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Spatial-Spectral Hyperspectral Endmember
Extraction Using a Spatial Energy Prior

Constrained Maximum Simplex
Volume Approach

Xiangfei Shen , Wenxing Bao , and Kewen Qu

Abstract—Endmember extraction algorithms (EEAs) are among
the most commonly discussed types of hyperspectral image process-
ing in the past three decades. This article proposes a spatial energy
prior constrained maximum simplex volume (SENMAV) approach
for spatial-spectral endmember extraction of hyperspectral images.
SENMAV investigates the spatial information from the perspective
of the spatial energy prior of a Markov random field (MRF),
which is used as a regularization term of the traditional maximum
volume simplex model to simultaneously constrain the selection of
the endmembers in both the spatial and spectral viewpoints. This
article sheds new light on spatial-spectral-based EEAs, as SEN-
MAV well balances the tradeoff between endmember extraction
accuracy and spatial attribute requirements of endmembers. Based
on the spectral angle distance and root-mean-square error, experi-
mental results on both synthetic and real hyperspectral datasets
indicate that the proposed approach significantly improves the
endmember extraction performance over current state-of-the-art
spatial-spectral-based EEAs.

Index Terms—Endmember extraction algorithm (EEA),
hyperspectral imagery, maximum simplex volume, spatial energy
prior, spatial spectral.

I. INTRODUCTION

I F THE spatial resolution of a hyperspectral sensor is coarser
than the scale of spatial heterogeneity of the ground surface,

a mixture of disparate substances is inevitably contained in a
pixel [1], [2]. A pixel that mixes more than one distinct substance
is called a mixed pixel in a hyperspectral image (HSI). The pro-
cess that decomposes the mixed pixels into a set of constituent
spectra, or endmembers, and their corresponding proportions,
or abundances, is called hyperspectral unmixing (HU) [3], [4].
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According to the illumination type, HU algorithms are divided
into two types: the nonlinear mixing model (NLMM), which
assumes that the light follows a multiple scattering phenomenon;
and the linear mixing model (LMM), which assumes that the
light is a linear combination of different materials. Among them,
NLMM assumption-based HU algorithms face more challenges,
as they must establish a more complex physical model to simu-
late potential light scattering types. A new line of research into
NLMM problems is based on deep learning methods such as
neural networks. Compared with the classic bilinear or intimate
mixing models in the NLMM field, proposed neural network-
based HU algorithms such as EndNet [5], pixel-based CNN [6],
and cube-based CNN [6] show more promising performance.
However, they require appropriate computation equipment or
parameters to maintain their performance, which is not always
guaranteed and efficient. LMM assumption-based algorithms
have more clear conceptual meaning to easily capture endmem-
ber extraction and abundance estimation, owing to multiple
priors of data matrices such as sparse [7], [8], low-rank [9],
and geometric [10] properties, which have attracted considerable
attention [2], [3].

Based on the LMM assumption-based algorithms, the pro-
cesses of endmember determination and abundance estimation
are normally seen as two separate aspects. However, the de-
termination of endmembers has received more attention than
abundance estimation, since good representations of surface
components are necessary for accurate unmixing [11]. The
last three decades have witnessed huge growth in endmember
extraction algorithms (EEAs). These can be categorized as pure
pixel assumption-based, nonpure pixel assumption-based, and
statistical-based [3].

Pure pixel assumption-based EEAs assume that there exists
at least one pure pixel per endmember extracted within the HSI.
These can be further divided into three types. First, subspace
projection-based EEAs determine endmembers by considering
their extreme projections on a subspace. These include the pixel
purity index (PPI) [12], orthogonal subspace projection [13],
and vertex component analysis (VCA) [14]. Second, maxi-
mum simplex volume-based EEAs identify endmembers by
defining a maximum simplex volume under the conditions of
a dimensionality-reduced HSI. These include N-FINDR [15],
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Fig. 1. Example of normal data and outliers in a two-dimensional dataset.
Points sufficiently far from the normal data distribution include outliers #1, #2,
and #3.

simplex growing algorithm (SGA) [16], and successive volume
maximization [17]. Third, least-squares-based EEAs select the
pixel that can minimize the unmixing errors. These include iter-
ative error analysis [18] and the unsupervised fully constrained
least-squares method [19].

Nonpure pixel assumption-based EEAs assume not that pure
pixels exist in the dataset, but that there exist at least p − 1
spectra on each facet to specify a minimum simplex volume.
These include minimum volume transform (MVT) [20], mini-
mum volume enclosing simplex [21], the simplex identification
via variable splitting and augmented Lagrangian approach [22],
and minimum volume simplex analysis (MVSA) [23].

Statistical-based algorithms are indispensable when the spec-
tral vectors are highly mixed, resulting in simplex being un-
available for endmember extraction. These include dependent
component analysis [24], iterated constrained endmembers [25],
and minimum volume constrained nonnegative matrix factoriza-
tion [10].

Most of the abovementioned EEAs consider spectral infor-
mation for endmember extraction in a single perspective, while
ignoring the intrinsic attribute of spatial contextual information.
In this regard, these EEAs are susceptible to outliers, which
are inevitable in HSIs. In general, outliers are special patterns
in data without a well-defined notion of normal behavior, and
their signatures are spectrally distinct from their surroundings
or background representation [26], [27]. They are potentially
generated during detector failure, data transfer, and improper
data correction [28]. Outliers are more likely to be selected as
endmembers by most spectral-based EEAs because they deeply
deviate from the background data, and they may force a vertex
of the simplex to reside at a point beyond the nominal position of
the endmember in order to enclose every point [4]. An example
of normal data and outliers in a two-dimensional dataset is
displayed in Fig. 1. In this article, we refer to such an outlier
as endmemberlike. However, the literature rarely discusses the
relationship between true endmembers and the endmemberlike.

