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Abstract—Deep spectral–spatial features fusion has become a
research focus in hyperspectral image (HSI) classification. How-
ever, how to extract more robust spectral–spatial features is still a
challenging problem. In this article, a novel deep multilayer fusion
dense network (MFDN) is proposed to improve the performance
of HSI classification. The proposed MFDN simultaneously extracts
the spatial and spectral features based on different sample input
sizes, which can extract abundant spectral and spatial correlation
information. First, the principal component analysis algorithm is
performed on hyperspectral data to extract low-dimensional HSI
data, and then the spatial features are extracted from the low-
dimensional 3-D HSI data through 2-D convolutional, 2-D dense
block, and average-pooling layers. Second, the spectral features
are extracted directly from the raw 3-D HSI data by means of 3-D
convolutional, 3-D dense block, and average-pooling layers. Third,
the spatial and spectral features are fused together through 3-D
convolutional, 3-D dense block, and average-pooling layers. Finally,
the fused spectral–spatial features are sent into two full connection
layers to extract high-level abstract features. Furthermore, densely
connected structures can help alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage feature reuse,
and improve the HSI classification accuracy. The proposed fusion
network outperforms the other state-of-the-art methods especially
with a small number of labeled samples. Experimental results
demonstrate that it can achieve outstanding hyperspectral clas-
sification performance.

Index Terms—Deep learning, densely connected convolutional
neural network, hyperspectral image (HSI) classification,
multilayer feature fusion.

I. INTRODUCTION

HYPERSPECTRAL sensors can capture hundreds of nar-
row spectral channels with very high spectral resolution.
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With the abundant spatial and spectral information, hyperspec-
tral images (HSIs) have been applied in many fields, such as
military [1], agriculture [2], and environment monitoring [3].

Due to the complex characteristics of HSI data, HSI clas-
sification is still very challenging. During the last decade, the
HSI classification method based on spectral features [4]–[6]
has become a very active research topic in the remote sensing.
However, the large number of spectral bands may bring noise
to HSI, and the high dimensionality of HSI may produce the
Hughes phenomenon [7]. Therefore, using spectral features
directly may not be suitable for HSI classification tasks [8].

To further improve the classification performance, many clas-
sification frameworks based on spectral–spatial features have
been proposed [9] recently. Benediktsson et al. [10] utilized
multiple morphological operations to construct spectral–spatial
features of HSIs. Khodadadzadeh et al. [11] proposed a spectral–
spatial classifier for HSI classification that addresses the issue of
mixed pixel characterization. In [12], multiple kernel learning
based on spectral–spatial information is designed to improve the
SVM classifier.

More recently, many studies have shown that HSI classifi-
cation framework based on deep spectral–spatial features can
deliver state-of-the-art results. In [13], spatial features extracted
by CNN were integrated with spectral features obtained by bal-
anced local discriminate embedding to finish HSI classification.
Li et al. [14] proposed a CNN-based feature extractor by learning
discriminative representations from pixel pairs. Li et al. [15],
[16] proposed a deep network based on multiscale spectral–
spatial fusion for HSI classification. Yang et al. [17] designed
a Two-CNN model to learn the spectral features and spatial
features jointly. But in this framework, the input of spectral
data is a one-dimensional (1-D) dimension, which leads to the
lack of neighborhood information in the spatial dimension. And
the classification accuracy of these deep learning models will
decrease when the network is deeper. In addition, 3D-CNN was
used to directly extract deep spectral–spatial features from raw
HSIs, and provided promising classification results [18]. Li et al.
[19] further studied 3D-CNN for spectral–spatial classification
using input cubes of HSIs with a smaller spatial size. These
models generate thematic maps using an approach that can
directly process the raw HSIs, whereas the classification accu-
racy of the CNN models decreases as the network gets deeper.
Song et al. [20] proposed a deep fusion feature network for
classification. In this network, the features from the lower layers,
intermediate layers, and higher layers are, respectively, extracted
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by the residual network [21], and the features of different layers
are fused in a fully convoluted layer to classify the images.
Although the network fuses the outputs of different hierarchical
layers, it fuses these outputs only in a fully connected (FC) layer,
which does not enable the entire network to make full use of
these outputs to learn more discriminative features. Zhong et al.
[22] proposed a supervised spectral–spatial residual network
(SSRN) and the idea of identity mapping in residual blocks
mitigates the decreasing-accuracy phenomenon. Inspired by the
SSRN, Wang et al. [23] proposed an end-to-end fast dense
[24] spectral–spatial convolution (FDSSC) framework for HSI
classification. The SSRN and FDSSC treat spectral features and
spatial features separately in two consecutive blocks, and the
spectral and spatial features are also fused only in the FC layer.
In addition, the input of the spatial block is based on the spectral
block in the SSRN and FDSSC, and the spatial learning will lose
spatial information.

To solve these problems and extract more discriminative
fusion features, we propose a novel deep multilayer fusion dense
network (MFDN) for HSI classification. The MFDN simultane-
ously extracts the spatial and spectral features based on different
sample input sizes, and then the spatial and spectral features are
fused together through multilayer fusion strategy with a densely
connected structure. For spatial feature extraction, in order to
reduce the cost of computation, the principal component analysis
(PCA) algorithm is first performed on hyperspectral data to
extract low-dimensional HSI data. Then, the spatial features are
extracted from the low-dimensional 3-D HSI data through 2-D
convolutional, 2-D dense block, and average-pooling layers. For
spectral feature extraction, the spectral features are extracted
from the raw 3-D HSI data by means of 3-D convolutional,
3-D dense block, and average-pooling layers. For spectral–
spatial feature extraction, the spatial and spectral features are
fused together through 3-D convolutional, 3-D dense block, and
average-pooling layers. Then, the fused spectral–spatial features
are fused in two full connection layers to extract high-level
abstract features.

