by the aggregation of classification
errors [12]. Wu et al. [13], [14] proposed the Bayesian soft
fusion framework by combining the classification results and
the change detection probability to reduce the accumulation of
misclassification errors on the homogeneous images. Different
from the PCC-based methods, Niu et al. [15] and Volpi et al. [16]
proposed the joint-detection methods on the stacked multitem-
poral heterogeneous images to avoid aggregated classification
errors. Parts of the pixels of change and no change in the
stacked images are selected as the training samples. Although
the joint-detection methods tend to achieve better performance
than the PCC methods, extensive pixels/samples are required
to learn the complicated relationship of the ground objects
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between heterogeneous images, which might be inaccessible in
practice [7].

Recent methods [7], [17]–[26] based on homogenous trans-
formation have achieved remarkable results with increasing pop-
ularity. Homogeneous transformation renders heterogeneous re-
mote sensing images into the same feature space. Therefore,
direct comparisons can be applied on the original and the trans-
formed images with homogeneous features. Compared with the
joint-detection methods, the methods based on homogeneous
transformation do not need massive pixels/samples to learn the
complicated relationship between the heterogeneous images [7],
[18], [20]. Among these methods, Brunner et al. [17] transform
the pre-event optical images into SAR image space. The es-
timated three-dimensional parameters of the landscapes from
the optical satellite and the imaging parameters from SAR are
utilized to generate the semantic content and the feature space
of the transformed image, respectively. The change detection is
then achieved on the transformed pre-event and the original post-
event SAR images. To avoid the employments of SAR imaging
parameters, pixel transformation [18] and linear regression [19]
are utilized to generate the feature space of the transformed
images. The pixel transformation method [18] is later improved
by transfer learning in [20]. Liu et al. [21] proposed a transfer
classification method for dealing with heterogeneous remote
sensing data (e.g., SAR and optical images), and it can well
manage the uncertain information by using multiple mapping
value estimation strategy jointly with belief function theory
during the transformation process. Gong et al. [22] proposed an
unsupervised method by establishing the relationship between
heterogeneous images via dictionary learning and later devel-
oped a coupling convolutional neural network with iterative
generation of detection results [7]. Kernel canonical correlation
[23], [24], manifold learning [25], and Bayesian nonparametric
model [26] are also utilized to transform the heterogeneous
images for change detection.

Among the above methods based on homogeneous trans-
formation, there exists the problem that the features extracted
for homogeneous transformation operate on the low-level space
(e.g., pixel values [18]) and may corrupt the semantic content in
the transformed results. The low-level features cannot describe
accurately the image semantic content that is abstract in the high
level, especially in the regions with massive ground objects and
complex scenes. This is because the low-level features offer lim-
ited capability for extraction of the image semantic content [28].
Therefore, the performance of homogeneous transformation is
deteriorated, leading to inaccurate results of change detection.

Recent studies [28], [29] on image style transfer (IST) based
on deep convolutional neural networks (DCNN) [27] have re-
ceived considerable attention. In IST, a natural image can be
rendered into specific artistic styles from paintings. To achieve
this, DCNN is used to separately extract the image semantic
content and the style from the natural image and the painting,
respectively. The final synthetic image is generated by using a
cost function to combine the semantic content of the natural
image and the style of the artistic painting.

The IST method aims to transfer the styles of natural images
but cannot meet the feature homogeneity for change detection.

It uses a single cost function containing limited features to
represent the image style, leading to feature inhomogeneity
of the transformed image. The feature space is the feature set
that represents the abstract semantic content in a specific image
space. The style is a subset of the feature space with much less
features. Both of them characterize the image semantic content,
but the description of the style is much coarser than that of the
feature space. For change detection, the feature spaces of the
transformed and the heterogeneous images need to be the same
to make change detection feasible. As a result, the naïve IST
method does not achieve the homogeneity of feature space for
change detection in heterogeneous images.

In this article, we present a new deep homogeneous feature
fusion (DHFF) method for change detection in heterogeneous
optical and SAR remote sensing images. In the proposed DHFF
method, the homogeneous transformation that renders the het-
erogeneous images into the same feature space is considered as
an IST problem. To the best of our knowledge, this is the first
attempt to accommodate the concept of IST on change detection
in heterogeneous remote sensing images.

The proposed DHFF method employs the DCNN that is
used for IST to extract the semantic content and the style
features separately. Compared with the existing methods based
on homogeneous transformation, the proposed method prevents
the corruption of the semantic content by separate extraction,
leading to accurate homogeneous transformation. Especially in
the regions with multiple ground objects and complex scenes,
the advancement is more evident because of the sufficient de-
scriptions of the rich semantic content by the high-level features
of DCNN.

To satisfy the feature homogeneity requirements of the trans-
formation, we develop a new iterative IST (IIST) strategy. In
the proposed IIST strategy, the cost function in each iteration
measures the feature homogeneity in additional new feature
subspaces, thus maximizing the feature homogeneity of the
transformed image for change detection. Different from the
naïve IST method using a cost function to measure the style
in a single subspace with limited features, the cost function
in the proposed method incorporates multiple cost functions
to measure the feature homogeneity in additional new feature
subspaces iteratively, leading to great improvement of feature
homogeneity in the final transformed image. Randomized fil-
ter weights are employed to acquire additional new feature
subspaces to enhance the description ability of the complete
feature space. Based on the transformed image that achieves
feature homogeneity by the new IIST strategy, the performance
of homogeneous transformation and the accuracy of change
detection are significantly improved.

In summary, the proposed method consists of the following
key steps. First, the semantic content and the style features
are separately derived from the heterogeneous optical and SAR
remote sensing images by the high-level features of the DCNN
originally designed for IST. Then, the IIST strategy is utilized to
derive the transformed image with feature homogeneity. Finally,
change detection is accomplished accurately on the original and
the transformed images, both of which are in the homogeneous
feature space.
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Three datasets of optical and SAR remote sensing images are
adopted to evaluate the performance of the proposed method.
Among them, two datasets are acquired by GeoEye-1 (optical
satellite) and RADARSAT-2 (SAR satellite). The third dataset
consists of the optical and SAR images collected by Quickbird
and COSMO-SkyMed satellites, respectively. The experiments
demonstrate that the proposed DHFF model achieves signifi-
cantly better accuracy rate and Kappa index than the existing
change detection methods for heterogeneous optical and SAR
remote sensing images, at the cost of the increased computa-
tional complexity.