The HSI is conceptually a two-dimensional pictorial repre-
sentation of the ground surface, with both spatial and spec-
tral attributes [1]. There has been great interest in spatial-
spectral-based EEAs and spatial-spectral-based preprocessing
algorithms (PPAs) in the past two decades. Spatial-spectral-
based EEAs rely heavily on a combination of spectral fea-
tures and spatial contextual information of the hyperspectral

data for the purpose of endmember extraction. Typical tech-
niques include automated morphological endmember extraction
(AMEE) [29], spatial spectral information-based endmember
extraction (SSEE) [30], the hybrid automatic endmember extrac-
tion algorithm [31], the spatial purity-based endmember extrac-
tion algorithm (SPEE) [32], and spatial-spectral information-
based endmember bundle extraction (SSEBE) [27]. However,
spatial-spectral-based EEAs generally suffer from a computa-
tional burden since many dot-product or graph-based methods
are involved, and manually tuned parameters require optimized
endmember extraction. More importantly, few regard the con-
vexity of the data, which accounts for high-performance end-
member extraction, which most spectral-based EEAs consider.
Spatial-spectral-based PPAs utilize both spatial and spectral
information with the specific intent to offer a few high-quality
candidates for fast endmember extraction [33]. Representative
algorithms include spatial preprocessing (SPP) [34], spatial-
spectral preprocessing [35], and regional-clustering-based spa-
tial preprocessing [36]. Unlike EEAs, spatial-spectral-based
PPAs are independently executed modules that provide a few
high-quality endmember candidates prior to the endmember
extraction search process.

Based on Tobler’s first law of geography, “Everything is
related to everything else, but near things are more related
than distant things” [37], the endmembers extracted within
the HSI also should be spatially and spectrally close to its
neighborhoods. More importantly, a basic assumption of the
HSI is that two neighboring pixels more likely belong to the
same class, indicating that their spectral signatures should be
highly similar. This assumption is also generally derived from
the Markov random field (MRF), which is the classical model
to exploit neighborhood dependence between pixels. Several
studies [38]–[42], have been carried out on MRF; however, much
of the emphasis has been on enhancing spatial dependence or
smoothing labels in hyperspectral classification or segmentation
fields.

In this article, we develop a spatial energy prior constrained
maximum simplex volume (SENMAV) approach for spatial-
spectral-oriented hyperspectral endmember extraction. Specif-
ically, the proposed SENMAV method analyzes the spatial
energy prior of hyperspectral data, and this is utilized as a
regularization term coupled with a maximum simplex volume
model to simultaneously constrain the selection of endmembers
in both spatial and spectral perspectives. We make the following
three primary contributions.

1) A new spatial-spectral-based EEA is proposed by incor-
porating a spatial energy prior into the maximum simplex
volume.

2) The proposed algorithm well balances the tradeoff be-
tween endmember extraction accuracy and spatial at-
tribute requirements of endmembers.

3) The proposed algorithm avoids the traps of spectral-
based EEA sensitivity to outliers and inefficient end-
member extraction performance of spatial-spectral-based
EEAs.

Several experiments conducted on both synthetic and real
hyperspectral datasets indicate that the proposed approach sig-
nificantly improves upon current state-of-the-art EEAs.
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Fig. 2. Two well-known paradigms in the spectral-based endmember ex-
traction fields. (a) First assumes that there exists at least one pure pixel per
endmember in each vertex. (b) Second assumes that there exist at least p − 1
spectra on each facet.

The rest of this article is organized as follows. Section II
briefly discusses the background, including work on spectral-
based and spatial-spectral-based EEA, and reviews the theory of
LMM and MRF. Section III describes the proposed algorithm.
Experimental results and discussion of this method are presented
in Sections IV and V, respectively. Section VI concludes this
article with some remarks.

II. BACKGROUND

A. Related Work

1) Spectral-Based EEA: In the past several decades, spectral-
based EEAs have come under the spotlight in HU owing to
their clear conceptual meaning. Specifically, under the LMM
assumption, endmember extraction can be seen as a process
of fitting a simplex around the convex hull of the data [43].
Two well-known paradigms in the spectral-based endmember
extraction fields are displayed in Fig. 2.

Preliminary work in this field focused primarily on the
PPI [12], in which entire spectral vectors are projected onto
a large number of randomly generated skewers, and then the
number of times spectral vectors are found to have extreme
projection values are used to determine desired endmembers.
However, it may be difficult for the PPI to identify a final list
of endmembers; hence, it is generally used for preprocessing to
obtain a set of endmember candidates. Unlike PPI, VCA [14]
sequentially selects endmembers by projecting all the spectral
vectors onto an orthogonal subspace spanned by the already
determined endmembers. This is based on two important facts:
the endmembers are the vertices of a simplex; and the affine
transformation of a simplex is also a simplex.

N-FINDR [15] is based on the fact that endmembers comprise
a set of spectral vectors that can define a maximum volume
larger than any other volume formed by interior pixels within the
simplex. SGA [16] finds a desired (p− 1)-dimensional simplex
with the largest volume by gradually growing simplexes, vertex
by vertex. Similarly, as an extension of N-FINDR, AVMAX [17]
attempts to maximize the simplex volume by a one-at-a-time
pixel search.

When no pure pixels exist in the scene, many EEAs emphasize
the minimization of the simplex volume defined by the column
of the endmember matrix. The initial work in this area was the
MVT, proposed by Craig [20], which begins with a simplex of
large volume and then literally moves the faces of the simplex

in toward the data cloud. MVSA [23] fits a minimum-volume
simplex to the hyperspectral data by constraining the abundance
fractions to belong to the probability simplex.

Unfortunately, the abovementioned spectral-based EEAs fail
to consider the spatial information of the endmember lying in the
HSI. Recently, we proposed a new spatially weighted simplex
strategy (SWSS) [33] for hyperspectral endmember extraction,
which first generates the spatial weight scalar of each pixel by
determining its corresponding spatial neighborhood correlations
for weighting itself within the simplex framework to regularize
the selection of the endmembers. However, SWSS can only be
coupled with pure pixel assumption-based EEAs.

2) Spatial-Spectral-Based EEA: Considering that most
EEAs have been designed from a spectroscopic viewpoint, the
spatial attributes of pixels lying in the HSI have tended to be
ignored. Therefore, most spatial-spectral-based EEAs assume
that endmembers are more likely to be found in spatially homo-
geneous areas.

The first systematic study on spatial-spectral-based EEAs was
carried out in 2002 by Plaza et al. [29]. The proposed AMEE is
based on mathematical morphology operators, i.e., erosion and
dilation. The erosion operation selects the most highly mixed
pixel, while dilation determines the purest pixel. A morpholog-
ical eccentricity index is defined to select endmembers by an
iterative process at a dynamically spatial sliding kernel window.
SSEE [30] first acquires the endmember candidate set after pro-
jecting all the subset data onto eigenvectors decomposed by SVD
techniques. Endmember candidates are then reordered based on
spectral similarity. Finally, the endmembers are generated by
spatial averaging of the endmember candidates and the spatially
and spectrally close updated candidate pixels. SPEE [32] first
investigates several intensity- and feature-level spatial purity
measurements to generate initial endmember candidates. Sec-
ond, a pure spatial neighborhood is voted as an endmember
candidate to alleviate spectral variability. A graph theory-based
spatial refinement algorithm is then used to refine endmember
candidates in a spatial context. Endmember candidates are fur-
ther refined using a clustering method. A recent development in
this area is SSEBE [27], which performs the following steps.

