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Efficient and Accurate Electromagnetic Angular
Sweeping of Rough Surfaces by MPI Parallel
Randomized Low-Rank Decomposition

Si-Lu Huang *“, Wei Song

Abstract—A message passing interface (MPI) parallel scheme
on distributed memory platforms is developed for the low-rank
decomposition to accommodate the memory requirement during
angular sweeping of a rough surface in terms of tapered wave
incidence. Numerical examples, including that conducted on a
160 X 160 square wavelength rough surface, are carried out to
demonstrate the performance of the proposed MPI angular sweep-
ing with respect to accuracy, efficiency, scalability, and the peak
memory requirement.

Index Terms—Distributed memory parallel platform, message
passing interface (MPI) parallelization, randomized low-rank
decomposition, rank deficiency.

I. INTRODUCTION

HE electromagnetic simulation of scattering from a ran-
dom rough surface plays a fundamental role in many
areas, such as remote sensing, target recognition, and radar
surveillance [1]-[15]. The so-called analytical methods, such
as the Kirchhoff approximation and the small perturbation
method [16], are effective for simulating scattering from targets
with rough surfaces. However, their accuracy is sometimes
uncontrollable, and full-wave simulation may be required to
calibrate them. In full-wave simulations, the randomness can
be treated by the Monte Carlo (MC) method [13], [17], the
polynomial chaos expansion method [18]-[20], or other ap-
proaches [21]. Among them, the MC method performs well
when the surface variation is large.
The electromagnetic wave scattering by a large rough surface
may be highly dependent on the direction of the incident wave.
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Angular sweeping is, thus, important to reveal the scattering
characteristics of rough surfaces. Suppose the number of sweep-
ing angles is n and the number of the random surfaces in the MC
S N, the resource-demanding deterministic computation will
be carried out n Ny, times repeatedly for a common implemen-
tation of the sweeping. Without loss of generality, assuming that
the expense of the deterministic computation for one realization
of the rough surface is Cy corresponding to a single incident
angle, the total cost of the simulation can reach O(nNpy:Cq)
to obtain the scattering characteristics of the rough surfaces in
terms of the same statistical roughness properties. The efficiency
of a sweeping can, thus, be improved by either decreasing n, N
or reducing the cost of each single deterministic computation Cy.
Many efforts have been devoted to reduce Cy [22]-[24] as well
as Np.. However, to the best of the authors’ knowledge, seldom
can be found in terms of n. Encouraged by the angular sweeping
algorithm first proposed in [25], this work presents our attempt
to improve the efficiency of the MC simulation on large-scale
rough surfaces where solve each single deterministic computa-
tion. Although the skeletonization has been proved efficient in
angular sweeping in terms of plane waves and Gaussian beams,
its capability in accelerating the simulation in terms of tapered
waves is not well documented. As it is known, tapered waves
are always employed to truncate the infinite rough surfaces into
finite ones. It is not clear how the truncation would impact the
accuracy and performance of the skeletonization for the case
of rough surface simulations. Inherently, it can be revealed by
numerical studies as well as theoretical analysis. This work
launches such an investigation numerically.

Essentially, the skeletonization approach proposed in [25] is
based on randomized low-rank matrix decomposition [26]-[28].
Suppose Ny is the number of unknowns for the deterministic
computations, V' is a right-hand-side (RHS) matrix of size
Nunk X n, consisting of n RHS vectors. The randomized de-
composition first estimates /, the rank of V', and then utilizes the
standard procedure, i.e., pivoted QR, to conduct a decomposition
on a size-reduced matrix. It is revealed that the skeletonization is
cheap in runtime but expensive in memory usage [26]-[28]. The
peak memory requirement of the randomized decomposition
can be as high as O(Ny - 7). Such a memory requirement
can hardly be satisfied on a single computer/server if Ny - n
is large [25], [29], [30]. Compared with shared memory com-
puters [31], distributed memory computing platforms are more
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suitable for handling this difficulty because more memory space
can be provided by simply adding more computing nodes [32].
MapReduce and the message passing interface (MPI) are two
commonly employed parallel models for distributed memory
platforms. Parallelization based on the MapReduce program-
ming model [32] has preliminarily shown the capability of
parallel low-rank decomposition. In this work, we focus on the
MPI parallelization of the randomized low-rank matrix decom-
position, which can be integrated smoothly with the MPI parallel
multilevel fast multipole algorithm (MLFMA) [33]-[37].