The contributions of this article are summarized as follows.
1) This work is the first attempt to apply the concept of IST

for homogeneous transformation on the change detection
task in heterogeneous remote sensing images. Different
from the existing methods based on homogeneous trans-
formation, the semantic content of the image is extracted
separately by the DCNN with the high-level features to
avoid corruption and inaccurate change detection results.

2) Different from the naïve IST method that only transfers
image styles, the proposed DHFF method measures and
then achieves the feature homogeneity in additional new
feature subspaces with the IIST strategy to meet the re-
quirements of feature homogeneity for change detection
in homogeneous images.

The rest of this article is organized as follows. The change
detection problem for heterogeneous optical and SAR remote
sensing images is formulated based on DHFF in Section II.
Section III describes the details of the proposed new method
for change detection. The experimental results are presented in
Section IV. Section V provides the concluding remarks.

II. A NEW MODEL OF CHANGE DETECTION FOR

HETEROGENEOUS OPTICAL AND SAR REMOTE

SENSING IMAGES

A. Problem Formulation

Assume that two heterogeneous remote sensing images, Iopt

and ISAR, are available in a given region where an event of
change happens. According to the properties of optical sensors
and SAR mentioned above, Iopt is assumed to be an optical
image obtained before the change event happens (pre-event),
while ISAR is a post-event intensity SAR image. Both of the two
images are coregistered with each other. The objective of change
detection is to find the regions of change from the heterogeneous
optical and SAR images: Iopt and ISAR. In general, a binary
map, named BM, revealing the final detected regions of change,
is generated where the values “1” and “0” indicate the pixels of
change and no change, respectively.

B. Deep Homogeneous Feature Fusion Framework

To detect the change between Iopt and ISAR, we propose
a new homogeneous transformation framework incorporating
the semantic content and the style features that is illustrated as
follows:

BM = D(T1(I
opt), T2(I

SAR)) (1)

where T1(·) and T2(·) are two homogeneous transformation
functions and D(·) represents a change detection method that
is commonly used for homogeneous images: T1(I

opt) and
T2(I

SAR).
In the proposed framework (1), we choose the feature space

of the optical image for homogeneous transformation. Com-
pared with SAR images, optical images are usually with higher-
resolutions and more details of ground objects. Transferring
SAR images into optical image space will keep more semantic
content in homogeneous transformation than transferring optical
images into the feature space of SAR images. Therefore, we have

T1(I
opt) = Iopt. (2)

To transform ISAR into the optical image space, the concept
of IST is applied to separately extract the semantic content
and the style features of ISAR and Iopt, respectively. Then the
transformed image is derived by the new IIST strategy to achieve
the feature homogeneity

T2(I
SAR) = F (Iopt, ISAR) (3)

where F (·) is the fusion operation to separately derive the
semantic content and the style features of ISAR and Iopt, re-
spectively, and then combine them by the IIST strategy.

III. THE PROPOSED DEEP HOMOGENEOUS FEATURE FUSION

(DHFF) METHOD

A. Extraction Framework of Semantic Content and Style
Features Based on DCNN

Before performing the separate feature extraction, the seman-
tic content and the styles of the heterogeneous images should be
defined. In the proposed method, the semantic content of an
image is the semantic information of the ground objects (e.g.,
the types, shapes, and locations) that is maintained if captured
by heterogeneous imaging sensors. The style of an image is
the specific forms (e.g., textures) to describe and represent
the ground objects, determined by different imaging sensors.
The separate definitions of the semantic content and the style
will help to avoid semantic content corruption in the following
process of homogeneous transformation.

Fig. 1 shows the details of extraction of the features of the
semantic content. The process of the style features is illustrated
in Fig. 2. Similar to the naïve IST method in [28], the VGG
network [33] is utilized as the framework to extract the semantic
content and the style features.

As shown in Fig. 1, the layer hyperparameter Conv5-4 in
the VGG network is selected and spanned into a vector as the
semantic content features. In Appendix I, we explain the reason
why Conv5-4 is selected.

The extraction of the style features is illustrated in Fig. 2.
Similar to [28], the texture operator is applied on the spanned
feature maps by the Gram matrix. The style features are gener-
ated by the multiscale layers of the VGG network to provide a
thorough characterization of the image textures. In other words,
the layers should cover all the scales of the network for complete
descriptions.
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Fig. 1. Flowchart of the extraction of the semantic content features.

Note that different from [28], the pooling layers covering all
the scales are implemented instead of the ReLU layers because
the pooling layers keep more useful texture information for style
feature extraction [31], [32]. The extracted textures from all the
five pooling layers are concatenated to produce the style features
S(·), as shown in Fig. 2(b).

Instead of the average pooling operation [28], the max pooling
operation is employed in the VGG network to extract semantic
content and styles, as shown in Figs. 1 and 2, respectively. In
Appendix II, we demonstrate that the max pooling preserves the
semantic content better compared with the average pooling.

As can be seen in Figs. 1 and 2, entirely different features
are extracted for the semantic content and the style of the
image separately. The output of the deepest convolutional layer
Conv5-4 is employed as the semantic content features. The
pooling layers covering all the scales of the image are combined
with the texture operator to generate the style features. As a
result, the semantic content is isolated from the style by the
disparate features. Compared with the existing methods based
on homogeneous transformation [7], [17]–[26], the proposed
method applies separate feature extraction by the DCNN (VGG
network), capable of describing the high-level semantic content
of the image with sufficiency and accuracy, especially in the
regions with rich semantic content. Besides, the pooling layers
with different scales can describe the image features repre-
sented by multiscale textures. The semantic content and the
style features carry distinct information of the image without
confusion and represent sophisticate transformation relation-
ship of multiple ground objects between the two heterogeneous
images. Therefore, the semantic content of the original image
is preserved without corruption, especially in the regions with
multiple ground objects and complex scenes.