The main contributions of this article can be summarized as
follows.

1) To extract rich spectral and spatial correlation informa-
tion, MFDN simultaneously extracts spatial and spectral
features based on different sample input sizes.

2) MFDN simultaneously fuses the spectral and spatial fea-
tures in the convolutional layers and the FC layers, which
can make full use of complementary spatial–spectral cor-
relation information among different layers.

3) MFDN adopts dense connection structures to extract the
spatial and spectral features and fuse the spectral–spatial
features, which can help alleviate the vanishing-gradient
problem, strengthen feature propagation and encourage
feature reuse. Therefore, MFDN can learn more discrim-
inative deep spectral–spatial features to improve classifi-
cation accuracy.

The rest of this article is organized as follows. In Section II, the
proposed MFDN is described in detail. The experimental results
and analysis are presented in Section III. Finally, Section IV
concludes this article.

II. PROPOSED FRAMEWORK

The main procedure of the proposed MFDN is shown in
Fig. 1, including deep spectral and spatial features extraction,
multilayer deep spectral–spatial features fusion, and a softmax
classifier. Generally, a hyperspectral data can be denoted as
I ∈ �H×W×B , where H,W,B denote that the hyperspectral
data have H ×W pixels, and B bands, respectively. In the
MFDN, due to the high spectral resolution and high spatial
correlation of HSI, we first design a spatial extraction network
substructure to extract spatial features from the low-dimensional
3-D HSI data obtained by PCA, and design a spectral extraction
network substructure to extract spectral features from the raw
3-D HSI data. Then, in order to exploit better spectral–spatial
features, a multilayer fusion network is designed to fuse spa-
tial and spectral features. Among the proposed network, the
spatial contexts are exploited by 2-D convolutional operation,
whereas the spectral correlations and spectral–spatial contexts
are exploited by a 3-D convolutional operation. For the proposed
framework, batch normalization (BN) [25] and PReLU [26] are
added before the convolutional layer. PReLU introduces a small
number of parameters based on ReLU [27], and its formula is
defined as follows:

PReLU (vi) =

{
vi, if vi > 0
αivi if vi ≤ 0

(1)

where vi is the input of the nonlinear activation on the ith channel
and αi is a learnable parameter that determines the slope of the
negative part. In PReLU, the momentum method is adopted to
update αi

Δαi := μΔαi + γ
∂ε

∂αi
(2)

where μ is the momentum and γ is the learning rate, and αi =
0.25 is used as the initial value.

A. 2-D Convolutional Dense Block

In the 2-D convolutional operation, input data are convolved
with 2-D kernels before going through the activation function to
produce the output data (i.e., feature maps).

As shown in Fig. 2, if the (n + 1)th 2-D convolutional
layer has kn input feature squares of size rn × rn, a convo-
lutional filter bank that contains kn+1 convolutional filters of
size an+1 × an+1, and the subsampling strides of (s, s) for the
convolutional operation, then, this layer generates kn+1 output
feature squares of size rn+1 × rn+1, where the spatial width
rn+1 = �1 + (rn − an+1)/s�. The value of a neuron vn+1

ixy at
position (x, y) of the ith feature map in the (n+ 1)th layer is
denoted as follows:

vn+1
ixy =

F

⎛
⎝ kn∑

j=1

∑
m

an+1−1∑
p=0

an+1−1∑
q=0

vnjm(x+p)(y+q)w
n+1
impq + bn+1

i

⎞
⎠

(3)

where m indexes the feature map in the nth layer connected to the
ith feature map in the (n+ 1)th layer, wn+1

impq is the weight of
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Fig. 1. Overall flowchart of HSI classification based on the MFDN.

Fig. 2. 2-D convolutional operator.

Fig. 3. 2-D convolutional dense block with three composite layers (l = 4).

position (p, q) connected to the mth feature map in (n+ 1)th
layer, an+1 is the width of the spatial convolutional kernel,
bn+1
i is the bias of the ith feature map in the (n+ 1)th layer,

j indexes the input feature square in the nth layer, and F (·) is
the parametric rectified linear unit activation function that sets
elements.

Fig. 3 illustrates the layout of 2-D convolutional dense block.
As shown in Fig. 3, the input of the lth layer receives the feature
maps of all preceding layers (X0, X1, . . . , Xl−1), and the output
of the lth layer is calculated as follows:

Xl = H2D ([X0, X1, . . . , Xl−1]) (4)

Fig. 4. 3-D convolutional operator.

where [X0, X1, . . . , Xl−1] represents the concatenation opera-
tion of the feature maps produced in layers (0, 1, . . . , l − 1),
H2D(·) is defined as consecutive operations: BN, followed by
PReLU, a 3× 3 same convolution. Such connectivity pattern
strongly encourages feature reuse throughout the network and
makes all layers in the architecture receive direct supervision
signal from the loss function. If each layer produces k feature
maps, thus, the number of input feature maps in layer l can be
formulated as follows:

kl = k0 + (l − 1)× k (5)

where k0 is the number of channels in the input layer, and the k
(generally set a smaller value, e.g., k = 12) is referred as growth
rate of the 2-D dense block.

B. 3-D Dense Block

In the 3-D convolutional operation, input data are convolved
with 3-D kernels before going through the activation function to
produce the output data (i.e., feature maps).

