IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

1143

Hyperspectral Mixed Noise Removal By
¢1-Norm-Based Subspace Representation

Lina Zhuang

Abstract—This article introduces a new hyperspectral image
(HSI) denoising method that is able to cope with additive mixed
noise, i.e., mixture of Gaussian noise, impulse noise, and stripes,
which usually corrupt hyperspectral images in the acquisition pro-
cess. The proposed method fully exploits a compact and sparse HSI
representation based on its low-rank and self-similarity character-
istics. In order to deal with mixed noise having a complex statistical
distribution, we propose to use the robust £, data fidelity instead of
using the £, data fidelity, which is commonly employed for Gaus-
sian noise removal. In a series of experiments with simulated and
real datasets, the proposed method competes with state-of-the-art
methods, yielding better results for mixed noise removal.

Index Terms—High-dimensional data, hyperspectral destriping,
hyperspectral restoration, low-rank representation, nonlocal
patch, self-similarity.

1. INTRODUCTION

YPERSPECTRAL imaging camera measures electro-

magnetic energy scattered in their instantaneous field view
in hundreds or thousands of spectral channels with high spectral
resolution. Its high spectral resolution enables materials identi-
fication via spectroscopic analysis [1], which leads to countless
applications, such as precision agriculture and production mon-
itoring, forest inventories and forest health assessments, water
quality assessment, geological mapping, and so on. However, the
increase of spectral resolution often implies an increase in the
noise corrupted in the image formation process. This degradation
mechanism limits the quality of extracted information and its
potential applications.

Poissonian noise is becoming the main concern in real hyper-
spectral imaging [2] as spectral resolution of imagers increases
in the new generation hyperspectral sensing systems. The spec-
tral bandwidth decreases implying that, everything else kept
constant, each spectral channel receives less photons, yielding
higher levels of Poissonian noise. To address Poissonian noise,
one way is to solve an optimization problem maximizing the log
likelihood based on the Poissonian model [2]. An alternative
way is to convert Poissonian noise into approximate additive
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Gaussian noise with nearly constant variance using variance-
stabilizing transformations [3]. This opens a door to use available
algorithms conceived for additive Gaussian noise [4], [5]. In this
work, we assume that the observation noise is additive Gaussian.

Significant efforts have been made to Gaussian noise re-
moval via sparse representations [6]. Images are sparse and
are corresponding to their coefficients with large magnitudes
in some transform domains, such as gradient [7], Fourier trans-
form [8], discrete Cosine transform [9], and discrete wavelet
transform [10] domains. In contrast, Gaussian noise densely
appears in the spatial domain, and it is corresponding to almost
zeros transformation coefficients in these low-frequency trans-
form domains. We can shrink the transformation coefficients to
attenuate the noise and invert the transform to generate image
estimates. Furthermore, it is expected that the sparser the repre-
sentation is, the more Gaussian noise we can remove [11], [12]
from transform domains.

The sparsity of image representation depends on both the way
we organize signals [13] and the transform we select. These two
aspects are driving the development of machine learning-based
denoising methods. On the one hand, self-similarity character-
istic of natural images allows us to find similar patches from
different locations of images. Grouping similar image patches
does enhance the sparsity. In the last decades, nonlocal patch-
based methods underlie the state-of-the-art in natural image
denoising. We refer to K-SVD [14], BM3D [11], EPLL [15],
and WNNM [16]. On the other hand, a proper transform, e.g.,
data/class-adaptive transform [13], can achieve enhancement
of the sparsity of transformation coefficients. In [17, Fig. 3],
we show that the subspace basis is data-adaptive and provides
a more compact representation than other nonadaptive repre-
sentations for HSIs. As highly correlated natural images in the
spectral-spatial domain, HSIs are also self-similar, low-rank, and
piecewise smooth. A number of works [5], [18]-[21], based on
low-rank and sparse representations, have been introduced to
address Gaussian noise removal.

In practical applications of HSIs, we deal with not only
Gaussian noise, but more complicated noise settings, which are
linked with various degradation mechanisms. For example, the
observed images are corrupted by electronic noise, Poissonian
noise, quantization noise, stripe noise, and atmospheric effects.
In this article, we focus on the mixture of additive noise, namely
Gaussian noise, impulse noise, and stripes.