1) PPI preprocessing generates a set of endmember candi-
dates.

2) Each endmember candidate is used to calculate the homo-
geneity index (HI) between its neighborhoods and itself.

3) An adaptive threshold of HI is fixed for choosing pure
pixels in each block.

4) The clustering method is utilized to group the endmember
candidates.

The abovementioned methods include parameters demanding
a tuning process to optimize endmember extraction in accor-
dance with different dataset scenarios or algorithmic require-
ments, and the computation is expensive.

B. LMM

Based on LMM, a measured hyperspectral imagery (HSI)
Y = [y1 ,y2 , . . .,yn ]B×n with B bands and n total pixels can
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be formulated as

Y = MA+ ω (1)

where M ∈ RB×p is the endmember matrix, A ∈ Rp×n is the
abundance fraction matrix, and ω ∈ RB×n accounts for the
additive noise matrix. Also, p is the number of endmembers,
which can be estimated by classic techniques such as virtual
dimensionality [44].

C. Markov Random Field (MRF)

In the image processing field, MRF is a classic method, which
is used to exploit the spatial information of neighbor pixels. The
spatial information is based on the assumption that neighboring
pixels more likely belong to the same class. The class of a pixel
yi is determined by a class label θyi , which is characterized
as a discrete random variable derived from the class values set
L = {1, 2, . . ., l}. The label set θ = {θyi ,yi ∈ Y} is a random
field, where θyi ∈ L. According to the Hammersly–Clifford
theorem [45], the spatial prior P (θ = θyi ) follows a Gibbs
distribution defined as

P (θ = θyi ) =
1

Z
exp (−U (θyi )) (2)

where Z =
∑

θyi ∈L exp−U(θyi ) is a partition function.

U(θyi ) =
∑

c∈C Vc(θyi ) is an energy function, where Vc(·) is
the clique potential function related to clique c that belongs
to C, which is a set of a determined order, e.g., first, second,
and high order. To characterize the clique potential function
for each clique c, the well-known Potts Markov model [46] is
generally used, and this is given by

Vc = δ
(
θyi , θyj

)
=

{
1 if θyi �= θyj
0 otherwise.

(3)

According to (2) and (3), the spatial prior can be reformulated
as

P (θ = θyi ) =
1

Z
exp

⎛

⎝−
∑

{yi ,yj }∈C
δ
(
θyi , θyj

)
⎞

⎠. (4)

In the Bayesian framework, the image classification problem
can be expressed as the investigation of an optimal labeling θ̂
that maximizes the posterior probability P (θ|Y), i.e.,

θ̂ = argmax
θ

P (θ|Y) = argmax
θ

P (Y|θ)P (θ). (5)

A high-order neighborhood system normally has high com-
putational complexity; hence, the first and second order are two
widely used neighborhood systems (see Fig. 3).

III. SPATIAL ENERGY PRIOR CONSTRAINED MAXIMUM

SIMPLEX VOLUME

A. Spatial Energy Prior

MRF is based on the understandable assumption that two
neighboring pixels more likely belong to the same class. How-
ever, the most important issue of MRF is to construct an initial
label map. We use the well-known k-means clustering tech-
nique to allocate initial labels for each spectral vector. Let

Fig. 3. Visual description of different order neighborhood systems with their
corresponding cliques. (a) First-order neighborhood system with corresponding
cliques. (b) Second-order neighborhood system with corresponding cliques.

Ŷ = [ŷ1, ŷ2, . . . , ŷn](p−1)×n be a low-dimension HSI, which
is reduced by principal component analysis (PCA) [47], with
p− 1 bands and n total pixels. l ∈ [p, 2p] denotes the maximum
potential labels. It is noteworthy that the reason why l is deter-
mined in the interval of [p, 2p] lies in the following important
points.

1) The number of endmembers is difficult to precisely es-
timate, especially for large-scale or highly mixed real
hyperspectral datasets, owing to the insufficient priors of
land cover, and thus, l should be at least greater than p.

2) If l is too large, e.g., l > 2p, the computational cost of
k-means may increase as well, since the computational
complexity of k-means is nlt, where n, l, and t are the
data scale, number of preset clusters, and iteration times,
respectively.

3) The k-means algorithm is used to assign initial labels for
each pixel, and is utilized to calculate the spatial energy
prior for the image.

If l is smaller than p, a few minerals may be mistakenly
assigned true labels. However, if l is too large, the spatial
energy prior of the local area will be low, since such an area
is excessively allocated different and wrong labels. The process
of determining the initial label map and corresponding centroids
is defined as follows:

[θ,Ψ] = kmeans
(
Ŷ, l, t

)
(6)

where θ denotes the initial label map composed of multiple
classes varying from 1 to l, Ψ is the centroid matrix associated
with the initial label map, and t is the iteration time.

Based on (4) and the initial label map, we redefine the spatial
energy prior of a specified pixel, e.g., yi , as follows:

φspatial (yi ) = exp

⎛

⎝−
∑

{yi ,yj }∈C
δ
(
θyi , θyj

)
⎞

⎠ (7)

where C denotes spatial second-order cliques (doubletons were
considered in our experiments) (see Fig. 3), where each clique



SHEN et al.: SPATIAL-SPECTRAL HYPERSPECTRAL ENDMEMBER EXTRACTION USING A SENMAV APPROACH 1351

corresponds to a pair of neighboring pixels. It is worth men-
tioning that the spatial energy prior of yi will be high when
its label θyi is the same as that of its neighborhood. Similar to
(4), in our redefined spatial energy prior, we directly obtain the
spatial homogeneity of a determined pixel by considering label
continuity between its neighborhood and itself using (7).