As shown in Fig. 4, if the (n+ 1)th 3-D convolutional layer
has kn input feature cubs of size rn × rn × dn, a convolu-
tional filter bank that contains kn+1 convolutional filters of size
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Fig. 5. 3-D convolutional dense block with three composite layers (l = 4).

an+1 × an+1 × hn+1, and the subsampling strides of (s, s, s1)
for the convolutional operation, then, this layer generates kn+1

output feature cubs of size rn+1 × rn+1 × dn+1, where the spa-
tial width rn+1 = �1 + (rn − an+1)/s� and the spectral depth
dn+1 = �1 + (dn − an+1)/s1�. The value of a neuron vn+1

ixyz at
position (x, y, z) of the ith feature map in the (n+ 1)th layer is
denoted as follows:

vn+1
ixyz=F

(
kn∑
j=1

∑
m

an+1−1∑
p=0

an+1−1∑
q=0

×
hn+1−1∑

t=0

vnjm(x+p)(y+q)(z+t)w
n+1
impqt+, bn+1

i

)
(6)

where m indexes the feature map in the nth layer connected to
the ith feature map in the (n+ 1)th layer,wn+1

impqt is the weight of
position (p, q, t) connected to the mth feature map in (n+ 1)th
layer, an+1 is the width of the spatial convolutional kernel, hn+1

is the depth of the spatial convolutional kernel, bn+1
i is the bias

of the ith feature map in the (n+ 1)th layer, j indexes the input
feature square in the nth layer, andF (·) is the parametric rectified
linear unit activation function that sets elements.

Fig. 5 illustrates the layout of 3-D convolutional dense block.
As shown in Fig. 5, the input of the lth layer receives the feature
maps of all preceding layers (X0, X1, . . . , Xl−1), and the output
of the lth layer is calculated as follows:

Xl = H3D ([X0, X1, . . . , Xl−1]) (7)

where [X0, X1, . . . , Xl−1] represents the concatenation opera-
tion of the feature maps produced in layers (0, 1, . . . , l − 1),
H3D(·) is defined as consecutive operations: BN, followed by
PReLU, a 3× 3 same convolution. If each layer produces k
feature maps, thus, the lth layer has k0 + (l − 1)× k input
feature maps, where k0 is the number of channels in the input
layer. Here, the k (generally set a smaller value, e.g., k = 8) is
referred as growth rate of the 3-D dense block.

C. Spatial Feature Extraction

We take the Indian Pines (IN) dataset, the low-dimensional
3-D samples of which have the size of 27× 27× 10, as an
example to explain the designed spatial feature extraction sub-
structure.

For spatial features extraction, a PCA algorithm is the first per-
formed on hyperspectral data I ∈ �H×W×B to extract the most
informative components, which can reduce the cost of computa-
tion. The data after executing PCA is denoted as T ∈ �H×W×b,
b < B. Then, the spatial neighboring cube patch Ti ∈ �r×r×b

(r is the patch size, b is the most informative components, and
we set r to 27 and b to 10 in the experiment) of the ith pixel is
used as the input for the spatial features extraction.

To better exploit spatial structure, and texture features, 2-D
convolutional operator is adopted as the basic element of spa-
tial features extraction. In addition, BN is conducted at every
convolutional layer in spatial features extraction.

In the red dashed box in Fig. 1, the spatial features extraction
section includes two 2-D convolutional layers, a 2-D dense
block, and two average pool layers.

In the first convolutional layer, each 3× 3 spatial kernel with
a subsampling stride of (1, 1) convolves 10 27× 27 feature
tensors to generate a 27× 27 feature tensor. All 32 3× 3 spatial
kernels generate 32 27× 27 feature tensors. Next, an average
pooling layer transforms the extracted 32 27× 27 spatial feature
tensors to 32 9× 9 feature tensors.

Then, in order to extract and reuse spatial features effec-
tively, a four-layer 2-D spatial dense block, which contains
three convolutional layers and six direct connections, uses 12
3× 3 vector kernels with a subsampling stride of (1, 1) at each
convolutional layers to extract deep spatial features, and finally
produces 68 9× 9 feature tensors. In the 2-D spatial dense block,
all convolutional layers use padding to keep the sizes of output
feature maps the same as input.

Following the 2-D spatial dense block, the next convolutional
layer in this feature extraction section, which includes 128
3× 3 spatial kernels with a subsampling stride of (1, 1) for
keeping discriminative spatial features, convolves the 68 9× 9
feature tensors to produce 128 9× 9 feature tensor. Next, an
average pooling layer transforms the extracted 128 9× 9 spatial
feature tensors to a 128 3× 3 feature tensors.

D. Spectral Feature Extraction

We take the IN dataset, the 3-D samples of which have the
size of 9× 9×B and B = 200, as an example to explain the
designed spectral feature extraction substructure.

For spectral features extraction, the 3-D convolutional op-
eration is employed to capture spectral correlations from HSI
data in spectral dimension. Specially, a spectral kernel of size
1× 1× b (1 < b ≤ B) is utilized to learn the spectral features
from a HIS.

Though the 3-D convolutional operation with a kernel size
of 1× 1× b can exploit the spectral correlations, it does not
consider the relationship between pixels and their neighbors
in the spatial field. However, the convolutional of a kernel
size of 1× 1can make linear combinations or integrate spatial
information for each pixel in a small spatial patch. Therefore,
in a small spatial patch, the 3-D convolutional operation with
a kernel size of 1× 1× b can extract spectral correlations and
perfectly retains the spatial correlations.

In the blue dashed box in Fig. 1, the spectral features extraction
section includes two 3-D convolutional layers, a 3-D dense
block, and an average pool layer. In addition, BN is conducted
at every convolutional layer in spectral features extraction.