B. New IIST Strategy Based on the VGG Network With
Randomized Filter Weights

Here, we aim to achieve the feature homogeneity
F (Iopt, ISAR) in (3), to derive the transformed imageT2(I

SAR),

based on the extraction framework of the semantic content and
the style features, as shown in Figs. 1 and 2.

We propose a new IIST strategy as follows:

T k
2 (I

SAR) = arg min
I

Lk(I; ISAR, Iopt) k = 0, 1, 2, . . . ,

(4)

Lk(I; ISAR, Iopt) = λc|Ck(I)− Ck(ISAR)|2

+ (1− λc)|Sk(I)− Sk(Iopt)|2 (5)

whereT k
2 (I

SAR) is the updated transformed image generated by
minimization of the cost function Lk(·) in the kth IST iterations
with T k−1

2 (ISAR) employed as the initial image of the image
solution I and λc is the constant controlling the influence of
the semantic content and the style features on the transformed
image. For initialization, i.e., k = 0, T 0

2 (I
SAR) is the output of

the naïve IST method. It is generated in the feature subspace
described by C0(·) and S0(·), of which the extraction frame-
work is shown in Figs. 1 and 2 with the fixed pretrained filter
weights. The fixed filter weights of the extraction framework are
pretrained on the ImageNet [34]. For k ≥ 1, Ck(·) and Sk(·)
are added to measure the new feature subspace of homogene-
ity. In each iteration, the cost function Lk(·) is minimized by
the limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [28].

In each iteration, T k
2 (I

SAR) achieves the feature homogene-
ity of Ck(·) and Sk(·) by minimization of Lk(·) based on
the initial image T k−1

2 (ISAR), i.e., the minimization of Lk(·)
serves as the transformation of T k−1

2 (ISAR) along with the
additional new feature subspace represented byCk(·) andSk(·).
Therefore, compared with T k−1

2 (ISAR), T k
2 (I

SAR) achieves the
feature homogeneity in the new feature subspace described
by Ck(·) and Sk(·), in addition to the feature homogeneity
achieved in the feature subspace described by Ck−1(·) and
Sk−1(·). In this way, T k

2 (I
SAR) achieves the feature homo-

geneity in the feature subspaces described by the semantic con-
tent features C0(·), C1(·), . . . , Ck(·) and the style features
S0(·), S1(·), . . . , Sk(·). In other words, T k

2 (I
SAR) is refined
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Fig. 2. Flowchart of the extraction of the style features. (a) Extraction of each part of the style features. (b) Texture operator. (c) Feature concatenation.

by the new additional feature subspace described by Ck(·) and
Sk(·).

To extract the features Ck(·) and Sk(·), k ≥ 1, effectively,
the filter weights of the convolutional layers in the extrac-
tion framework shown in Figs. 1 and 2 are randomized in
each loop of the iterations. Assume the filter weights of
the pretrained VGG network that derive C0(·) and S0(·)
as W0

i = {w0
i1, w

0
i2, . . . , w

0
in}, i = 1, 2, . . . , 16 that in-

cludes all the n weight values of the ith convolutional layer
in the pretrained VGG network with 16 convolutional lay-
ers. The filter weights to derive Ck(·) and Sk(·), k ≥ 1, are
given by

Wi
k = W0

i + αi ·Xi
k (6)

where Wk
i indicates the filter weights of the ith convolutional

layer in the kth iteration, αi is a constant controlling the in-
tensity of the randomization of the ith convolutional layer, and
Xk

i = {xk
i1, x

k
i2, . . . , x

k
in} represents n independent identically

distributed (i.i.d.) Gaussian variables derived in the kth iteration.
For each variable, xk

ij ∼ N(0,Var(W0
i )) with Var(W0

i ) =
1

n−1

∑n
j=1 (w

0
ij − w0

i )
2, as the estimated variance of W0

i and

w0
i = 1

n

∑n
j=1 w

0
ij . The Gaussian randomization is to assure the

common assumption of normal distribution of the convolutional
layer weights.

In each iteration, Wk
i fluctuates around W0

i , i =
1, 2, . . . , 16, with the normal distribution. Therefore, based on
the extraction framework shown in Figs. 1 and 2, it is ensured
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that the extracted features based on Wk
i , i.e., Ck(·) and Sk(·)

k ≥ 1, can also effectively extract the feature subspaces of the
semantic content and the style with similar properties, respec-
tively. Furthermore, by randomization in (6), Ck(·), k ≥ 0, are
different from each other in each iteration, which also holds true
for Sk(·), k ≥ 0.

Intuitively, the IIST strategy in (4) and (5) is expected to
converge. For a given image, Ck(·) and Sk(·), k ≥ 0, are the
feature subspace that describes the semantic content and styles,
respectively. After a number of iterations, Ck(·) and Sk(·),
∀k ≥ 0, extracted by the DCNN with randomized weights, are
expected to cover the whole feature space of the image. At
this time, T k

2 (I
SAR) will converge because the feature homo-

geneity has been already achieved in the semantic content and
the style described by these feature subspaces. Ideally, when
all of Ck(ISAR) and Sk(Iopt), k ≥ 0, completely cover the
semantic content of ISAR and the styles of Iopt, T k

2 (I
SAR) can

be infinitely close to the real post-event optical image.
The naïve IST method uses the pretrained VGG network with

the fixed filter weights for style transferring. In other words,
T 0
2 (I

SAR), derived by minimizing the single cost function L0(·)
with C0(·) and S0(·), is the result of the naïve IST method,
which means the feature homogeneity is only achieved in a single
feature subspace with limited semantic content features C0(·)
and style features S0(·). Compared with the naïve IST method,
the proposed method achieves the feature homogeneity in mul-
tiple feature subspaces described by C0(·), C1(·), C2(·), . . .
and S0(·), S1(·), S2(·), . . .. These new feature subspaces
enhance the description ability of the semantic content and
the style greatly. Therefore, the updated transformed image in
(4) promotes the semantic content feature homogeneity with
ISAR and the style feature homogeneity with Iopt. When the
iterations end, the feature homogeneity of the transformed image
will be maximized. The IIST strategy that achieves the feature
homogeneity in the transformed image is shown in Algorithm 1
and Fig. 3, where N is the maximum number of iterations and ε
is the convergence threshold.