Since impulse noise and stripes are spatially sparse, a straight-
forward solution is to model them as an additive sparse term S.
In [22]-[25], a ¢; norm is used to induce a randomly sparse
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noise term in their optimization models. The differences be-
tween [22]-[25] are the priors used for the clean image. For
example, a spatio-spectral total variation (SSTV) of the HSI
is minimizing in [22], a weighted nuclear norm of HSI and a
TV norm of each band of HSI are jointly minimizing in [23], a
group sparse and low-rank tensor decomposition is implemented
in [24], a nonconvex regularizer named as normalized e-penalty
is used to promote low-rank HSI in [25]. Their different per-
formances are caused by the regularization terms imposing on
the clean image. Our work also falls into this line, i.e., a proper
prior on the clean image is developed to separate the clean image
and the mixed noise. Basically, Gaussian noise can be attenuated
effectively by low-rank and sparse representation [5], [18], [19].
Stripes and impulse noise can be removed by total variation and
its variants [22], [26].

Apart from ¢; norm, the mixed /5 ;-norm is also used to
promote columnwise stripe noise/outlier matrix in [27]-[29].
The works [27] and [28] show that prior of columnwise sparsity
is working well for horizontal and vertical stripe artifacts. How-
ever, the /5 1-norm cannot characterize oblique stripes, which
are also common in real scenarios. Furthermore, the /5 ;-norm
is not suitable for impulse noise, which is spatially random.
Alternatively, mixed noise can be addressed by exploiting its
statistical distribution, which is approximated by a mixture of
Gaussian (MoG) densities in [30].

In addition to the traditional machine learning methods men-
tioned above, deep learning techniques [31], [32] have revealed
in handling mixed noise. A convolutional neural network HSI-
DeNet and a spatial-spectral gradient network are presented
in [31] and [32], respectively. Promising denoising results are
shown, and impressively they are much faster than the traditional
machine learning methods. One of the challenges is that with
limited training data, the network, for example, HSI-DeNet,
is trained for multiband images with a specific noise intensity.
However, real remote sensing HSIs have different noise intensity
for each band, which cannot be addressed by the HSI-DeNet.
If we want to train a network for images with varying noise
intensity in the spectral domain, it makes a challenge to the
amount of training data.

The motivation of this article is that even though mixed noise
is all modeled as arandom sparse term in [22]-[25], what leads to
different effects is actually their different priors imposing on the
clean image. We come to a conclusion that a strong and proper
prior of the clean image is crucial for mixed noise removal. The
priors of low rankness in spectral domain and self-similarity
in spatial domain underlie the state-of-the-art HSI Gaussian
denoisers, e.g., FastHyDe [5], GLF [12], and NG-meet [33].
This article exploits the characteristics of low rankness and
self-similarity for mixed noise removal. However, stripes also
have a low-rank representation. To separate the low-rank clean
image and low-rank stripes, we propose a method to estimate a
robust subspace, which can represent the clean image well and
include less mixed noise.

This article aims at endowing the previous FastHyDe Gaus-
sian denoiser [5] with the ability to address mixed noise. Com-
pared with the article in [5] and other works, the new contribu-
tions of this work are as follows.
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1) We minimize ¢; norm of reconstruction error instead of
adopting /5 norm because mixed noise is a heavy-tailed
distribution instead of a Gaussian distribution. Note that
we use the /1 norm in the data-fidelity term, rather than in
the regularization term as other works do [22]-[25].

2) A simple and robust subspace learning is introduced.
Subspace representation of HSI is one of the critical
reasons for the outstanding performance of work [5]. It
enables us to remove the bulk of Gaussian noise and turns
the problem into estimating subspace coefficients, which
simplifies the estimate. We want to bring the benefit of
subspace representation to solve the problem of mixed
noise. However, stripes are also low-rank, implying they
can be also approximated well in a subspace. If we learn a
subspace directly from the noisy data (like the work in [5]),
fewer image components and more stripes will remain in
the learned subspace (analyzed in Table III).

To cope with this issue, we propose a new subspace
learning method exploiting residual statistics after median
filtering, which is very simple but robust to mixed noise.

3) A trick plug-and-play (PnP) prior is used in the optimiza-
tion model, and the impact of different plugged priors
is discussed. The main idea of PnP is that instead of
investing efforts in tailoring regularizers promoting self-
similar images, we use an off-the-shelf state-of-the-art
denoiser directly. In other words, a denoising subprob-
lem in the optimization procedure can be solved by a
plugged denoiser (such as BM3D, WNNM, and EPLL).
This trick combined with orthogonal transform bridges
the gap between hyperspectral denoising and single-band
natural image denoising (see more detail in [5, Sec. II-A]).
The PnP endows the proposed method with flexibility,
meaning any advanced priors of natural images can be
plugged and played in our method.

This article is organized as follows. Section II introduces for-
mally L1HyMixDe, a denoising approach conceived for mixed
noise. Experimental results comparing with the state of the art
are shown in Sections III and IV. Finally, Section V concludes
this article.