Based on our preliminary studies [38], [39], this work devel-
ops a comprehensive MPI parallelization of the skeletonization,
which is one of the major contributions of this work. In particular,
the detailed implementation of the parallelization not available
in [38] and [39] is reported in this work. Another contribution
of the work, we think, is the detailed investigation of the pro-
cedure of estimating [. The studies in [38] and [39] show that
the bottleneck of the MPI parallel skeletonization lies in the
specific procedure employed to estimate /. Without a detailed
investigation of the procedure, an efficient MPI parallelization
can hardly be implemented.

The rest of this article is organized as follows. Section Il intro-
duces the formulation employed to handle the angular sweeping
of each deterministic scattering problem and the efficient se-
quential implementation of the randomized low-rank decompo-
sition. Section III-B discusses a modified QR decomposition
(denoted by the Rank-QR) to estimate [ and the proposed a
parallel approach for it. Section IV presents numerical exper-
iments demonstrating the performance of the proposed parallel
randomized decomposition with respect to accuracy, efficiency,
scalability, and the peak memory requirement. Section V con-
cludes this article.

II. ANGULAR SWEEPING OF A RANDOM SURFACE
A. Tapered Incident Wave and Statistical Scattering

Consider the problem of electromagnetic wave scattering by
a 2-D large-scale random rough surface. The height profile
z = f(x,y) of the rough surface is characterized by a random
process. To confine the objective infinite rough surface to a finite
area L, x L, and to avoid unwanted edge effects, the incident
field is tapered as [12]

B (2, 2) = (6 cosy + dsiny)exp(—1)
exp[—jko(sin 6; cos ¢;x + sin 8; sin ¢;y — cos 0;2)(1 + w)]
(1

where 6 and ¢3 denote the polarization along 6 and ¢, respec-
_ (cosf;cosp; x+cosh);sing; y+sinb; z)?

tiVely, t= t:v + ty, tw = g2c0s20; > t’l/ =
_— . )2 — — .
(singsz+cosdiy)” Sl"‘j)ixg";\cow"y) ,w = k—%[ﬁi;ﬁ} + thz 1], and g is the param-

eter that controls the tapering of the incident wave.  is the
polarization angle, k is the wavenumber in free space, and 6;
and ¢; are the incident angles. According to [40], the tapering
parameter g as well as the surface lengths L, and L, could
be determined as min(L,, L,) > 15{, and min(L,, L,) > 4 g,
where gmin = W and [, is the correlation length of the
Gaussian random surface.
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To characterize the scattering from the rough surface, the av-
erage normalized radar cross-section (NRCS) is often employed,
which is usually defined as [41], [42]

scal 2
(B

prénc (Oé, 6 = PH, pV) 2)

Oap = 4m
where py and py are the horizontal and vertical polarizations,
respectively. PB‘C is the real incident power, and v is the charac-
teristic impedance of the background. The symbol (-) indicates
an ensemble average over realizations of the stochastic process
for the model.

B. Fast Angular Sweeping

For simplicity, assuming the rough surface is a perfect electri-
cal conductor, the associated method of moments (MoM) matrix
system with multiple excitations has the form

Z-I(x) = V(x) 3)

where « is the set of parameters used to describe an excitation,
and Z is the impedance matrix in the MoM. The matrix (k)
is the corresponding solution matrix. We will drop x in the
following discussion for simplicity.

As mentioned previously, the efficiency of the solution of
(3) is one of the major difficulties in angular sweeping. To
solve this problem, we can conduct a randomized low-rank
decomposition [27] of V in (3) as V = VS . P and then solve
the multiple-RHS system as [25]

I=1%PandZ -1I°=VS “4)

where VS is the m x [ skeletonized RHS matrix with [ <
min(m,n). The I RHS vectors in VS are referred to as the
skeleton RHS vectors or skeleton RHSs for conciseness in this
work. Matrix P is the [ x n projection matrix. Matrix IS is the
m X [ skeletonized solution matrix, consisting of the solution
vectors related to the skeleton RHSs. To accelerate the iterative
solution, an algebraic preconditioner [43], [44] can be employed.