Compared with k-means, i.e., hard clustering algorithms, a
soft clustering algorithm such as fuzzy C-means (FCM) [48] or
Gaussian mixing model (GMM) [49] does not assign class labels
for points, but defines probabilistic scores per cluster, a.k.a.
membership. The closer the data point toward the cluster center,
the higher its membership value toward the cluster center. How-
ever, many comparative studies and analyses of k-means and
soft clustering algorithms, e.g., FCM, for example, [50], [51],
show that the soft clustering algorithms offer trivial improve-
ment in experimental performance over k-means while requiring
more computational time. In this regard, we give priority to the
computational burden; hence, we select k-means for its lower
computational cost and guaranteed clustering performance.

It is worth mentioning that we use k-means to initialize class
labels for each pixel for spatial energy prior calculation, such
that a local area with consistent class labels has high spatial
homogeneity, i.e., high spatial energy. Superpixels are local
homogeneous areas comprised of a set of spatially correlated and
spectrally similar pixels, where pixels originating from the same
superpixel are labeled as the same class. The SENMAV algo-
rithm seems to similarly exploit the idea of superpixels, since it
uses k-means to preferably capture endmember candidates with
high spatial energy. A superpixel algorithm could theoretically
provide multiple homogeneous areas in which pixels derived
from the same superpixel have high spatial energy as well.
However, k-means assigns a unique class label for each pixel,
which can characterize local homogeneity between each pixel
and its neighborhoods. In this regard, once there exist small
targets or anomalous areas, their contributions to the latter tasks
will be reduced by considering their inconsistent class label dis-
tributions around themselves. Furthermore, such small targets or
anomalous areas are problematic for superpixel algorithms, e.g.,
simple linear iterative clustering [52], to define or characterize,
owing to their algorithmic structures. More concretely, such
small targets or anomalous areas may be allocated class labels
that are the same as the class label of their surroundings within
the same superpixel.

B. Maximum Simplex Volume

Based on the pure pixel assumption, the endmembers cor-
respond to the spectral signatures that can define a maximum
simplex volume among all the volumes with the vertices spec-
ified by other interior pixels. Let φspectral(ŷk1 , ŷk2 , . . . , ŷkp ) be
the simplex volume with respect to ŷk1 , ŷk2 , . . . , ŷkp . Then, the
simplex volume can be defined by

φspectral
(
ŷk1 , ŷk2 , . . . , ŷkp

)
= abs

(∣
∣
∣
∣
∣

1 1 · · · 1

ŷk1 ŷk2 · · · ŷkp

∣
∣
∣
∣
∣

)

/
(p − 1)! (8)

Fig. 4. Diagram of proposed SENMAV algorithm.

where ŷk1 , ŷk2 , . . . , ŷkp are pixels selected from Ŷ, and | · |
denotes the determinant operation. By iteratively searching
pixels one-by-one from Ŷ to maximize the simplex vol-
ume, we can obtain an increasing simplex volume until
it reaches its maximum; the procedure can be formulated
as

V = argmax
ŷk1 ,ŷk2 ,...,ŷkp

φspectral
(
ŷk1 , ŷk2 , . . . , ŷkp

)
(9)

where V is the maximum simplex volume. A detailed analysis
of the maximum simplex volume can be found in Winter [15]
and Chang et al. [16].

C. SENMAV Framework

The SENMAV algorithm is based on the spatial energy
prior and maximum simplex volume. The spatial energy prior
is used as a regularization term coupled with the maximum
simplex volume model to constrain the selection of the end-
members. The objective function considers (7)–(9), and is given
by

J = argmax
ŷk1 ,...,ŷki ,...,ŷkp

{

αφspectral
(
ŷk1 , . . . , ŷki , . . . , ŷkp

)

+
λ

p

p∑

i=1

φspatial (ŷki )

}

(10)

where α = 10−�log10 V λ=0�−1 is a scaling factor that tunes
the data scale between φspectral(ŷk1 , . . . , ŷki , · · · ŷkp ) and
φspatial(ŷki ). It is an adaptive scaling factor defined by the
initial maximum simplex volume V λ=0 when λ is fixed at 0
(i.e., the spatial energy prior is not taken into account). λ is a
spatial regularization factor that weighs the importance of the
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Algorithm 1: Pseudocode of the Proposed SENMAV Algo-
rithm.
Input: The hyperspectral data Y = [y1 ,y2 , . . .,yn ]B×n,

the estimated number of endmembers p, the spatial
regularization factor λ.

Output: Extracted endmember matrix M
1: function SENMAVY, p, λ
2: Ŷ ← PCA(Y, p− 1);
3: [θ,Ψ]← kmeans(Ŷ, 2p);
4: idx← randomperm(2p, p);
5: E← Ψ(idx, :)T ;
6: J0 ← φspectral(E);
7: for i = 1→ n do
8: for j = 1→ p do
9: E_AUX← E;

10: E_AUX(:, k)← Ŷ(:, i);
11: V (j)← φspectral(E_AUX);
12: end for
13: [V _max, idx_aux]← max(V );
14: if V _max > J0 then
15: J0 ← V _max;
16: E(:, idx_aux)← Ŷ(:, i);
17: end if
18: end for
19: α← 10−�log10 J0�−1;
20: E← Ψ(idx, :)T ;
21: J0 ← φspectral(E);
22: for i = 1→ n do
23: for j = 1→ p do
24: E_AUX← E;
25: E_AUX(:, k)← Ŷ(:, i);
26: IDX_AUX ← idx;
27: IDX_AUX(j)← i;
28: V (j)← αφspectral(E_AUX) + λ

p SEP
IDX_AUX,θ;

29: end for
30: [V _max, idx_aux]← max(V );
31: if V _max > J0 then
32: J0 ← V _max;
33: E(:, idx_aux)← Ŷ(:, i);
34: idx(idx_aux)← i;
35: end if
36: end for
37: M← Y(:, idx)
38: end function

spatial energy prior. The objective function starts with initial
endmembers randomly selected from Ψ.

D. SENMAV Description

The endmember extraction mechanism in an HSI is generally
seen as searching for the purest pixels, which are based on two
important ideas: they are more likely to be found in homoge-
neous regions; and they reside in the vertices of the data simplex.
As seen in Section II, most spectral-based or spatial-spectral-
based EEAs depend on one of the abovementioned two ideas.

Algorithm 2: Pseudocode of the Spatial Energy Prior (SEP)
Algorithm.
Input: The indices of the endmember candidates:
IDX_AUX; initial class map:

θ.
Output: the spatial energy prior of the endmember

candidates: S
1: function SEPIDX_AUX,θ, IDX
2: S ← zeros(length(IDX_AUX), 1);
3: for i = 1→ length(IDX_AUX) do
4: S_aux← 0;
5: cent← θ(IDX_AUX(i));
6: for j = 1→ κ do //κ is a default setting which

denotes the number of pixels in the neighborhood
system.