II. PROBLEM FORMULATION
A. Observation Model

Let X := [x1,...X,] € R™*™ denote a HSI with n spectral
vectors (the columns of X) of size ny. The rows of X contain
ny spectral bands, which are images, corresponding to the scene
reflectance in a given wavelength interval, with n pixels orga-
nized in a grid in the spatial domain. In hyperspectral restoration
problems under the additive noise assumption, the observation
model may be written as

Y=X+N (1)
where Y € R™*"™ represents the observed HSI data and N €

R"™ ™ represents additive mixed noise containing Gaussian
i.i.d. noise, impulse noise, and stripes.
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B. Subspace Representation

Considering the high correlation between channels, we as-
sume that the spectral vectors x;, for 1 =1,...,n, lie in a
k-dimensional subspace S, with n; > k. A number of
works [1], [5], [34]-[36] have demonstrated that it is a very
good approximation in most real HSIs. Therefore, we may write

X =EZ @)

where the columns of E = [ey, ..., e;] € R™*¥ holds a basis
for S;, and matrix Z € R¥*™ holds the representation coeffi-
cients of X with respect to (w.r.t.) E. We assume, without loss
of generality, that E is semiunitary, that is ETE = I, with I,
representing the identity matrix of dimension k.

The advantages of using subspace representation include
the following three aspects. First, subspace basis E can be
learned from observations (see more details in Section II-C).
Second, Z has a much smaller size than X, implying we are
solving a better conditioned problem. Third, comparing to other
sparse representations, (orthogonal) subspace representation is
a sparser representation (see [17, Fig. 3]), implying signal can
be reconstructed well using less coefficients in the transform
domain.

C. Subspace Learning Against Mixed Noise

If observations Y are only contaminated by Gaussian noise,
low-dimensional subspace E is approximately spanned by
the first k left-singular vectors of Y, ie., E=U(;1:k),
where U € R™*™ is an orthogonal matrix and {U, X, V} =
SVD(Y) with singular values ordered by nonincreasing magni-
tude. In the case of only Gaussian noise, subspace can be learned
directly from the measurements with good approximation [5]
because the addition of Gaussian noise increases singular values
in each eigenvector direction uniformly and does not change the
order of singular values (thus, does not change the estimation of
subspace).

In our scenario, however, observations are corrupted not only
by Gaussian noise but also by impulse noise and stripes. The
subspace of clean image cannot be approximated by the subspace
of observations because the addition of impulse noise and stripes
increases singular values nonuniformly and changes the order
of singular values consequently. Experimental analysis is given
in Section III-B.

Herein, we present a robust subspace learning against mixed
noise. In order to get a coarse image (denoted as Y = [g;;]1 <
i <mp,1<j<n]eR™*™), where Gaussian noise remains,
but the bulk of impulse noise and stripes are removed, two image
preprocessing steps are conducted as follows.

1) An adaptive median filter is applied to Y to remove the

bulk of impulse noise and stripes as

Y mea = med(Y) 3)

where med(-) denotes an adaptive median filtering func-
tion [37] implemented band by band, and Yeq =
[Umedij|1 <@ <np, 1 <j<n]eR™"is amedian fil-
tered image.

2) We can detect pixel indexes of impulse noise and stripes
by exploiting the median filtering residual errors (Y —
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Y ned). The coarse image Y is obtained by replacing the
values of impulse noise and stripes with its median filtered
values as

=) Yij

Yii = {ymedij
where y;; and ymeq;; are elements in the ith row and jth
column of the matrix Y and Y4, respectively, and the
threshold value th is related to the variance of Gaussian
noise. If (y;; — ymedij)z is greater than the threshold, the
observation y;; is detected as one affected by impulse
noise and stripes. If the observation y;; is only affected
by Gaussian noise, then (y;; — Ymedi;)> is close to the
variance of Gaussian noise, and we remain its values.
Since estimation of intensity of Gaussian noise from ob-
servations corrupted by mixed noise is challenging, we

suggest that the threshold th can be set using statistic of
(Y — Yiea) as follows:

if (ij — Ymeaij)? < th
otherwise

“)

th = sort(Y — Yined, P) (5)

where function th = sort(X, p) sorts the elements of X €
R™>™ in the descending order, and returns the element
whose sorting index is |n, x n X p|. In order words,
parameter p is the percentage of pixels affected by impulse
noise and stripes. In the experiments, we analyze and
provide evidence of the robustness of the proposed method
w.r.t. overestimation of p.