The change detection result BM is derived based on
T2(I

SAR), according to (1). The commonly used change de-
tection method OCSVM [35] for optical images is applied on
T2(I

SAR) and Iopt, both of which are in the optical feature
space, to derive BM.

In summary, the flowchart of the proposed DHFF method is
shown in Fig. 4.

IV. EXPERIMENTAL RESULTS

In this section, the 2011 Tōhoku earthquake (on March 11,
2011, with Mw 9.0 measured on Richter Scale) and the Haiti
earthquake (on January 12, 2010, with Mw 7.0 measured on
Richter Scale) are used as the study cases. Three real datasets,
all of which consist of a pre-event optical image and a post-event
SAR image, are used to evaluate the performance of the proposed
method. The information of the datasets is summarized in Ta-
ble I. For the first two datasets, the SAR images were collected by
the RADARSAT-2 satellite and the optical images were obtained
by the GeoEye-1 satellite. For the third dataset, the SAR and

Algorithm 1: IIST Strategy With the VGG Network of
Randomized Filter Weights.
Input:

Pre-event optical image: Iopt

Post-event SAR image: ISAR

Output:
The transformed image: T2(I

SAR) that achieves feature
homogeneity for change detection on homogeneous
images

Algorithm procedure:
1. Building the extraction framework of the semantic

content and the style features:
a) Build the extraction framework of the semantic

content features according to Fig. 1.
b) Build the extraction framework of the style

features according to Fig. 2.
2. Iterative strategy:

a) For k = 0, use ISAR as the initial image to derive
T 0
2 (I

SAR), according to (4) and (5).
b) For k ≥ 1, use T k−1

2 (ISAR) as the initial image to
derive T k

2 (I
SAR), according to (4), (5), and (6).

c) Stop criterion:
|T k+1

2 (ISAR)− T k
2 (I

SAR)|〈ε or k〉N

optical images are acquired by COSMO-SkyMed and Quickbird
satellites, respectively. As shown in Fig. 5, in the experimental
datasets, the quality of the optical images is better than that of the
SAR images with much higher resolutions and more details of
the ground objects. Therefore, we select the optical image as the
target feature space for homogeneous transformation to reduce
the loss of semantic content during image transformation. The
ground truths of changed regions are provided by Yanagawa [36]
(the first and the second datasets) and United Nations Institute
for Training and Research [37] (the third dataset). To deal with
different resolutions between the heterogeneous images, we use
the bilinear interpolation [38] to equalize their resolutions for
the homogeneous transformation. Besides, in the experimental
datasets, both the SAR and the optical images are coregistered
by visual selection of the controlling points [39].

The first dataset corresponds to a coastal area in Rikuzen-
takata, as shown in Fig. 5(a). The buildings near the coasts
were severely damaged by the earthquake and tsunami [36].
The pre-event optical image was acquired with the size of 1250
× 1250 pixels in September 2009. The post-event SAR image
was with the size of 64 × 64 pixels, collected in March 2011.
The second dataset corresponds to a suburban area of Iwate
prefecture, as shown in Fig. 5(b), which was also damaged
seriously after the earthquake. The SAR image is with the
size of 105 × 105 pixels and the size of the optical image is
2048 × 2048 pixels. The third dataset, collected by another
group of SAR and optical satellites, is shown in Fig. 5(c).
The dataset focuses on an urban area of Port-au-Prince, de-
stroyed seriously by the Haiti earthquake. The sizes of SAR
and optical images are 64 × 64 pixels and 640 × 640 pixels,
respectively.
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Fig. 3. Flowchart of the IIST strategy. Here N is the max number of iteration
and ε is the convergence threshold of the iteration.

In the experiments, we compare the proposed method with
the following methods: Linear regression [19] (denoted by LR),
SCCN [7], and HPT [20] in terms of the performance of change
detection for heterogeneous images. The OCSVM method di-
rectly applied on the original SAR and optical images (denoted
by OCSVM_O) is also included in the comparison to better
validate the effects of the IIST strategy in the proposed method.
Among these methods, LR is the basic model for homogeneous
transformation. The other two are the state-of-the-art methods.
We also test a method of only using the image T 0

2 (I
SAR) for

Fig. 4. Flowchart of the proposed method of change detection via deep
homogeneous feature fusion (DHFF).

TABLE I
INFORMATION OF THE EXPERIMENTAL DATASETS

Fig. 5. Coregistered optical and SAR images of the experimental datasets
with the ground truths (left: optical; middle: SAR; right: ground truth). (a) First
dataset. (b) Second dataset. (c) Third dataset.
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change detection, which is named HFF, to illustrate the separate
effect of the proposed IIST strategy. The HFF method can be
seen as the direct application of the naïve IST method without
any improvement. Compared with the proposed DHFF method,
the HFF method validates the effectiveness of the procedure
of segregated extraction of the semantic content and the style
features. In the two state-of-the-art methods for comparison,
HPT [20] uses pixel values as the transformation features, while
SCCN [7] builds a convolutional neural network with four layers
for each heterogeneous image to extract features. As can be seen,
both of the pixel values and the output of the SCCN are not
deep/abstract enough to extract the high-level semantic content.
Therefore, the semantic content may be susceptible to corruption
in the homogeneous transformation process, especially in the
regions with multiple ground objects and rich semantic content,
leading to inaccurate change detection results.

The quantitative evaluations of the above six methods are car-
ried out based on the following criteria [40] with four frequently
used measurements, as follows:

Ra =
ma +mc

M
,Rp =

ma

Md
, Rr =

ma

Mc
,Ka =

Ra − pe
1− pe

(7)

where Ra, Rp, Rr, and Ka are the accuracy rate, the precision
rate, the recall rate, and the Kappa index, respectively; ma and
mc are the numbers of changed and no changed pixels which
are correctly detected, respectively; Md is the total number of
pixels detected as change by the method; Mc is the total number
of truly changed pixels; M is the number of all the pixels in
the image; and the Kappa index, Ka, is commonly used to
evaluate the detection quality comprehensively with Pe as the
hypothetical probability of random agreements [41]. Among the
four measurements,Ra andKa evaluate the overall performance
of detection.