7: if cent == θ(IDX_AUX(i))neij then //
θ(IDX_AUX(i))neij denotes the classes
of neighborhoods related to their central
pixel.

8: S_aux← S_aux+ 0;
9: else

10: S_aux← S_aux+ 1;
11: end if
12: end for
13: S(i)← exp(−S_aux);
14: end for
15: end function

Therefore, we propose the SENMAV algorithm, which identifies
the endmembers by simultaneously considering its spectral fea-
tures and spatial contextual. The endmembers in our SENMAV
framework (10) obtain their spectral information under the data
simplex via a maximum simplex volume framework (8) and (9),
and the spatial information of the endmembers is acquired by
means of the spatial energy prior (7). It is worth mentioning
that both terms (i.e., spatial energy prior and maximum simplex
volume) have different data scales and make different contri-
butions to select endmembers. For example, the spectral term
may reach as low as 10−17 (for the Cuprite dataset), but the
spatial term varies from 0 to 1. Therefore, the scaling factor α
and regularization factor λ are invoked to unify the data scales
and control the importance of the spatial information.

As Fig. 4 shows, we first reduce the original HSI to a
low dimension by the PCA method. Then, we group the
dimensionality-reduced HSI into a class map via k-means, which
captures the spatial energy prior of the endmember candidates,
and the initial endmember candidates can be randomly selected
from the centroids derived from the clustering stage. Based on
the spatial energy prior constrained simplex volume framework,
the endmembers can finally be searched until they form maxi-
mum objective function values. For the extracted endmembers,
fully constrained least squares (FCLS) [19] is utilized to estimate
corresponding abundances.

Furthermore, we detail the pseudocode of SENMAV (see
Algorithm 1), and the subfunction related to the spatial energy
prior is given in Algorithm 2.
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E. Computational Complexity Analysis

This section details the computational complexity of SEN-
MAV. First, we capture low-dimension hyperspectral data
reduced by the PCA, whose computational complexity is
nB2/2 + nB(p− 1). Second, k-means yields an initial class
map of the dataset, whose computational complexity is reflected
by the whole data scale, iteration times, and number of prede-
termined clusters, and its computational complexity is nlt. The
computational complexity of dimension reduction and the k-
means steps is relatively small and, therefore, is not considered.
Third, the maximum simplex volume is needed to specify α.
This requires np computations of the determinant of a p× p
matrix, each with complexity pη(2.3 ≤ η ≤ 2.9) [53]. Finally,
(10) is evaluated to search endmembers, where the determinant
and spatial energy prior are executed np times. Each time, the
computational complexity of the spatial energy prior of the
endmember candidates is sp, where s is the number of pixels in
the neighborhood system. Therefore, the approximate computa-
tional complexity of SENMAV isO = npη+1 + np(pη + sp) =
2np2(s+ pη−1).

F. Endmember Uncertainty Analysis

HU decomposes mixed pixels into a set of endmembers and
corresponding proportions, which is an inverse problem, with
an infinite number of solutions. However, for most endmember
extraction techniques, the endmembers are not blindly separated
from mixed pixels via blind source separation methods, but are
identified by specifying the vertices or boundary pixels of the
data simplex, resulting in negligible endmember uncertainty.
It is worth mentioning that such light endmember uncertainty
does not maintain the accuracy propagation of abundance esti-
mation performance, owing to several factors. The first factor
lies in the algorithmic structural defects. For instance, maximal
volume-based algorithms (e.g., N-FINDR, SGA, AVMAX, and
SENMAV) maximize a determinant for endmember extraction
purposes, yet the calculation of the determinant is normally
nonconvex, leading to an inconsistent solution. In addition,
simplex projection-based algorithms (e.g., VCA) demand sub-
stantial random vectors to capture the extreme projections of
hyperspectral data; hence, the extracted endmembers are not
stable. The second factor may owe to spectral variability because
the spectral signatures of observed land cover are inconsistent
due to illumination and atmospheric conditions. In this case, the
endmember uncertainty will increase. For SENMAV and other
maximal volume and extreme projection-based EEAs, although
the light endmember uncertainty may lead to potential error
propagation, they still could be used for their clear conceptual
meaning, acceptable endmember accuracy, and light computa-
tional burden. A detailed analysis of the endmember uncertainty
can be found in Zhou et al. [54] and Ozkan and Akar [55].

IV. RESULTS

Several experiments were conducted on synthetic and real
hyperspectral datasets. Five state-of-the-art EEAs were used to
evaluate the performance of the proposed algorithm. VCA [14],

AVMAX [17], and MVSA [23] are spectral based, and
AMEE [29] and SSEBE [27] are spatial-spectral based. All the
algorithms ran on a PC with an Intel core i7-2600 K (at 3.40 GHz)
and 8GB RAM.

A. Evaluation Metrics

Two well-known benchmark metrics, spectral angle distance
(SAD) and root-mean-square error (RMSE), were adopted to
assess the performance of all considered EEAs. SAD was used
to evaluate the spectral similarity between observed spectra and
the spectra library, and is given by

SAD (yi , yj ) = arccos

(
yT
i yj

‖yi‖ ‖yj ‖
)

. (11)

The higher the spectral similarity between two spectra, the
smaller the SAD. The RMSE is used to evaluate the image
reconstruction error between the original and reconstructed HSI
determined by the extracted endmembers and the corresponding
estimated abundancies, and it is defined as

RMSE
(
Y, Ỹ

)
=

√
√
√
√ 1

B × n

n∑

i=1

(yi − ỹi )
2 (12)

where yi and ỹi are derived from the original HSI and the
reconstructed HSI, respectively. The lower the RMSE, the better
the reconstruction performance.

Additionally, the Davies–Bouldin index (DBI) [56] is used
to evaluate the clustering performance of k-means on the initial
class map generation process. The DBI calculates the maximum
index according to the sum of the average intradistance of any
two categories divided by the distance between two clustering
centers. The greater the index, the better the clustering result. It
is given as

DBI =
1

N

∑

i

max
j,j �=i

{⎡

⎣ 1

ni

∑

x∈Ci

d (x, ci) +
1

nj

∑

x∈Cj

d (x, cj)

⎤

⎦

/

d (ci, cj)

}

(13)

where x, N, Ci, ni, ci, and d(ci, cj) are, respectively, the data
point, number of clusters, ith cluster, number of objects in Ci,
center of Ci, and distance between ci and cj .