It has been shown in [25] that the abovementioned skele-
tonization scheme was strictly controlled by a threshold during
the factorization when applying to the plane wave sweeping of
deterministic target. As it is known, due to the employing of the
tapered wave, the infinite rough surface is truncated into a finite
one. Investigations are necessary to reveal how such truncation
would impact the accuracy control and, thus, the performance of
the skeletonization scheme is not known yet. Generally, such in-
vestigations can be carried out both numerically or analytically.
In this work, we launch such study numerically. The theoretical
proof of it will be presented in our future work.

C. Main Idea of Skeletonization

To realize the skeletonization in (4), an efficient algorithm
to take advantage of randomness is employed. Here, we give
a brief introduction of it. It is assumed that V' (4; : ia, j1 : j2)
refers to a submatrix formed by extracting rows indexed from
11 t0 iy and columns indexed from j; to jo of V. Thus, V(:, j)
is a column vector corresponding to the jth column of V. The
skeletonization begins with generating a sampling matrix Y of
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dimension mso X n by the random linear combination of the rows
of V, where my is the greatest integer less than or equal to m,
which is a power of two [27]. In particular, Y is obtained by

Ym2><'n. — ngxm, . V’m,><n (5)

where () consists of uniformly randomly selected rows of the
product of the discrete Fourier transform matrix and a random
diagonal matrix, as pointed out in [27]. Using the algorithm
in [45], which is based on the fast Fourier transform, the matrix-
vector multiplication (MVM) in (5) can be quite efficient in
practical applications.

After the randomized sampling matrix Y is obtained, we
can approximate [/, the row rank of V, by using a modified
QR decomposition, which will be discussed in Section III-A.
With the estimated [, the low-rank decomposition can be then
carried out on a matrix of size [ x n by the standard algorithm,
i.e., pivoted QR in this work. From previous studies [25], [39],
it is clear that the skeletonization is very efficient in terms
of CPU time but requires about O(mn) memory space. This
highlights the need for developing parallel randomized matrix
decomposition on distributed memory platforms that can meet
the memory requirement.

III. RANK-QR AND ITS MPI PARALLELIZATION

The estimation of [ is essential to make the skeletonization
in (4) efficient. But the procedure can become the bottleneck dur-
ing the decomposition when the size of the matrix is large [25],
[39]. The solution is to carry out the decomposition on dis-
tributed memory platforms. In the following, The modified QR
is referred to as Rank-QR as its aim is to estimate the rank. For
convenience, the traditional QR is denoted by Trad-QR for short.
In this section, we will explain the Rank-QR in sufficient detail
and then present our proposed efficient MPI parallel strategy for
1t.

A. Sequential Rank-QR

Similar to Trad-QR, Rank-QR assumes the column rank is
of interest. However, the skeletonization discussed here wants
the row rank of V. For this reason, the task of estimating [ is
conducted on (Y™2*™)Tdenoted by X"™*™2 or X in short in
what follows, where the superscript 7" means a matrix transpose
operation.

The Rank-QR is summarized in Algorithm 1, where the
definitions of functions htrans and happ are presented in the
Appendix. In Algorithm 1, ey gp is the threshold to control the
accuracy of the randomized low-rank decomposition, and oax
is the maximum of the two-norms of all columns in V. To
clearly show the difference between Rank-QR and Trad-QR,
an implementation of Trad-QR is also listed in Algorithm 5 in
the Appendix.

Rank-QR differs from Trad-QR in the following aspects. First,
the update procedure is different. In Rank-QR, the ith update
procedure is conducted by applying H°*, the Householder matrix
associated with the ith column X (:,4), to one column of X
through a call of happ, as depicted by Line 8 and Line 11 in
Algorithm 1. In contrast, Trad-QR implements the update by
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Algorithm 1: The sequential Rank-QR.

Input: anm2a €LRD; Omax

Output: [
o= X))
21=0;
3 while 0 > 0,4, * e1gp do
4 =14+ 1;
5 ==Update column X (:,7) as:
6 | forj=1;j<i—1;j++do
7 Produce v/ as, v/(1) = 1 and

vI(2:in—j+1)« X({G+1:n,5);

8 Update X (j : n,i) by happ[X (5 : n,i :4), v7];
9 end

10 | Compute v’ by htrans[v, X (i:n,i)];

1 | Update X (i:n,i) by happ[X (i : n,i : 1), v'];

12 Store the Householder vector v* as Eq. (7);

13 o=1|X(4,1)]|;

14 end

15 | =1

applying matrix H* to the associated submatrix X as shown in
Algorithm 5. Second, Trad-QR explicitly computes and stores
Q@ and R, while in Rank-QR, the () and R matrices are not
explicitly computed nor stored since the purpose of the latter
decomposition is only to find the rank. The third difference lies in
the stopping criterion for the loop. In Rank-QR, the factorization
stops when the singular value becomes smaller than the required
accuracy, while the computation will not stop until the entire
matrix is factorized in Trad-QR.