In the following, we first discuss the influence of the related
parameters on the performance of the proposed DHFF method,
i.e., λc, {αi, i = 1, 2, 3, . . . , 16}, N , and ε. Then, the proposed
method is compared with several change detection methods on
the three real datasets.

A. Parameter Setting

1) Effect of the Parameter λc: In the proposed method, the
value of λc ∈ (0, 1) in (3) is related to the influence of
the semantic content and the style features on the ho-
mogeneous transformation. A too-small λc means a little
consideration for the semantic content features, leading
to less preservation of the image semantic content in the
transformation. If λc is too large, the style features will be
underestimated, resulting in an insufficient transformation
of the feature space. As the dimensions of semantic content
features are much greater than those of style features
(dimensions are largely reduced by the Gram matrix), the
naïve IST method assigns small values of λc to balance
the influence of semantic content and styles. Similarly, we
set λc ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5}, which
distributes dense around 0, to evaluate its relationship with
the overall detection performance,Ra andKa. The values

Fig. 6. Relationship between the overall detection performance Ra/Ka and
λc on the different datasets.

of Ra and Ka versus λc are shown in Fig. 6. In Fig. 6, the
detection performance is satisfactory for all of the three
datasets when λc ∈ [0.01, 0.05]. Specifically, we choose
the value of λc to be 0.01, 0.05, and 0.01 for the first,
second, and third datasets in the experiments, respectively.

2) Effects of the Parameters {αi, i = 1, 2, 3, . . . , 16}:
{αi, i = 1, 2, 3, . . . , 16} control the intensity of the
noise added to the pretrained filter weights of DCNN. In
the proposed method, a too-large αi makes the DCNN
deviated far from the fine-tuned VGG network and thus
weaken the ability of the additional new feature subspaces
for homogeneous transformation. For a small αi, the abil-
ity of the additional new feature subspaces is limited. Here
we set all the αi to be 1 as an empirical and compromised
selection [42].

3) Effects of the Parameters N and ε: In the experiments,
N and ε are used as the thresholds to control the speed
of the IIST strategy. A too large N keeps iterating until
Iitr converges, leading to waste of time. If N is too small,
the iteration will be ended early before it converges. In
the experiments, N = 100 is suggested as a satisfactory
setting to guarantee the iteration convergence. The value
of ε should be small enough to keep the stability of the
convergence. Here ε is set to be 0.01 as a relatively weak
constraint.

B. Results on the First Dataset

The experimental results corresponding to the first dataset are
shown in Figs. 7 and 8. Fig. 7 shows the transformed images:
The initial transformed imageT 0

2 (I
SAR), the intermediate image

T 5
2 (I

SAR) in the iteration process, and the final transformed im-
ageT2(I

SAR) generated after the iteration ends. Fig. 8 compares
the detection results of different methods.

Fig. 7 presents the transformed images derived by the pro-
posed IIST strategy. In Fig. 7(a), i.e., T 0

2 (I
SAR), derived by the

naïve IST method, the style is changed and the semantic content
is still preserved, validating the effectiveness of the separate ex-
traction of the semantic content and the style features. Because of
the extensive information carried in the deep-level features and
the significant difference between the style of optical and SAR
images, the DCNN with limited filter weights cannot achieve
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Fig. 7. Transformed optical images of the first dataset. (a) T 0
2 (I

SAR):
The initial transformed image derived by the naïve IST method, i.e., k = 0.
(b) T 5

2 (I
SAR): The intermediate result of the proposed IIST strategy after

five iterations, i.e., k = 5. (c) T2(I
SAR): The final transformed image derived

by the proposed IIST strategy, in this case, k = 65 when the iteration ends.
(d) Iopt: The real pre-event optical image for comparison. With the increase
of the iteration loops, the feature space of the transformed image is more
homogeneous with that of the optical image, as shown in (d).

the feature homogeneity, resulting in vague contours of ground
objects and massive bright inhomogeneous regions in the water
area, as shown in Fig. 7(a). As a result, the feature homogeneity
is not achieved, compared with the real optical image Iopt, as
shown in Fig. 7(d). In Fig. 7(b), after five iterations, the contours
of the ground objects become clear and the bright inhomoge-
neous regions are reduced sharply. Compared with Fig. 7(a),
Fig. 7(b) is much more homogeneous with the optical image,
validating the effectiveness of the feature subspaces added in
each loop of the iterations. Fig. 7(c) shows the final transformed
image T2(I

SAR) of which the feature homogeneity is finally
achieved with the optical image. Compared with Fig. 7(a) and
(b), Fig. 7(c) eliminates most of the bright inhomogeneous
regions in the upper- and the lower-right parts of the images. The
edges of the lands and the buildings are much clearer than those
of Fig. 7(b). Besides, the narrow breakwater in the lower-right is
also preserved. Therefore, it is necessary to utilize the proposed
IIST strategy that includes multiple feature subspaces extracted
by the DCNN with randomized filter weights to generate the
transformed image with feature homogeneity.

The proposed DHFF method is compared with other methods
in Fig. 8. In Fig. 8(a), the change detection based on linear
regression causes massive false alarms. The performance of
change detection is unsatisfied, caused by the limited properties
of the features of linear regression. As can be seen in Fig. 8(a),
most of the buildings, roads, and coasts are not sufficiently
transformed and thus detected as false alarms. Different from

Fig. 8. Comparisons of the change detection results/error maps based on the
first dataset. Here green color indicates the correct detection of regions of change,
red color implies the regions of false alarms, blue color represents the areas of
missed targets, and black color illustrates the regions of no change that are
correctly detected. The error maps are achieved by (a) LR, (b) SCCN, (c) HPT,
(d) HFF, (e) OCSVM_O, and (f) DHFF. As can be seen, the proposed DHFF
method (f) achieves the best performance.