In the first convolutional layer, B 1× 1×B spectral kernels
with a subsampling stride of (1, 1, 0) convolve the input HSI
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volume of size 9× 9×B to generate a 9× 9×B feature
cube. Because the raw input data contain redundant spectral
information, 1× 1×B vector kernels are used in these blocks.
This layer reduces the high dimensionality of input cubes and
extracts low-level spectral features of HSI.

Then, in order to extract and reuse spectral features effectively,
a four-layer 3-D spectral dense block, which contains three
convolutional layers and six direct connections, uses 8 1× 1× 7
vector kernels with a subsampling stride of (1, 1, 1) at each
convolutional layers to extract deep spectral features, and finally
produces 25 9× 9×B feature cubes. In the 3-D spectral dense
block, all convolutional layers use padding to keep the sizes of
output feature cubes the same as input.

Following the 3-D spectral dense block, the last convolutional
layer in this feature extraction section, which includes 256 1×
1×B spectral kernels with a subsampling stride of (1, 1, 0)
for keeping discriminative spectral features, convolves the 25
9× 9×B feature cubes to produce a 9× 9× 256 feature cube.
Next, an average pooling layer transforms the extracted 9× 9×
256 spectral feature volume to a 3× 3× 256 feature volume.

E. Spectral–Spatial Feature Extraction

The PCA algorithm is first performed on hyperspectral data to
extract low-dimensional HSI data. 2-D convolutional and 2-D
dense block can exploit perfectly spatial correlations in low-
dimensional HSI data.

3-D convolution and 3-D dense block with a kernel size of
1× 1× b can extract spectral correlations and perfectly retains
the spatial correlations.

In order to fuse the spatial and spectral features, a spectral–
spatial feature extraction substructure is designed. As shown in
the green dashed box in Fig. 1, the spatial and spectral features
are first concatenated to cascade features, which are character-
ized by both the spatial and spectral dimensions. 3-D dense block
and 3-D convolutional operation are then applied to cascade
features to extract spatial-spectral features simultaneously. In
addition, an average pool layer and two FC layers can exploit
more abstract spatial-spectral features at high levels, which are
generally robust and invariant [28].

The 3-D dense block contains three 3-D convolutional layers
and six direct connections. 8 3× 3× 7 vector kernels with
a subsampling stride of (1, 1, 1) at each convolutional layers
are used to extract deep spectral–spatial features, and finally
produce25 3× 3× 384 feature tensors.

Following the 3-D spectral–spatial dense block, the 3-D
convolutional layer in this feature extraction section, which
includes 256 1× 1× 384 spectral kernels with a subsampling
stride of (1, 1, 0) for keeping discriminative spectral–spatial fea-
tures, convolves the 25 3× 3× 384 feature cubes to produce a
3× 3× 256 feature cube. Then, an average pooling layer trans-
forms the extracted 3× 3× 256 spectral–spatial feature volume
to a 1× 1× 256 feature volume. Next, two FC layers adapt the
MFDN to HSI dataset according to the number of land-cover
categories and generates an output vector ŷ = [ŷ1, ŷ2, . . . , ŷL].
The truth label vector y = [y1, y2, . . . , yL] is the number of
land-cover categories. The loss function of the MFDN is defined

TABLE I
LAND COVER CLASSES AND NUMBERS OF SAMPLES IN THE IN DATASET

as

Loss = − 1

ntrain

ntrain∑
i=1

[
yilog (ŷi) + (1− yi) log (1− ŷi)

]

(8)

where ŷi is the corresponding predicted labels for the ith training
sample, yi is the true label, and ntrain is the size of training set.
The whole network is trained in an end-to-end manner, where
all the parameters are optimized by the Adam [29] at the same
time.

III. RESULTS AND DISCUSSION

A. Experimental Datasets

In our experiments, the effectiveness of our method is proved
in three real-world hyperspectral remote sensing datasets, which
contain the IN, the University of Pavia (UP), and the Kennedy
Space Center (KSC) datasets.

The IN dataset was collected by AVIRIS in 1992 in north-
western Indiana. This commonly used dataset has 16 vegetation
classes and 224 bands. The spatial size is 145× 145 and the
spatial resolution is 20 m per pixel. To avoid the negative
influence on classification due to water absorption and noise,
some bands are discarded and the remaining 200 bands are
adopted for analysis. Fig. 6 shows the false-color image and
the ground-truth map, and the samples are listed in Table I.

The UP was captured by a Reflective Optics System Imaging
Spectrometer optical sensor over an urban area surrounding the
UP. The image is of size 610× 340× 115 with a resolution of
1.3 m per pixel and nine urban land-cover classes are considered
in this experiment. The number of remaining bands is 103 after
discarding the useless bands. Fig. 7 shows the false-color image
and the ground-truth map, and the samples are listed in Table II.

The KSC dataset was collected by AVIRIS in 1996 in Florida,
and contains 512× 614 pixels with spatial resolution of 18 m
per pixel and the ground-truth classes are 13. After removing
the noise bands, 176 bands are retained and used for our exper-
iments. Fig. 8 shows the false-color image and the ground-truth
map, and the samples are listed in Table III.
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Fig. 6. (a) False-color image of the IN dataset. (b) Ground truth of the IN dataset.

TABLE II
LAND COVER CLASSES AND NUMBERS OF SAMPLES IN THE UP DATASET

TABLE III
LAND COVER CLASSES AND NUMBERS OF SAMPLES IN THE KSC DATASET

B. Experimental Settings

In our implementation, the learning rate was set to 0.0001, the
training epoch was 150 for the IN dataset, 80 for the UP dataset,
and 200 for the KSC dataset. The optimizer adopted the Adam
method and the batch size was set to 30.