If X is a full-rank matrix, the computational cost of Rank-QR
is identical to that of Trad-QR. However, Rank-QR is more effi-
cient than Trad-QR in estimating [ if X is rank deficient because
the factorization terminates as soon as [ is determined. There-
fore, the computations associated with the remaining (mso — 1)
columns in X are not conducted as they become unnecessary
and irrelevant.

B. MPI Parallel Rank-QR

Although the parallelization on some procedures of the ran-
domized decomposition is quite straightforward [38] or is read-
ily available in ScaLAPACK [46], it is not the case for the
Rank-QR procedure due to the unique characteristics of it. In
the following, we will present our parallelization of Rank-QR,
where the number of processes is assumed to be n,.

To overcome the memory bottleneck, it is mandatory to
distribute X among different processes. As discussed in Sec-
tion ITI-A, the Householder vector v* cannot be generated before
the preceding (¢ — 1) rounds of the Householder transformations
are applied to the column X (3, ¢). If X is partitioned in a column-
major manner, the QR factorization cannot take advantage of the
parallelization due to the inherent column-major sequence of the
factorization, as described in Algorithm 1. With this limitation,
we have to distribute X in a row-major manner by assigning
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Algorithm 2: The MPI Block-Wise Rank-QR.

. Xme
IHPUt- Xnxms » ELRDs Omax; N

Output: [

o= |[XG )l

2 mg =1;

3 flag = 1;

4 while (0 > 04 * €rp) && (flag == 1) do

5 my = min(ms + n, — 1,ma);

6 ==Update the submatrix X (:,ms : m;) as:
7 for j=1;,5<ms—1; 7 ++ do

8 Produce v’ as, v/(1) = 1 and

v(2:in—j+1)« X({+1:n,j);
9 Update X (5 : n,ms : my) by
happ[X (j : n,ms : my), v7] ;

10 end

11 ==Compute the Householder transformation as:
12 for ¢ = ms; g < my; q ++ do

13 if flag == 1 then

14 Compute v? by htrans[v?, X (g : n,q)] ;
15 Update X (q: n,q:my;) by

happ[X (g : n,q:my), vi];

16 Store v? as Eq. (7);

17 o =1X(q,q):

18 if 0 < 0,4 * 1rp then

19 | flag = 0;

20 end

21 end

22 end

23 Mg = Mg + Ny
24 end
25 l=gq;

n/n, rows of X to each process. However, the partition leads
to two types of global communication.

One type of communication occurs in the function htrans
because each process can access only its own share of X from
the local memory. With the assumption that the rank is [, the total
number of these communications is proportional to /. The second
type corresponds to the MVMs during the updating procedure
in Algorithm 1. Specifically, column X (:,¢) involves at least
(i — 1) communications because the number of Householder
transformations is (¢ — 1). Therefore, the total number of global
communications of the second type will be at least [(l — 1)/2.
It would, thus, be challenging to complete the decomposition
within an acceptable time when n,, becomes large, despite the
efficiency of the sequential Rank-QR. From abovementioned
analysis, it is clear that the second type of communication
requires a larger number of data transfers than the first one and,
therefore, the poor efficiency is mainly caused by the former. For
this reason, we will focus on the second type of communication
in the following.

To alleviate this difficulty, we propose a solution by up-
dating X in a blockwise manner, as shown in Algorithm 2.
For simplicity, Algorithm 2 does not present the MPI commu-
nications. In the blockwise approach, the updating procedure
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proceeds with n, columns each time, as depicted by Line 9
and Line 15 in Algorithm 2. After n,, columns in one block
have been successfully handled, the factorization proceeds to the
next block. Here, n,, is a user-defined parameter. If n,, = mo,
Rank-QR becomes identical to Trad-QR. Generally, the number
of communications of the second type is (I + n, — 2)/2n,, if
[ > n, in the blockwise factorization.