Fig. 8(a), Fig. 8(b), and 8(c) eliminate most of the false alarms
in the buildings, roads, and coasts because both of the SCCN
and the HPT methods extract more sophisticated features for
homogeneous transformation by transfer learning and neural
networks, respectively. However, there still exist considerable
false alarms and missed targets in the lower-left part of the
results. The corruption of the image semantic content in the
homogeneous transformation is the main reason. As can be seen
in Fig. 5(a), the lower-left part of the optical image includes
various kinds of ground objects, e.g., multiple buildings, roads,
and forests, with richer semantic content than other parts of the
image. If represented by the low-level features, the semantic
content of these regions is more difficult to be preserved in the
homogenous transformation than other regions. By the proposed
separate extraction of the semantic content and the style features
based on the high-level features with DCNN, most of the false



1560 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE II
COMPARISONS OF DETECTION METHODS BASED ON THE FIRST DATASET (%)

The boldface indicates the best results.

alarms and missed targets are removed, as shown in Fig. 8(d)
and (f). In Fig. 8(e) and Table II, the detection performance of
the OCSVM_O method is poor, illustrating the infeasibility of
direct employment of the OCSVM method on the original SAR
and optical images.

Compared with Fig. 8(d), Fig. 8(f), derived by the proposed
DHFF method, detects the regions of change that are more
complete with less missed targets. It is because of the feature
homogeneity achieved by the IIST strategy. It ensures the ho-
mogeneous feature space for the subsequent change detection
method. By employing the proposed separation of the semantic
content and the style features with iterative minimization based
on the VGG network with randomized filter weights, the regions
of change are well detected and most of the missed targets and
false alarms are eliminated, validating the effectiveness of the
proposed method.

Apart from the visual comparisons, the results of the above
methods are also compared in terms of quantitative evalua-
tions. The values of the accuracy rate Ra, the precision rate
Rp, the recall rate Rr, and the Kappa index Ka, produced
by these methods, are listed in Table II. Compared with four
other methods, both the HFF method and the proposed new
DHFF method perform much better on Ra, Rp, and Ka because
of separate extraction of the semantic content and the style
features. Although the LR method achieves the highest recall
rate, it produces the lowest precision rate induced by the limited
transformation ability of the features of linear regression, leading
to the unsatisfactory Ra and Ka. By the proposed IIST strategy,
the DHFF model achieves the overall detection performance
(Ra/Ka) better than the HFF method based on the VGG network
with limited filter weights. Here the precision rateRp of the HFF
method is a little higher than that of the proposed DHFF method.
The reason is that the feature spaces of the heterogeneous optical
and SAR images in most regions of change are similar. As shown
in Fig. 5(a), most regions of change are covered with the same
bright intensity in both SAR and optical images. The similarity
makes the feature space of these regions easy to be transformed.
Therefore, the naïve IST method can manage the homogeneity
of large parts of these regions, leading to the detection of these
regions with higher precision rate Rp. However, the edges of
these regions are more difficult to be transformed because their
feature spaces are much more different. Therefore, the naïve
IST method fails in the transformation of the edges, resulting

Fig. 9. Transformed optical images of the second dataset. (a) T 0
2 (I

SAR):
The initial transformed image derived by the naïve IST method, i.e., k = 0.
(b) T 5

2 (I
SAR): The intermediate result of the proposed IIST strategy after five

iterations, i.e., k = 5. (c) T2(I
SAR): The final transformed image derived by the

proposed IIST strategy, in this case, k = 93 when the iteration ends. (d) Iopt:
The real pre-event optical image for comparison. Same as that in Fig. 7, with
the increase of the iterations, the feature homogeneity is improved in each loop
of the iteration and finally achieved by the proposed IIST strategy.

in lower recall rate Rr, as shown in Table II. By applying the
IIST strategy in the proposed DHFF method, most edges of these
regions are well transformed and detected, as shown in Fig. 8(f).
The recall rateRr is thus improved with the overall performance
Ra/Ka.

C. Results on the Second Dataset

Different from the first dataset, the second dataset is covered
with more complicated backgrounds due to the dense forests
with the complex style, increasing the difficulty for change
detection.

Same as that in the first experiment, the transformed images
are shown in Fig. 9. In Fig. 9(a), i.e., T 0

2 (I
SAR), many forest

regions are covered with bright intensity, indicating the inho-
mogeneity with the optical image. Compared with Fig. 9(a),
Fig. 9(b) is more homogeneous with the optical image, demon-
strating the effectiveness of the additional new feature subspaces
extracted by the DCNN with randomized filter weights. How-
ever, Fig. 9(b) still does not achieve the feature homogeneity as
its textures of the farmland shown in the lower right of the image
are largely different from those of the optical image. Compared
with Fig. 9(a) and 9(b), Fig. 9(c) is more homogeneous. It
illustrates the effectiveness of the proposed IIST strategy with
randomized filter weights.

The comparisons between the proposed method and other
methods are demonstrated in Fig. 10. The linear regression
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Fig. 10. Comparisons of the change detection results/error maps based on
the second dataset. Here green color indicates the correct detection of regions
of change, red color implies the regions of false alarms, blue color represents
the areas of missed targets, and black color illustrates the regions of no change
that are correctly detected. The error maps are achieved by (a) LR, (b) SCCN,
(c) HPT, (d) HFF, (e) OCSVM_O, and (f) DHFF. Similar to Fig. 8, the proposed
DHFF method (f) performs the best.

can hardly describe the transformation relationship between the
heterogeneous optical and SAR images and is only capable
of describing and transforming simple ground objects, lead-
ing to massive false alarms in the nonforest regions shown in
Fig. 10(a). As shown in Fig. 10(b) and 10(c), this situation is
improved by applying neural networks (SCCN) and transfer
learning (HPT) for homogeneous transformation. However, both
methods still cause reasonable false alarms and missed targets in
the lower-right parts of the results because of corrupted semantic
content in homogeneous transformation. In Fig. 10(e) and Ta-
ble III, similar to the first experiment, the detection performance
of the OCSVM_O method is unsatisfactory. It illustrates the
limited effectiveness of the supervised OCSVM method and
validates the effectiveness of homogeneous transformation with
the IIST strategy. Compared with the above methods, the HFF
and the proposed DHFF methods based on the segregation of the

TABLE III
COMPARISONS OF DETECTION METHODS BASED ON THE SECOND DATASET (%)

The boldface indicates the best results.

semantic content and the style avoid the corruption of the im-
age content in homogeneous transformation, especially in the
regions with various ground objects and rich semantic content.
In Fig. 10(d) and 10(f), most of the false alarms and the missed
targets in Fig. 10(a)–(d) are eliminated.