B. Experimental Dataset Descriptions

1) Synthetic Dataset Without Outliers (DS1): For the syn-
thetic dataset, five endmembers were randomly selected from
the United States Geological Survey (USGS) spectral library1

with 224 bands. These are Alunite, Dumortierite, Nontronite,
Sphene, and Kaolinite. A well-known HSI generation toolbox2

was used to generate a 100 × 100 pixel synthetic image based

1http://speclab.cr.usgs.gov/spectral.lib06
2http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_

Synthesis_tools_for_MATLAB

http://speclab.cr.usgs.gov/spectral.lib06
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis_tools_for_MATLAB
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Fig. 5. (a) Hyperspectral synthetic image (100th bands) without outlier.
(b) Five spectral signatures. (c)–(g) Abundance maps related to each spectral
signature.

on LMM, ANC, ASC, and pure pixel assumptions, and the se-
lected endmembers. Fig. 5 displays the synthetic dataset (100th
band) with its corresponding five endmember signatures and
abundance maps. Zero-mean white Gaussian noise was added to
the synthetic images with signal-to-noise ratios (SNRs) varying
from 20 to 40 dB, with stepwise increases of 5.

2) Synthetic Dataset With Single Outlier per Area (DS2): To
test the algorithms on a more realistic case, five outliers with
different mixing levels were randomly added to DS1. In [57],
the outliers are considered to be the pixels that appear to deviate
markedly from the rest of the data, where the spectral reflectance
of several consecutive bands is significantly higher than that of
other bands. In [58] and [33], the outliers are regarded as the
pixels far from the data simplex. Based on LMM (1), we accepted
the latter idea and formulated an outlier spectrum a, as follows:

a = mpγ +Up−1ζp−1 + ω (14)

where γ ∈ [1, 1.2] denotes the abundance fraction of a desired
target spectrum mp, and γ + 1T ζp−1 = 1, where 1 is a p × 1
vector of ones. Fig. 6 presents the positions of the data points
along with the endmembers and outliers. For each area covered
by a specified endmember, there exists a corresponding outlier
to simulate the real situation.

3) Synthetic Dataset With Multiple Outliers per Area (DS3):
Unlike DS2, the outliers were fixed with different spatial struc-
tures in DS3. Six panels of different spatial structures randomly
filled with outliers were added to the image (see Fig. 7).

4) Japser Ridge Hyperspectral Dataset: Japser Ridge [59]
is a popular real hyperspectral dataset used in the unmixing
field (see Fig. 8). The original Japser Ridge image contains
512× 614 pixels with 224 spectral bands. In this article, a subim-
age of 100× 100 pixels with 198 bands is considered (owing to
dense water vapor and atmospheric effects, bands 1–3, 108–112,
154–166, and 220–221 are removed). Four endmembers, i.e.,
Road, Soil, Water, and Tree, are observed from this dataset.

5) Cuprite Hyperspectral Dataset: Cuprite is a well-known
benchmark hyperspectral dataset for HU (see Fig. 9), with data
captured by the Airborne Visible Infrared Imaging Spectrometer

Fig. 6. Scatter plot of DS2. Gray points, blue circles, and red stars denote
normal data points, endmembers, and outliers, respectively.

Fig. 7. (a) Hyperspectral synthetic dataset (100th bands) with different spatial
structure of outliers. (b) Positions of outliers.

Fig. 8. (a) Japser Ridege dataset (100th band). (b) Four endmembers.

(AVIRIS) in Las Vegas, NV, USA. A 250 × 190 pixel subset
with 182 bands was used in this experiment3 (the noise and
water absorption bands were removed from 224 bands, and the
excluded bands were 1–6, 105–115, 150–170, and 221–224),
where there were 14 types of minerals estimated by the hyper-
spectral signal identification by minimum error (Hysime) [60].
Based on the analysis in the literature [61], there are minor differ-
ences between variants of similar minerals; hence, 12 minerals
were considered in the experiment: Alunite, Andradite, Bud-
dingtonite, Dumortierite, Kaolinite#1, Kaolinite#2, Muscovite,
Montmorillonite, Nontronite, Pyrope, Sphene, and Chalcedony.

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 9. (a) USGS map with different minerals in a cuprite mining district in
Las Vegas, NV, USA. (b) Cuprite dataset (100th band) sized 250 × 190 pixels,
which is a subset of the USGS map.

Fig. 10. Impact of λ on SAD and RMSE.

C. Experimental Performance

1) Experiment 1 (Parameter Tuning): In this article, the
proposed SENMAV algorithm involves only one parameter,
the spatial regularization factor λ. Therefore, the aim of this
experiment was to verify the impact of λ on the performance.
DS2 was used to perform the experiment (with SNR fixed at
40 dB) since it contains several outliers. As we can see from
Fig. 10, when λ varies from 0 to 1, the SAD and RMSE results
change significantly, indicating that λ plays an important role
in avoiding outliers for SENMAV. According to Fig. 10, we
fixed λ at 0.4 for the experiments. Based on the fixed λ, Fig. 11
plots the data points, outliers, true endmembers, and extracted
endmembers, and shows that SENMAV precisely searches the
positions of the endmembers under the interference of outliers.

2) Experiment 2 (Evaluation of k-Means on Initial Class Map
Generation Process): To validate the effect of the number of
clusters l on the performance, this experiment was conducted on
the Cuprite dataset. Fig. 12 plots the DBI on different numbers of
clusters varying from 1 to 30. A high DBI means good clustering

Fig. 11. Scatter plot of data points (gray points), outliers (red points), true
endmembers (blue points), and extracted endmembers (green circles).

Fig. 12. DBI on different numbers of clusters.

Fig. 13. Clustering maps. (a) 14 clusters. (b) 18 clusters. (c) 22 clusters.
(d) 26 clusters. (e) 30 clusters.

performance. As Fig. 12 shows, the number of clusters in the
interval [14, 28] (14 is regarded as the number of estimated
endmembers) displays relatively stable Davies– Bouldin results,
where 22 clusters can yield the best clustering performance.
Fig. 13(a), (b), (c), (d), and (e) show clustering maps related to
14, 18, 22, 26, and 30 clusters, respectively. Two red rectangles
in each figure indicate the range of two representative minerals,
muscovite and dumortierite. As can be seen from Fig. 13(a) and
(b), when the number of clusters is large, the spatial homogeneity
may be reduced due to inconsistent class labels.
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TABLE I
SAD RESULTS BETWEEN EXTRACTED ENDMEMBERS AND CORRESPONDING

USGS LIBRARY ON DS1

Fig. 14. Scatter plot of endmembers extracted by all EEAs.