It goes without saying that the number of blocks is equal to
ny = [1/ny,]. The columns contained in the computed blocks
that should be updated can be classified into relevant and irrele-
vant columns. The former contributes to [, whereas the latter does
not. The numbers of relevant and irrelevant columns equal [ and
nir = [1/ny nq, — 1, respectively. Because the corresponding
computations are unwanted, the number of irrelevant columns
should be decreased to improve the efficiency. On the one hand, a
larger n,, may give rise to a larger number of irrelevant columns
and, in turn, a less efficient computation, just as in Trad-QR.
From this point of view, we should use a small n,,. On the other
hand, the larger n,, is, the fewer communications required. A
large n,, is preferable in terms of reducing communications.
The most optimal case is to set n,, = [. However, [ is unknown
in advance. Therefore, it is difficult to find a universal rule for
choosing n,,. Fortunately, for many applications, it is possible
to achieve a good estimation of the upper bound of [ before
the decomposition starts. For example, when selecting skeleton
excitations [25], [30], the upper bound of [ can be estimated
from the truncation number in Addition Theorem. In these
circumstances, the parallel Rank-QR can be efficient because
finding a suitable n,, is always a relatively easy task. In addition,
as will be shown in Section I'V, the performance of the proposed
approach is insensitive to n,,, at least for the matrices being
investigated in this work. The parallel efficiency can be very
high when n,, varies within a wide range.

The blockwise approach proposed here is different from the
blocked QR factorization discussed in [47], where a standard
QR factorization generating an orthogonal matrix and an upper
triangular matrix was discussed. However, the approach here
aims to estimate the rank of the matrix in question.

It should be noted that the Householder matrix H' is not
explicitly computed or stored [48]. Simultaneously, the House-
holder vector v® can be stored in the lower triangular position
of X. The memory usage can, thus, be reduced by a factor of
about n,, as each process contains only n/n, rows of X. It is
evident that the proposed parallel strategy has fully exploited the
potential of a distributed platform in overcoming the memory
bottleneck.

IV. NUMERICAL RESULTS

In this section, the performance of the parallel scheme is
investigated by the computations perfectly electrically conduct-
ing (PEC) random rough surface models with or without a
target positioned above the surfaces, as shown in Fig. 1(a).
To show the versatility of the proposed method, we employ
two kinds of rough surfaces, i.e., Gaussian rough surfaces and
Pierson—-Moskowitz (PM) spectrum rough surfaces. The models
are homogeneously meshed and the number of unknowns is
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(@ (b)

Fig. 1. Tllustration of a PEC cone-sphere on a PEC rough surface model (only
the Gaussian surface is shown here). (a) Perspective view. (b) Side view.

denoted by Ny in this section. It should be pointed out that
we employ the strategy of finding skeleton Rao—Wilton—Glisson
functions [30] to generate a size-reduced excitation matrix (of
dimension m x n with m < Ny ) that feeds into the random-
ized low-rank decomposition. All the skeletonizations are con-
ducted upon e gp = 10~%, consistent with common engineering
practices [25], [30].

The associated computations are performed on a computing
platform where each node is equipped with 94 GB of memory
and two 6-core X5650 CPUs. In the computations, at most 8
nodes (96 CPU cores) are employed and the decomposition
incorporates with the MPI parallel MLFMA to obtain the NRCS
results [39].

In what follows, we begin with studying the accuracy of
the proposed method in terms of the tapered incident waves in
Section IV-A. Then, we discuss the parallelization of the Rank-
QR in Section IV-B, including the selection of n,, the weak
scalability as well as the strong scaling. Finally, the capability
of the proposed method is studied in Sections I'V-C.

A. Accuracy

First of all, computations are conducted on the two Gaussian
rough surfaces (Gauss-RSs). Except for the root-mean-square
height (h), all other parameters of the surfaces are identical.
The incident angles are less than 30° for both 6 and ¢, and
accordingly, the area of each rough surfaceis L, x L, = 32X x
32A, with A denoting the wavelength. The tapering parameter is
g = L, /4 = 8. Each rough surface has the correlation lengths
of I, = I, = 1.2A. The h’s are 0.2 A and 0.7 A, respectively.
Both surfaces are homogeneously meshed leading to Ny =
353 876 and 706 914. Accordingly, m = 63 102 and 110 973.
Fig. 2 gives the monostatic NRCS for VV-, HH-, and cross-
polarization within the angular range 6 € [—5°,5°], ¢ = 0°. As
shown in the figures, results obtained with and without MPI
parallel skeletonization (n,, = 12) agree very well for both cases.