Compared with Fig. 10(d), Fig. 10(f) shows the results with
much less false alarms and missed targets. As the proposed
DHFF method uses the IIST strategy to update the transformed
image iteratively, the homogeneity of the semantic content and
the style features is achieved finally, leading to improvement of
detection performance.

The quantitative evaluations of these six methods are also
compared in Table III, including the accuracy rate Ra, the
precision rate Rp, the recall rate Rr, and the Kappa index Ka.
We can see that the proposed DHFF method achieves much
higher Ra/Rp/Ka than the other five methods. Although the
LR method produces the highest Rr, it causes the lowest Rp

and the worst overall performance Rp and Ka. It is because
the linear regression cannot sufficiently transform most of the
ground objects, e.g., roads, buildings, and farmland, leading to
massive false alarms. The performance of the SCCN and the
HPT methods is unsatisfactory. It is because they corrupt the
semantic content in homogenous transformation. Besides, the
HFF method produces the second best Ra/Rp/Ka only to the
proposed DHFF method. This demonstrates the effectiveness of
the semantic content and the style features separately extracted
by the IST with DCNN. Besides, it also illustrates the sufficiency
and accuracy of the transformed image derived by the proposed
IIST strategy based on the VGG network with the randomized
filter weights.

D. Results on the Third Dataset

The experimental results of the third dataset are shown in
Figs. 11 and 12. Different from the first two datasets, the third
dataset consists of the optical and the SAR images collected
by another group of satellites. Fig. 11 shows the transformed
images and Fig. 12 compares the proposed DHFF method with
other methods.

The transformed images are shown in Fig. 11. As shown in
Fig. 11(a), the initial image T 0

2 (I
SAR) is not homogeneous with

the optical image with vague contours of the ground objects.
Compared with Fig. 11(a), Fig. 11(b), the intermediate results
after five iterations, is more homogeneous in the ground objects
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Fig. 11. Transformed optical images of the third dataset. (a) T 0
2 (I

SAR):
The initial transformed image derived by the naïve IST method, i.e., k = 0.
(b) T 5

2 (I
SAR): The intermediate result of the proposed IIST strategy after

five iterations, i.e., k = 5. (c) T2(I
SAR): The final transformed image derived

by the proposed IIST strategy, in this case, k = 72 when the iteration ends.
(d) Iopt: The real pre-event optical image for comparison. With the increase
of the iteration loops, the feature space of the transformed image is more
homogeneous with that of the optical image, as shown in (d).

with more distinct contours. In Fig. 11(c), after the iteration ends,
the feature space of the transformed image is homogeneous with
that of the optical image, as shown in Fig. 11(d). It validates the
effectiveness of the IIST strategy.

The comparisons of the proposed and other methods are
shown in Fig. 12. Similar to the first two experiments, the
performance of the LR method, as shown in Fig. 12(a), is
unsatisfactory because of the limited transformation ability of
linear regression. The SCCN and the HPT methods perform
better than the LR method, as shown in Fig. 12(b) and 12(c).
This illustrates the effectiveness of the homogeneous transfor-
mation based on neural networks and transfer learning. Similar
to the previous experiments, the detection performance of the
OCSVM_O method in Fig. 12(e) is poor, showing that the
direct utilization of the OCSVM method on the SAR and optical
images is infeasible. By separate extraction of semantic content
and styles of the images, the HFF and the DHFF methods achieve
better results, as shown in Fig. 12(d) and (f).

The feature space of the transformed image, derived by the
HFF method, is still not homogeneous with that of the optical im-
age. This leads to the false alarms in the inhomogeneous regions,
as shown in Fig. 12(d). With the proposed IIST strategy, the
feature homogeneity is improved in the final transformed image,
leading to the elimination of most false alarms in Fig. 12(f).

The quantitative evaluations of the above methods are also
compared in Table IV, including the accuracy rate Ra, the
precision rate Rp, the recall rate Rr, and the Kappa index

Fig. 12. Comparisons of the change detection results/error maps based on
the third dataset. Here green color indicates the correct detection of regions
of change, red color implies the regions of false alarms, blue color represents
the areas of missed targets, and black color illustrates the regions of no change
that are correctly detected. The error maps are achieved by (a) LR, (b) SCCN,
(c) HPT, (d) HFF, (e) OCSVM_O, and (f) DHFF. Similar to Figs. 8 and 10, the
proposed DHFF method (f) performs the best.

TABLE IV
COMPARISONS OF DETECTION METHODS BASED ON THE THIRD DATASET (%)

The boldface indicates the best results.

Ka. Although the OCSVM_O method achieves the highest
Rp, it produces the lowest Rr and the second-lowest Ka. The
OCSVM method can hardly learn the massive and complicate
change patterns directly from the heterogeneous optical and
SAR images, leading to the detection of a few regions of change.
We can see that the HFF and the proposed DHFF methods
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TABLE V
TIME CONSUMPTION OF DETECTION METHODS BASED ON

HOMOGENEOUS TRANSFORMATION

achieve better performance than the other methods. This demon-
strates the importance of separation of the semantic content and
the style features in homogeneous transformation. Besides, the
proposed DHFF method achieves better quantitative detection
performance than the HFF method.

E. Analysis of the Time Consumption

The time of performing the DHFF method consists of two
parts: 1) Homogeneous transformation and 2) training and
inferencing the OCSVM classifier. As mentioned above, the
homogeneous transformation converges in limited iterations.
The training and inferencing time of the OCSVM classifier, as
a type of SVM, is limited. Therefore, the consumption of the
DHFF method is controllable.