3) Experiment 3 (Endmember Extraction Performance of
EEAs): This experiment evaluated the endmember extraction
performance associated with five endmembers on DS1, while
containing the same noise (fixed at 40 dB). Table I lists the
data on the SAD results between the extracted endmembers and
the corresponding USGS library. From the table, we can see
that SENMAV can provide almost the same extraction perfor-
mance as AVMAX, and better than AMEE and SSEBE, on five
endmembers. This indicates that SENMAV well captures the
superiority of the simplex at identifying endmembers. It should
be noted that VCA offers mostly low SAD values on all the
endmembers, mainly due to its specific endmember extraction
mechanism on noisy data.

4) Experiment 4 (Impact of Outliers on EEAs): To validate
the impact of outliers on all the EEAs, this experiment was
performed based on DS2, with SNR fixed at 40 dB. As shown in
Fig. 14, the endmembers extracted by SENMAV (green circle)
were located at the position of true endmembers (blue points).
However, most of the comparison EEAs, e.g., VCA (black
rectangular) and AVMAX (cyan diamond), regard outliers (red
points) as endmembers. For the MVSA algorithm (orange five-
pointed star), the simplex structure is obstructed by the outliers,
with the result that the generated endmembers deviate from
true endmembers. The spatial-spectral-based algorithms AMEE
(pink right-triangle) and SSEBE (brown left-triangle) could
somewhat avoid interference of outliers because they exploit
the spatial correlations between pixels. Table II lists corre-
sponding numerical results, which demonstrate that SENMAV

TABLE II
SAD RESULTS BETWEEN EXTRACTED ENDMEMBERS AND CORRESPONDING

USGS LIBRARY ON DS2

TABLE III
TIME CONSUMPTION (IN SECONDS) ON DS1, DS2, AND DS3 WITH

SNR FIXED AT 40 DB

Fig. 15. Box plot of SAD results of all EEAs on synthetic datasets with number
of endmembers varying from 3 to 10.

still provided accurate endmember identification results while
comparison algorithms mistakenly extracted the endmembers.
To analyze the time consumption of the EEAs on the synthetic
datasets, we recorded the execution time (in seconds) of the
EEAs on DS1, DS2, and DS3, with the SNR fixed at 40 dB (see
Table III). We observe from Table III that most EEAs took less
time than AMEE, which requires a dynamically spatial sliding
kernel window with many dot products to identify the purest
pixels.

5) Experiment 5 (Evaluation of Different Numbers of End-
members): To test the robustness of the EEAs on different
numbers of endmembers, this experiment varied the number of
endmembers from 3 to 10, with HSI sized 100×100 and noise
fixed at 40 dB. Based on the SAD results obtained from the
EEAs on these synthetic images (each image contains different
endmembers), Fig. 15 shows a box plot of the SAD results.
Compared with AMEE and SSEBE, SENMAV maintained small
SAD variability on all the synthetic images with different end-
member number scenarios, as did VCA and AVMAX, which
implies that SENMAV was robust to the endmember number.

6) Experiment 6 (Comparison Between SENMAV and Other
Algorithms Under Different Noise and Dataset Scenarios): To
assess the impact of different noise and dataset scenarios, exper-
iment 5 was executed by all the algorithms, and the results were
averaged on ten independent experiments. It can be seen from
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TABLE IV
SAD RESULTS OBTAINED BY ALL COMPARISON ALGORITHMS UNDER

DIFFERENT NOISE AND DATASET SCENARIOS

TABLE V
OVERALL EXPERIMENTAL RESULTS (SAD, AVERAGE SAD, RMSE, AND

EXECUTION TIME) OBTAINED BY ALL COMPARISON ALGORITHMS

ON JAPSER RIDGE DATASET

† denotes that the mineral is not extracted.

the data in Table IV that SENMAV well maintained endmember
extraction accuracy under different noise and dataset scenarios.
Most comparison algorithms were only good at specifying end-
members under no outlier assumptions in DS1, but in DS2 and
DS3, which contain outliers with different scenarios, they had
high SAD results, implying that the outliers were extracted. It is
noteworthy that SSEBE provides better results than other com-
parison algorithms on DS2 and DS3, perhaps because SSEBE
involves a clustering step, which can alleviate noise or outlier
interference.

7) Experiment 7 (Comparison Between SENMAV and Other
EEAs on Japser Ridge Dataset): This experiment was con-
ducted on the Japser Ridge dataset, and was used to assess the
endmember extraction performance of different EEAs on a real
dataset scenario the best results are bolded and the suboptimal
results are underlined. Table V tabulates overall results including
SAD, average SAD, RMSE, and execution time obtained from
all EEAs. It can be seen from this table that SENMAV provided
relatively better endmember extraction accuracy on both Dirt
and Road ground objects compared to spectral-based EEAs.
Also, compared to the spatial-spectral-based EEAs, SENMAV
identified four desired endmembers, while both AMEE and
SSEBE missed several endmembers. RMSE results in this table
show that SENMAV and the other spectral-based algorithms
could yield lower reconstruction error than the AMEE and

Fig. 16. Visual comparison between extracted endmembers (blue dashed
curve) and library spectra (red solid curve). (a) Tree. (b) Water. (c) Dirt.
(d) Road.

Fig. 17. Estimated abundance maps on Japser Ridge. (a) Tree. (b) Water.
(c) Dirt. (d) Road.

SSEBE algorithms. Execution time from SENMAV was higher
than from VCA and AVMAX, yet the computational cost was
acceptable compared to MVSA and SSEBE. The identified
endmembers were visually compared to the spectral library,
which can be found in Fig. 16. The abundances of the identified
endmembers are displayed in Fig. 17, as estimated by the FCLS
algorithm [19].