Theoretically, the cross-polarized NRCS results should be
identical according to the reciprocity relation. Because of the
error caused by tapered wave truncation, our numerical results
(not presented here) show that the reciprocity relation is ob-
served in the sense of the statistical respect but not for each
single realization of the rough surface. This may be one reason
leading to the difference between the cross-polarized NRCSs.
Additionally, the coarse mesh used for the computation could
give rise to numerical errors of MoM and MLFMA, which
could also result in the deviation of cross-polarized NRCS
results.
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No-skel-VV (i=02%) * Skel-VV (h=0.2%)
No-skel-HH (h=02%) *  Skel-HH (h=0.22)
No-skel-VH (h=0.2%) 4 Skel-VH (h=0.2%)
No-skel-HV (h=02%) = _Skel-HV (h=0.22)

NRCS (dBsm)

NRCS (dBsm)

—No-skel-VV (5=0.7%) & Skel-VV (=0.72]
lo-skel-HH (h=0.74) ¢ Skel-HH (h=0.72)

lo-skel-VH (h=0.74)  *  Skel-VH (h=0.71)
|——No-skel-HV (4=0.7%) < Skel-HV (h=0.73)

T T T T T T T T T T T T
e ] 4 5 5 1 3 -2 10 1 2 3 1

o
AN(g=07) A°Y(g=0%)
(@ (b)

Fig. 2. Monostatic NRCS results for VV-, HH-, and cross polarization from
the Gauss-RS model obtained with and without the MPI parallel randomized
decomposition, denoted by “Skel” and “No-skel”, respectively. Here, we set
0 € [-5°,5°] with ¢ = 0°. (a) h = 0.2 . (b) h = 0.7 A.

T
-30 -20 -10 10 20 30

0
aA°)(¢=0°)

Fig.3. VV-polarized monostatic NRCS results from the Gauss-CS model with
different values of 8. Here, we set 0 € [—30°, 30°] with ¢ = 0°.

The accuracy is then investigated in terms of different n’s.
According to [25], the sampling rate is computed by L, with
L being the truncation number in Addition Theorem and [ a
superparameter. To reach a more strict study, a PEC cone-sphere
is placed at an altitude of 1 A above the Gauss-RS withh = 0.2 A,
as shown in Fig. 1(b), which is denoted by Gauss-CS in the
following. The main body of the cone-sphere is identical to its
counterpart in [49] but with the largest dimension of 6.8 1. For
this example, Ny = 362 021 and m = 64 115.

We compare the VV-polarized monostatic NRCS results from
the Gauss-CS model with different values of 3, namely, 2, 5,
and 10, as presented in Fig. 3. Here, we set 6 € [—30°, 30°]
and ¢ = 0°. Accordingly, the angular steps are 1°/2, 1°/6, and
1°/12, where nreaches 121,361, and 721. As indicated by Fig. 3,
all cases capture the major oscillations of the NRCS results.
However, the case 8 = 10 delivers a higher spatial resolution
than the cases § =5 and 8 = 2. It should be noted that all
computations consume almost the same amount of runtime
because of two facts. One fact is that the number of skeleton
RHSs required to be solved iteratively is a constant of 40 [25]
for computations with different /3’s. The other fact is that the
runtime for the skeletonization is negligible in comparison with
the total solution time. As a result, the case § = 10 can reach a
higher resolution without additional runtime. Therefore, 5 = 10
is a suitable choice with respect to the tapered incident waves
and is employed in this work.
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TABLE I
RUNTIME (S) OF THE RANK-QR AS A FUNCTION OF n,,, FOR THE GAUSS-CS
MODEL WHERE THE EXCITATION MATRIX IS OF DIMENSION 64 115 x 14641

zn ny Ny Time (s)
14 641 1 14 572 16.4
160 1 91 1.6
80 2 91 1.5
10 7 1 1.5
1 69 0 1.8

np denotes the number of blocks.

n;, denotes the number of irrelevant columns.
The estimated rank [ is 69.

In the computations, n, = 24.