All experiments were conducted on a Lenovo ThinkCen-
tre with NVIDIA P106-100 GPU, Intel i3-7100 CPU, and 16
GB RAM. The software environment of the workstation is
python3.6.3, tensorflow1.9.0, cuda9.0, and keras2.2.6. The pro-
posed method was compared with some state-of-the-art methods
including the Two-CNN [17], 3D-CNN [19], SSRN [22], DFFN
[20], and FDSSC [23]. In the above-compared methods, the input
sizes of FDSSC and SSRN are (9,9, B) and (7,7, B), respectively,
where B is the number of bands of the raw hyperspectral data.
In DFFN, the PCA algorithm is first applied to the hyperspectral
data. Different input sizes are set for different datasets, where the

Fig. 7. (a) False-color image of the UP dataset. (b) Ground truth of the UP
dataset.

IN dataset is (25,25,3), the KSC dataset is (27,27,9), and the UP
dataset is (23,23,5). The input size of 3D-CNN is set to (5,5, B).
Two-CNN has Two branches and the input size of spatial branch
is (21, 21) and the input size of spectral branch is (1,1,B). FDSSC
and SSRN first extract the spectral information and then extract
the spatial information. Their spatial input sizes are (9,9) and
(7,7). The overall accuracy (OA), the average accuracy (AA),
and d kappa coefficient (k) are the classification metrics used
to assess the classification performance of all the methods. We
ran experiments for ten times with randomly selected training
data and reported the mean and standard deviation of main clas-
sification metrics. We evaluated the performance of all methods
on the small training samples to prove that our proposed MFDN
has strong robustness and generalization.

C. Analysis of Parameters

For the proposed MFDN method, the different sample input
sizes are set for the spectral and spatial feature extraction,
respectively. In addition, for spatial feature extraction, the PCA
algorithm is performed on the original HSIs with the purpose of
extracting first several principal components. The corresponding
experiments are performed on the IN, UP, and KSC datasets,
respectively. For the IN, UP, and KSC datasets, 3% of labeled
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Fig. 8. (a) False-color image of the ground-truth map of the KSC data. (b) Ground truth of the KSC data.

TABLE IV
OA OF OUR METHODS ON THE THREE DATASETS WITH DIFFERENT SAMPLE INPUT SIZES

pixels are randomly selected as training samples, and the rest
of samples are utilized for testing. For the UP dataset, we only
use 0.5% samples per class to train classifiers, and the rest of
samples are used as the test samples.

1) Effect of the Sample Input Size on Classification Accura-
cies: For the CNN used for HSI classification, the sample input
size is an important factor affecting the HSI classification. In
the MFDN, we set different input sizes for spectral and spatial
feature extraction, respectively.

For spectral feature extraction, the sample input size is set
to 5× 5, 7× 7, 9× 9, 11× 11 and 13× 13. For spatial feature
extraction, the sample input size is set to 23× 23, 25× 25, 27×
27, 29× 29, 31× 31.

We measured the OA for each dataset. Table IV lists the
classification results (OA%) of our methods on the three datasets
with different input sizes.

As can be seen from Table IV, when the sample input size was
set to 9× 9 (for spectral feature extraction) and 27× 27 (for
spatial feature extraction), respectively, the MFDN achieved the
best overall classification accuracies on all three datasets.

2) Effect of the Number of Principal Components on Clas-
sification Accuracies: For the proposed MFDN method, the
PCA algorithm was first performed on the original HSIs in the

Fig. 9. Effect of the number of principal components on classification accu-
racies in the three datasets.

extraction of spatial features. In this analysis, the spatial size
of the input sample is empirically set to 9× 9 and 27× 27
for spectral feature extraction and spatial feature extraction,
respectively.

Fig. 9 shows the overall accuracies with the different number
of principal components on three datasets. As can be seen from
Fig. 9, the overall accuracies on the IN dataset UP dataset and
KSC dataset generally increase and then become comparatively
stable as the number of principal components increases. When
the number of principal components was 10, the overall accu-
racies on the three datasets reached a higher accuracy. We also
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Fig. 10. Effect of the number of convolution layers in a dense block on
classification accuracies in the three datasets.

performed an experiment without PCA. The overall accuracies
without PCA were, respectively, 95.37%, 98.77%, and 96.96%
on the IN dataset UP dataset and KSC dataset. However, when
the number of principal components was 10, the overall accura-
cies of the three sets of data were 96.08%, 98.89%, and 97.55%
on the IN dataset UP dataset and KSC dataset, respectively,
which is slightly better than the OA of the analysis without
principal components.

3) Effect of the Number of Convolution Layers in the Dense
Block: In a dense block, the output of each convolutional layer
is a part of the input of all subsequent convolutional layers.
Therefore, the number of convolutional layers in the dense
block determines the degree of feature reuse in the dense block.
Fig. 10 shows the overall accuracies with the different number
of convolution layers in the dense block on three datasets. It can
be seen from Fig. 10 that when the number of convolution layers
in the dense block was set to 3, the overall accuracies of the three
datasets reach a higher accuracy.

D. Experiment Results and Analysis

In order to prove the superiority of the proposed network
MFDN in the case of small label samples, we compared MFDN
with other state-of-the-art methods on the three datasets. To
verify the effectiveness of the spectral and spatial feature ex-
traction parts in this framework, we also tested the network
containing only the spectral feature extraction part (Spectral)
and the network containing only the spatial feature extraction
part (Spatial). The classification results are shown in Fig. 11.