The computational time of different methods based on the
homogeneous transformation is shown in Table V. The hardware
platform is a server with an Intel(R) Core(TM) i9-7980XE
CPU, 128-GB RAM, and an NVIDIA Titan RTX Graphics card
inside. The software platform is MATLAB 2018b, Python3.5,
and TensorFlow 1.14 with the operation system Ubuntu 16.04.
The running time is measured only on the first dataset by over 20
trials as the task is the same with that of the other two datasets.
As there exist supervised and unsupervised methods for compar-
ison, we put the training and inferencing time together, which
is convenient to compare with the other supervised methods.
The time consumption of the LR method is the least because
of the simple linear transformation, but it performs the worst as
shown in Tables II–IV. The proposed DHFF method costs the
longest time in total because it performs the iterative update of
the transformed image.

V. CONCLUSION

In this article, we present a new method, namely DHFF, for
change detection in heterogeneous optical and SAR images via
DHFF. Different from the existing method based on the homo-
geneous transformation, the proposed method can transform the
heterogeneous images into the same feature space accurately,
leading to better performance of change detection at the cost of
the increased computational complexity. By the IST, which is
originally used to render a natural image into specific artistic
styles, the new DHFF method separately extracts the semantic
content and the style features based on different layers of DCNN,
avoiding the corruption of the image semantic content in the
homogeneous transformation.

Furthermore, to achieve the feature homogeneity for change
detection, a new IIST strategy is proposed. Different from the
naïve IST method that uses a single cost function based on the
feature subspace with limited style features for style transfer-
ring, the proposed method minimizes the cost function in each
iteration that measures the feature homogeneity in additional
new feature subspace to update the transformed image with pro-
motion of the feature homogeneity. Therefore, the requirements
for change detection in homogeneous optical images are met
after the iteration converges.

In the proposed DHFF method, different layers of the DCNN
are used as the extraction framework to separate the semantic
content and the style features, avoiding the corruption of the
semantic content in the homogeneous transformation. Then, the
filter weights of the DCNN in the above extraction framework
are randomized to generate additional new feature subspaces.
These feature subspaces are utilized to build multiple cost func-
tions to improve the feature homogeneity of the transformed
image with the IIST. Finally, a commonly used change detection
method for optical images is applied on the pre-event optical
image and the transformed post-event image to generate the final
detection results. The proposed method preserves the semantic
content in the homogeneous transformation by the deep-level
features from the DCNN, especially in the regions that are
vulnerable to corruption with multiple ground objects and rich
semantic content.

Experiments are conducted on three real remote sensing
datasets. Compared with the existing methods based on the ho-
mogeneous transformation, the proposed DHFF method avoids
the corruptions of semantic content in the transformed images
and improves the feature homogeneity by the IIST strategy, lead-
ing to accurate detection of the changed regions with multiple
ground objects and complex scenes. The quantitative evaluations
demonstrate the superior performance of the proposed method
in terms of accuracy rate and Kappa index, especially in the
regions with rich semantic content.

APPENDIX I

Different layer hyperparameters are compared to select the
optimal semantic content features. The deepest convolutional
layers in the third, fourth, and fifth scales of the VGG network,
i.e., Conv3-4, Conv4-4, and Conv5-4, are chosen for compar-
ison. We compare the convolution layers because they keep
semantic content without nonlinear operations. The layers in
the first and the second scales are not considered as they are not
deep enough for IST [28].

Fig. 13 compares the transformed images derived by using
different layer hyperparameters for extracting semantic content
features. As can be seen in Fig. 13, Conv5-4 (in the third row)
achieves the most homogeneous results. It validates Conv5-4 as
the suitable layer hyperparameter to extract the semantic content
features.

In conclusion, as the deepest convolutional layer with the pow-
erful capability of representing the high-level features, Conv5-4
is selected to extract the semantic content.
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Fig. 13. Transformed optical images based on the semantic content features
with different layer hyperparameters. As for the images above, different columns
correspond to different datasets. (The first, second, and third columns are from
the first, second, and third datasets, respectively.) Different rows represent
different layer hyperparameters of the semantic content. (The first, second,
and third rows represent the images with the semantic content from Conv3-4,
Conv4-4, and Conv5-4, respectively. The fourth row gives the real optical images
for comparison.) As can be seen, the images transformed by using Conv5-4 as
the layer hyperparameter are the most homogeneous with the optical images.

APPENDIX II

The max pooling operation, utilized in the VGG network
shown in Figs. 1 and 2, is compared with the average pooling
operation. In [28], the average pooling is preferred for natural
images, but no experimental comparison is presented with the
max pooling. Fig. 14 shows the transformed images with differ-
ent pooling operations on the experimental datasets.

In the first dataset (first column of Fig. 14), the narrow
breakwater in the lower right is lost in the image with the
average pooling but preserved in the image with the max pooling
operation. It means that the max pooling preserves the semantic
content better. It holds true for the second dataset (second col-
umn of Fig. 14), in which the semantic content of the transformed
image is damaged seriously: The farmland in the lower right
vanishes and several buildings appear in the wrong place (i.e.,
forest regions). In the third dataset (third column of Fig. 14),
with the average pooling operation, the white building in the
middle and the circle building in the upper right are misplaced.
By applying the max pooling operation, the two buildings are
placed correctly, compared with the real optical image.

Fig. 14. Transformed optical images with different pooling operations. As
for the images above, different columns correspond to different datasets. (The
first, second, and third columns are from the first, second, and third datasets,
respectively.) Different rows represent different pooling operations. (The first
and second rows represent the images with average and max pooling operations,
respectively. The third row gives the real optical images for comparison.) As can
be seen, the images with the max pooling operation are the most homogeneous
with the optical images.

TABLE VI
COMPARISONS OF DETECTION RESULTS BY DIFFERENT POOLING

OPERATIONS (%)

We also evaluate the detection results quantitatively in Ta-
ble VI. Because of better preservation of semantic content,
the max pooling derives the change detection results more
accurately than the average pooling. Therefore, max pooling
operation is employed in the VGG network to extract semantic
content and style features.
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