8) Experiment 8 (Comparison Between SENMAV and Other
EEAs on Cuprite Dataset): In this experiment, each algorithm
was performed ten times. Based on the RMSE evaluation metric,
Fig. 18(a) shows the box plot of the entire RMSE results obtained
from the six algorithms on the Cuprite dataset with ten indepen-
dent runs. From this figure, we can see that SENMAV resulted in
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Fig. 18. (a) Box plot of RMSE results obtained from six algorithms with ten
independent runs on the Cuprite dataset. (b) RMSE result trend with λ varying
from 0 to 1.

the lowest and most stable RMSE values on ten runs, indicating
that SENMAV could yield relatively consistent experimental
results on multiple runs. Furthermore, Fig. 18(b) provides a trend
of RMSE results when varying λ. What stands out in this figure
is the rapid decrease and then stabilization in RMSE results. It
is worth mentioning that the Cuprite dataset contains complex
topographic features and highly mixed spectral signatures, with
the result that the SAD and RMSE results obtained by many
EEAs were inconsistent on multiple runs. As we can see from
Fig. 18(a), under ten independent runs, the RMSE results ob-
tained from AVMAX displayed great variability. Therefore, for
the proposed SENMAV algorithm, when λ is relatively small,
the spatial energy prior term will contribute weak constraints
to simplex volume, which indicates that the RMSE results may
be uncorrelated compared with the RMSE results when λ is
larger than 0.1. Similarly, Fig. 10 shows that when λ was smaller
than 0.3, the SAD results were high, indicating that the outliers
hampered the endmember search process. Additionally, both
Figs. 15 and 18(a) use the box plot method to display the
distribution features of the experimental results. The first figure
shows the SAD results of the EEAs on eight synthetic images
(each image has a different endmember number), and the second
shows the RMSE results of the EEAs with ten runs on the Cuprite
dataset.

The overall experimental results, such as SAD, average SAD,
RMSE, and execution time (in seconds), of all the algorithms
performed on the Cuprite dataset are set out in Table VI. This
table is quite revealing in several ways. First, SENMAV has

TABLE VI
OVERALL EXPERIMENTAL RESULTS (SAD, AVERAGE SAD, RMSE, AND

EXECUTION TIME) OBTAINED BY ALL COMPARISON ALGORITHMS

ON CUPRITE DATASET

an advantage over the other spatial-spectral-based algorithms,
AMEE and SSEBE, in specifying several minerals, e.g., Andra-
dite, Kaolinite#1, Muscovite, and Chalcedony, without missing
any minerals. These results offer compelling evidence that SEN-
MAV may have better endmember extraction performance than
the spatial-spectral-based algorithms. Second, compared to the
spectral-based EEAs, VCA, AVMAX, and MVSA, SENMAV
may require more computational time, but it still provided com-
petitive experimental results such as average SAD or RMSE.
Moreover, the extracted endmember signatures are compared to
the library spectra in Fig. 19. For most extracted endmembers,
they are closely matched to corresponding library spectra. Es-
pecially for Pyrope, the extracted endmember signatures have
low correlations with the library spectra, perhaps owing to the
high spectral mixing level. The corresponding abundance maps
are summarized in Fig. 20.

V. DISCUSSION

As stated in the introduction, our main aim is to propose
a SENMAV algorithm for spatial-spectral hyperspectral end-
member extraction. The single most marked observation to
emerge from the data comparison is that SENMAV can greatly
improve the efficiency and accuracy of endmember extraction
for spatial-spectral-based EEAs.

Generally, the spectral-based EEAs, whether simplex
projection-based, maximum simplex volume-based, or mini-
mum simplex volume-based, exploit the spectral attributes of the
endmembers when discarding their spatial correlations. There-
fore, they are sensitive to outliers, which could force a vertex
of the simplex to reside at a point beyond the nominal position
of the endmember in order to enclose all data points. On the
other side, the spatial-spectral-based EEAs heavily resort to
a determined combination of spatial and spectral information
between pixels to specify endmembers without considering the
convexity of the data structure, thus, involving many important
parameters to optimize endmember extraction performance. Un-
fortunately, those parameters demand tuning according to dif-
ferent qualities of dataset scenarios or algorithmic requirements
for designation at the price of computation. However, SENMAV
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Fig. 19. Visual comparison between extracted endmember and library spectra. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite#1.
(f) Kaolinite#2. (g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.

Fig. 20. Abundance maps related to each extracted mineral. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite#1. (f) Kaolinite#2.
(g) Muscovite. (h) Montmorillonite. (i) Nontronite. (j) Pyrope. (k) Sphene. (l) Chalcedony.

integrates the spatial energy prior and well-known maximum
simplex volume framework, which simultaneously obtains the
preferable endmember extraction performance of the maximum
simplex volume framework and the spatial energy prior to the
endmembers to pinpoint the final endmembers. As expected,
our experiments demonstrate that SENMAV well controls the
tradeoff between endmember extraction efficiency and spatial
attributes of endmembers.

We are aware that the computational cost of SENMAV may
be on the high side since two important aspects, i.e., maxi-
mum simplex framework and spatial energy prior, are governed
to jointly exploit the spatial and spectral information of the
endmembers. Most importantly, it is costly to determine the
adaptive threshold α, which demands a full and independent
maximum simplex volume computational task. Moreover, the
spatial regularization factor may slightly influence experimental
performance according to different HSI scenarios, and this factor
is normally tuned in the interval [0, 1].

As mentioned in the introduction, no one appears to have
applied current knowledge of the combination of the spatial
energy prior and maximum simplex volume framework to the

field of spatial-spectral endmember extraction. Therefore, the
importance of our experimental results using SENMAV lies both
in its efficiency and accuracy in determining the endmembers to
the spatial-spectral endmember extraction area.

VI. CONCLUSION

In this article, we proposed a spatial energy constrained max-
imum simplex volume approach, SENMAV, for spatial-spectral
endmember extraction. SENMAV is a new model in which
the transitional maximum simplex volume is regularized by
the spatial energy prior, resulting in the identified endmembers
capturing the convexity and spatial energy within the data struc-
ture and HSI, respectively. Results from experiments comparing
SENMAV to other spectral-based and spatial-spectral-based
algorithms on synthetic and real hyperspectral datasets point
toward the idea that SENMAV has clearly improved endmember
extraction performance. These findings add to a growing body
of literature on our understanding of spatial-spectral-based end-
member extraction. The most important limitation of SENMAV
may be its high computational cost, since the maximum simplex
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framework and spatial energy prior are governed to jointly
exploit the spatial and spectral information of the endmembers.
Therefore, investigation is needed to decrease the computational
complexity without sacrificing high endmember extraction per-
formance in the field of spatial-spectral hyperspectral endmem-
ber extraction.
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