The influence of different training and test sets on several
methods is first analyzed on the IN, UP, and KSC datasets,
respectively. For the IN, UP, and KSC datasets, different percent-
ages (from 1% to 5% for the IN and KSC datasets, 0.1%–0.7%
for the UP dataset) of labeled pixels per class are randomly
selected as training samples, and the rest of samples are used as
test samples. Specifically, all experimental results are averaged
ten times with different randomly selected training data. Fig. 11
shows the overall classification accuracy of each method under
different numbers of training samples. As can be seen from
the curve, as the number of training samples increases, the
performance of all methods generally increases.

As can be also seen from Fig. 11, the MFDN, DFFN, FDSSC,
and SSRN achieved higher overall accuracies than the CNN
and Two-CNN in most cases. It can be seen from the above

analysis that the residual connections or the dense connections
can achieve a better effect.

In all three cases, the MFDN achieved the highest classifi-
cation accuracies than other methods. Compared with the Two-
CNN, which only fused spectral and spatial features in the FC
layer, the MFDN fused spectral and spatial features by 3-D con-
volutional, 3-D dense block, and FC layers, so it achieved higher
overall accuracies. Compared with the SSRN and FDSSC, which
do not consider the original spatial correlation information, the
MFDN simultaneously learns spectral and spatial features and
fuses them together, so it has obvious advantages in most cases.

Tables V–VII report the OAs, AAs, kappa coefficients, and
the classification accuracies of all classes for HSI classification.
The corresponding classification maps on the IN, UP, and KSC
datasets are shown in Figs. 12–14, respectively. For the IN and
KSC dataset, the training set, validation set, and test set were
split into 3%, 5%, and 92%, respectively. For the UP dataset, the
training set, validation set, and test set were split into 0.5%, 5%,
and 94.5%, respectively. All experimental results are averaged
ten times with different randomly selected training data. As can
be seen from Figs. 12–14, the MFDN achieved the most accurate
and smooth classification maps for all three HSIs.

As can be seen from Tables V–VII, the MFDN is superior
to Two-CNN, 3D-CNN, SSRN, DFFN, and FDSSC methods in
all three cases. The DFFN and SSRN with residual connections
generated obviously better outcomes than the Two-CNN and
3D-CNN in most cases. The MFDN and FDSSC with dense
connections also generated obviously better outcomes than the
Two-CNN and 3D-CNN. It is worth noting that the Spectral
performed better than the Two-CNN and 3D-CNN, and the
Spatial performed better than the Two-CNN and 3D-CNN in
most cases. These results show that the proposed spectral and
spatial dense connection structures alleviate the phenomenon
of reduced accuracy. In addition, MFDN always outperforms
Spectral and Spatial due to the fusion of complementary space-
spectrum correlation information among different layers.

In contrast to the idea of fusing only through the full con-
nection layer in the DFFN and Two-CNN, the MFDN fuses
spatial and spectral features through 3-D convolutional, 3-D
dense block, and FC layers, which can learn more discriminative
features. It can be seen from Tables V–VII that, on the IN, UP,
and KSC datasets, the mean overall classification accuracy of
the MFDN is 3.52%, 4.17%, and 6.67% higher than that of the
DFFN, and 35.8%, 30.36%, and 24.75% higher than that of the
Two-CNN. The SSRN and FDSSC adopt consecutive spectral
and spatial blocks to learn the spectral–spatial feature, and the
input of spatial blocks is based on spectral blocks, which causes
spatial learning blocks to lose spatial information. In particular,
the SSRN and FDSSC also fuse spectral and spatial features only
in the FC layer. Different from the idea of spectral–spatial fusion
in the SSRN and FDSSC, the MFDN simultaneously learns
spectral and spatial features and sends them into a multilayer
structure (including 3-D convolutional, 3-D dense block, and
FC layers) for fusion, which can achieve the abundant spectral
and spatial structure information and extract more discriminative
features. It can be seen from Tables V–VII that, on the IN, UP,
and KSC datasets, the mean overall classification accuracy of
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Fig. 11. OA of changing the percentage of training samples by all methods on the three datasets. (a) OA on IN. (b) OA on UP. (c) OA on KSC.

TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE IN DATASET

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE UP DATASET
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TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE KSC DATASET

Fig. 12. Classification maps on the IN dataset obtained by (a) Two-CNN, (b) 3D-CNN, (c) SSRN, (d) DFFN, (e) FDSSC, (f) Spatial, (g) Spectral, and (h) MFDN.

the MFDN is 3.45%, 0.93%, and 2.13% higher than that of the
FDSSC, and 7.74%, 2.64%, and 4.7% higher than that of the
SSRN.

It is worth noting that when training samples are very few (for
example, there is only one sample for grass-pasture-mowed and
oats classes in the IN dataset), the FDSSC with dense connec-
tions is inferior to SSRN with residual connections, and even
inferior to Two-CNN. However, compared with SSRN (63.32%
and 55.1%), the overall classification accuracy of MFDN (90.9%
and 82.9%) in grass-pasture-mowed and oats increased by about
27.58% and 27.8%. These results validated the robustness of
the designed models under very difficult conditions and demon-
strated the effectiveness of a multilayer fusion strategy.