B. Parallelization

1) Selection of Parameter n,, in Parallel Rank-QR: The per-
formance of the blockwise approach discussed in Section IT1I-B
and the selection of n, are studied by computations of the
Gauss-CS model. We generate the excitation matrix by choos-
ing the directions of the incident waves within the range of
0 € [-5°,5°], ¢ € [—5°,5°] with angular steps of Af = A¢p =
1°/12. Therefore, the dimension of the associated excitation
matrix ism X n = 64 115 x 14 641. In particular, we will reach
a rule for selecting n,, according to the runtime of the parallel
Rank-QR by varying n,. By setting D = 32A, the estimated
number of skeleton RHSs is no larger than 160 according to the
truncation number in addition theorem [50]. We set a relatively
large n,, in comparison with 160, i.e., n,, = 24, in the computa-
tions to realize a strict investigation of the parallel Rank-QR.

Table I enumerates the computational configurations as well
as the runtime. Here, the estimated rank [ is 69. As shown
in Table I, the performance of the proposed approach varies
obviously with n,, only when n,, is relatively large or is very
small. In other words, n, can deliver good performance within
a wide range, namely, [10, 80]. The reason lies in the MPI paral-
lelization. Because the irrelevant tasks are distributed among the
processes, the associated runtime is reduced. Consequently, the
computation performance is not appreciably affected by n,,. As
a result, the choice of n,, is not critical. For the other examples
not presented here, a similar conclusion can be reached.

2) Parallelization Scalability and Memory Requirement: In
the context of high-performance computing, there are two com-
mon notions of scalability. The first is strong scaling, which is
defined as how the solution time varies with n,, for a fixed total
problem size. The second is weak scaling, which is defined as
how the solution time varies with n,, for a fixed problem size
per process. Since the peak memory requirement is the most
important factor in our study, the peak memory usage for a single
process is investigated as well, which is denoted by Mg, . For
a comprehensive view, the ideal memory usage is estimated and
denoted by Mjgey. Meanwhile, we denote 7gank as the parallel
efficiency of the Rank-QR and 7py as the parallel efficiency
of the total randomized low-rank decomposition. The parallel

efficiency is computed by ZT?‘T x 100%, where T}, and T},

are the runtimes when n,. and n,, processes are employed, respec-
tively. Because of the complicated hardware architecture of the
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Fig. 4. Parallel efficiency and peak memory requirement (MB) of individual
process for the strong scaling study where m x n = 64115 x 14 641.

TABLE II
RUNTIME (S) AND THE PEAK MEMORY REQUIREMENT (MB) OF INDIVIDUAL
PROCESS FOR THE WEAK SCALING STUDY

Time (s) Mem
Ny 0 n k

Tr Ty (MB)
12 [—5°,5°] 3025 27 0.5 | 43 912
24 [—-10°,10°] 6 025 45 0.6 | 4.6 912
48 [—20°,20°] 12 025 87 0.7 | 52 913
72 [—30°,30°] 18025 | 130 | 1.0 | 5.7 917

T’ denotes runtime of Rank-QR.
T} denotes runtime of the whole low-rank decomposition.
In the computations, n keeps proportional to n, while n,, = 30.

computing node, the cache hit rate will impact the MPI parallel
efficiency significantly. To simplify the associated analysis, we
set n,. to 12.

The strong scaling is studied by computations of the Gauss-
CS model, where the same excitation matrix as described in
Section IV-B1 is used. According to Section IV-B1, we set
n,, to 40. Here, n, varies from 12 to 96. When n,, = 12, the
Rank-QR costs 3.0 s while the whole decomposition completes
in 24 s. The peak memory usage is approximately 2745 MB
in each process. Fig. 4 presents the parallel efficiencies and
peak memory requirements for the computations. As presented
in the figure, Nrank is over 99% for all computations. Due to this
fact, N 1s about 96% when 96 processes are employed. The
study shows that the parallelization performs well in terms of
strong scaling. Simultaneously, the peak memory usage in an
individual process decreases significantly with the increase in
n,p. In particular, it is only approximately 716 MB when 96 pro-
cesses are employed. With the remarkable memory reduction,
the memory bottleneck can be successfully addressed by the
distributed memory parallelization. It is indicated that the actual
memory requirement is always larger than the ideal estimation.
The difference arises from the additional memory required to
establish the MPI parallel environment.

Weak scaling and the memory requirement are studied by
multiple computations of the Gauss-CS model, ensuring that the
size of the submatrix assig