The training and testing times provide a direct measure of
computational efficiency for the MFDN. All experiments were
conducted on a Lenovo ThinkCentre with NVIDIA P106-100

GPU, Intel i3-7100 CPU, and 16 GB RAM. The software
environment of the workstation is python3.6.3, tensorflow1.9.0,
cuda9.0, and keras2.2.6. The training set, validation set, and test
set of all methods on the IN and KSC datasets were split into
3%, 5%, and 92% for the IN and KSC datasets, respectively. For
the UP dataset, the training set, validation set, and test set were
split into 0.5%, 5%, and 94.5%, respectively. Table VIII lists the
results of training and test times for all methods on three different
datasets. It can be seen from Table VIII that the training time
of the SSRN, DFFN, FDSSC, and MFDN is longer than that of
the CNN and Two-CNN, which means that the computational
cost of residual or dense connections is more expensive. The
training time of the MFDN and FDSSC is longer than that of the
SSRN and DFFN, which means that the dense connections are
more computationally expensive than the residual connections.
Although the MFDN has a longer training time in most cases, it
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Fig. 13. Classification maps on the UP dataset obtained by (a) Two-CNN, (b) 3D-CNN, (c) SSRN, (d) DFFN, (e) FDSSC, (f) Spatial, (g) Spectral, and (h) MFDN.

Fig. 14. Classification maps on the KSC dataset obtained by (a) Two-CNN, (b) 3D-CNN, (c) SSRN, (d) DFFN, (e) FDSSC, (f) Spatial, (g) Spectral, and
(h) MFDN.

TABLE VIII
TRAINING AND TESTING TIMES OF DIFFERENT MODELS FOR THREE HSI DATASETS
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has a higher classification accuracy, especially in the IN dataset
that is difficult to classify.

E. Discussions

First, compared with other deep learning methods, the MFDN
extracts spatial and spectral features based on different sample
input sizes. Spatial features are extracted in a large neighborhood
to extract more spatial correlation information, whereas spectral
features are extracted in a relatively small neighborhood to
extract more spectral correlation information. For spatial feature
extraction, the abundant spatial correlation information can be
obtained in large neighborhood. For spectral feature extraction,
in small neighborhood, spectral feature extraction can exploit
spectral correlation information and perfectly retains the spatial
correlation information.

Second, compared with other deep learning methods, the
MFDN adopts multilayer fusion strategy to fuse the spatial and
spectral features. The Two-CNN, SSRN, DFFN, and FDSSC
only fuse spectral and spatial features in the FC layer, which
cannot achieve more discriminating features. The SSRN and
FDSSC treat spectral features and spatial features separately
in two consecutive blocks, and the input of spatial blocks is
based on spectral blocks, which causes spatial learning blocks
to lose spatial information. The MFDN adopts dense connec-
tions to simultaneously extract spectral and spatial features, and
fuses them through 3-D convolutional, 3-D dense block, and
FC layers. On the one hand, the abundant spatial and spectral
correlation information can be exploited, and on the other hand,
the spatial and spectral features can be better fused.

Third, the MFDN and FDSSC adopt dense connections that
strengthen feature propagation, encourage feature reuse, and
improve the classification accuracy. It is worth noting that
when training samples are very few, the FDSSC with dense
connections is inferior to SSRN with residual connections, and
even inferior to Two-CNN. However, the MFDN achieved very
high classification accuracy in this case, which demonstrated the
effectiveness of multilayer fusion strategy.

Finally, the shortcoming of the MMFN model is that the
training time is relatively long, which is mainly because the
network consists of spatial and spectral branches, and the spatial
and spectral features are fused by a multilayer fusion strategy.
In addition, the densely connected structure also increases the
corresponding time. Fortunately, however, the adoption of GPU
has largely alleviated the extra computational costs and reduced
the training times.

IV. CONCLUSION

In this article, a deep MFDN is proposed for HSI classifi-
cation. Compared with previous deep networks, the proposed
MFDN simultaneously extracts the spatial and spectral features
based on different sample input sizes, which can extract the abun-
dant spectral and spatial correlation information. In addition, a
multilayer fusion strategy with a densely connected structure
is exploited to fuse the spatial and spectral features, which can
extract more discriminative spectral–spatial features. Finally, the
dense connection-based network model can strengthen feature

propagation, encourage feature reuse, and improve the classifi-
cation accuracy. The experimental results demonstrate that the
proposed MFDN can obtain the state-of-the-art performance
with small labeled samples on the three data, and can be easily
generalized to other remote sensing scenarios due to its uniform
structural design and deep feature learning ability.

The MFDN is still a time-consuming model compared to
traditional methods. In future work, we will focus on further
simplifying the network structure while improving classification
accuracy.

REFERENCES

[1] R. Tao, X. Zhao, W. Li, H. Li, and Q. Du, “Hyperspectral anomaly detection
by fractional Fourier entropy,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 12, no. 12, pp. 4920–4929, Dec. 2019.

[2] B. Luo, C. Yang, J. Chanussot, and L. Zhang, “Crop yield estimation based
on unsupervised linear unmixing of multidate hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 162–173, Jan. 2013.

[3] X. Yang and Y. Yu, “Estimating soil salinity under various moisture
conditions: An experimental study,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 5, pp. 2525–2533, May 2017.

[4] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[5] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral
image segmentation using subspace multinomial logistic regression and
Markov random fields,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3,
pp. 809–823, Mar. 2012.

[6] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmen-
tation using a new Bayesian approach with active learning,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 10, pp. 3947–3960, Oct. 2011.

[7] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE
Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.

[8] X. Zhang, Y. Liang, Y. Zheng, and J. An, “Hierarchical discriminative
feature learning for hyperspectral image classification,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 4, pp. 594–598, Apr. 2016.

[9] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton,
“Advances in spectral-spatial classification of hyperspectral images,” Proc.
IEEE, vol. 101, no. 3, pp. 652–675, Mar. 2013.

[10] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[11] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias,
and X. Li, “Spectral–spatial classification of hyperspectral data using local
and global probabilities for mixed pixel characterization,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 10, pp. 6298–6314, Oct. 2014.

[12] L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, “Classification
of hyperspectral images by exploiting spectral–spatial information of su-
perpixel via multiple kernels,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 12, pp. 6663–6674, Dec. 2015.

[13] W. Shao and S. Du, “Spectral-spatial feature extraction for hyperspec-
tral image classification: A dimension reduction and deep learning ap-
proach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544–4554,
Oct. 2016.

[14] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017.

[15] Z. Li, L. Huang, D. Zhang, C. Liu, Y. Wang, and X. Shi, “A deep network
based on multiscale spectral-spatial fusion for hyperspectral classifica-
tion,” in Proc. Int. Conf. Knowl. Sci., Eng. Manage., 2018, pp. 283–290.

[16] Z. Li, L. Huang, and J. He, “A multiscale deep middle-level feature fusion
network for hyperspectral classification,” Remote Sens., vol. 11, no. 6,
pp. 695–794, 2019.

[17] J. Yang, Y.-Q. Zhao, and J. C.-W. Chan, “Learning and transferring
deep joint spectral–spatial features for hyperspectral classification,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 8, pp. 4729–4742, Aug. 2017.

[18] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction
and classification of hyperspectral images based on convolutional neural
networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232–
6251, Oct. 2016.



1270 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

[19] Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyper-
spectral imagery with 3D convolutional neural network,” Remote Sens.,
vol. 9, no. 1, pp. 67–87, 2017.

[20] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification
with deep feature fusion network,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 6, pp. 3173–3184, Jun. 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2016,
pp. 770–778.

[22] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[23] W. Wang, S. Dou, Z. Jiang, and L. Sun, “A fast dense spectral–spatial
convolution network framework for hyperspectral images classification,”
Remote Sens., vol. 10, no. 7, pp. 1068–1086, 2018.

[24] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vision
Pattern Recognit., 2017, pp. 2261–2269.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vision, 2015, pp. 1026–1034.

[28] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1097–1105.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

Zhaokui Li received the M.S. degree in computer ap-
plication from Liaoning University, Shenyang, China,
in 2003, and the Ph.D. degree in computer software
and theory from Wuhan University, Wuhan, China, in
2014.

He is currently a Professor with the School of Com-
puter, Shenyang Aerospace University, Shenyang,
China. His research interests include remote sensing,
computer vision, and machine learning.

Tianning Wang received the B.S. degree in 2017
from Shenyang Aerospace University, Shenyang,
China, where he is currently working toward the
master’s degree with the School of Computer.

His research interests include hyperspectral image
processing and deep learning.

Wei Li (Senior Member, IEEE) received the B.E. de-
gree in telecommunications engineering from Xidian
University, Xi’an, China, in 2007, the M.S. degree
in information science and technology from Sun Yat-
Sen University, Guangzhou, China, in 2009, and the
Ph.D. degree in electrical and computer engineering
from Mississippi State University, Starkville, MS,
USA, in 2012.

Subsequently, he spent one year as a Postdoctoral
Researcher with the University of California, Davis,
CA, USA. He is currently a Professor with the School

of Information and Electronics, Beijing Institute of Technology, Beijing, China.
His research interests include hyperspectral image analysis, pattern recognition,
and data compression.

Dr. Li is an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS and
the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS

AND REMOTE SENSING.

Qian Du (Fellow, IEEE) received the Ph.D. degree in
electrical engineering from the University of Mary-
land, Baltimore, MD, USA, in 2000.

She is currently the Bobby Shackouls Professor
with the Department of Electrical and Computer En-
gineering, Mississippi State University, Starkville,
MS, USA. Her research interests include hyperspec-
tral remote sensing image analysis and applications,
pattern classification, data compression, and neural
networks.

Dr. Du is a Fellow of the SPIE-International Soci-
ety for Optics and Photonics. She is the recipient of the 2010 Best Reviewer
Award from the IEEE Geoscience and Remote Sensing Society. She was a
Co-Chair of the Data Fusion Technical Committee of the IEEE Geoscience
and Remote Sensing Society from 2009 to 2013, and the Chair of the Remote
Sensing and Mapping Technical Committee of the International Association for
Pattern Recognition from 2010 to 2014. She was an Associate Editor for the
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND

REMOTE SENSING, Journal of Applied Remote Sensing, and the IEEE SIGNAL

PROCESSING LETTERS. Since 2016, she has been the Editor-in-Chief for the
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND

REMOTE SENSING. She is the General Chair of the 4th IEEE GRSS Workshop
on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing,
Shanghai, China, in 2012.

Chuanyun Wang received the Ph.D. degree in pat-
tern recognition and intelligent system from Beihang
University, Beijing, China, in 2017.

He is currently an Associate Professor with the
School of Computer Science, Shenyang Aerospace
University, Shenyang, China. His research interests
include machine vision, pattern recognition, and In-
ternet of Things.

Cuiwei Liu received the B.S. and Ph.D. degrees from
Beijing Institute of Technology, Beijing, China, in
2009 and 2015, respectively.

She is currently an Associate Professor with the
School of Computer Science, Shenyang Aerospace
University, Shenyang, China. Her research interests
include computer vision, machine learning, and video
content analysis.

Xiangbin Shi received the B.S. degree in computer
application from the Shenyang University of Technol-
ogy, Shenyang, China, in 1985, and the M.S. degree in
computer application and Ph.D. degree in computer
software and theory from the Northeastern University,
Shenyang, China, in 1990 and 1998, respectively.

He is currently a Professor of Computer Science
with Shenyang Aerospace University, Shenyang,
China. His research interests include computer vision,
virtual reality, and intelligent systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