Given the coarse image Y, subspace basis can be simply cal-
culated by implementing singular value decomposition (SVD)
of Y if Gaussian noise in each band is independent and iden-
tically distributed (i.i.d.), i.e., the covariance matrix of noise
C, = NN” /n = 1. In practical applications, Gaussian noise
in the HSI, however, is band-dependent [1], not i.i.d. Therefore,
before implementing SVD of Y, we whiten the noise in the
coarse image and in the observed image, respectively, to have

the 1.1.d. scenario as
Y- /c 'Y ©)

Y=,/cly ©

where C, is noise covariance matrix (assumed to be positive
definite and estimated by applying the HySime [38] or by any

and

other noise estimation method [39] to ?), and \/C;1 denotes

the square root of C; ! and /C; denotes its inverse. For sim-
plicity, we do not change the symbol notations in the left side
of (6) and (7). We remark that the Gaussian noise in current
observations Y isi.i.d.

After noise whitening, the signal subspace is approximately
spanned by the first £ left-singular vectors of Y as

E=U(,1:k) ®)

where U € R™*" is an orthogonal matrix and {U, 2, V} =

SVD(Y) with singular values ordered by nonincreasing
magnitude.
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D. Cost Function

Given the subspace E, the image restoration problem turns
into an estimate of subspace coefficients Z. To deal with mixed
noise (namely, Gaussian noise, impulse noise, and stripes), we
propose to estimate the matrix Z by solving the optimization

Zc argmin |Y — EZ|11 +26(Z) 9)

where [|X||11:= Y i, [|x;|l1 (x; denotes the ith column of
X). The regularizer ¢(-) expresses prior information tailored to
images. We do not give an implicit formulation of ¢(-) here,
because we resort to the PnP [40] prior framework to solve a
subproblem related to ¢(+), which is replaced by an off-the-shelf
state-of-the-art denoiser.

Because of the /1 data fidelity, the minimizer in (9) involves an
implicit detection of outliers [41]. Observed image elements cor-
rupted only by Gaussian noise are fitted while outlier elements
are replaced by estimates determined by the regularization term,
independently of the exact value of the outliers. This brings
advantage of ¢y data fidelity over the /5 data fidelity when
addressing stripes and impulse noise. We refer to [41] and [42]
for the analysis of cost functions composed of an ¢; data-fidelity
term and an image regularization term.

We solve the optimization (9) with alternating direction
method of multipliers (ADMM) [43] algorithm, which starts
by converting the original optimization into a constrained one,
using variable splitting, as follows:

min [Vl +A¢(2)

st. Y-EZ=V. (10)

The augmented Lagrangian function of the abovementioned
optimization is

1
L(Z, VD) = |[V]11 +36(Z) + 5|Y ~ BZ -~V + D[}

(11)
where ;1 > 0 is the ADMM penalty parameter.

The application of ADMM to (11) leads to Algorithm 1.!
The optimization of Line 3 is equivalent to optimization of Line
4 since E is a semiorthogonal matrix, implying the isometry
property ||Ex||2 = ||x]|2 for all x in RP.

Lines 4 and 5: these optimizations are the proximity operators
(POs) of ¢ applied to Z; = E" (Y — V; + - D;) and of the
{1 ,1-norm applied to V, =Y —EZ;;; + %Dt, respectively.
That is

Ziv1 = V5p/u(Z) (12)
where
W,(U) = axgmin 2| X ~ U} 4 20(X)  (13)
and
Vier =Py, /u(V) (14)

'A MATLAB demo of LIHyMixDe is available in https:/github.
com/LinaZhuang/L1HyMixDe.git or can be requested by contacting
linazhuang @hkbu.edu.hk.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Algorithm 1: /;-Norm Based Hyperspectral Mixed Noise
Denoising (L1HyMixDe).
1: Sett = 0, choose i > 0, Vg, Dy.

2: repeat
3: Zy =argming A¢(Z) + 5|[Y —EZ -V,
+2Dyl%
4: = argming Ap(Z) + 5| ET (Y — V, + %Dt)
—Z|%
50 Vi =argminy [V +5|Y -EZiy -V
+ iDt”%’
6: Dy =D;+ i(Y —EZi 1 — Vi)
T t+—t+1
8: until stopping criterion is satisfied.
where
.1
Wi, 1 (U) = argmin 2| X = UJ[% + 2 X[, (5
= soft(U, A) (16)

where soft(-, 1) denotes the componentwise application of the
soft-threshold function [44] x +— sign(z) max{|z| — A, 0}.

Optimization (12) is a denoising operator of ¢. As images in
eigen-space (i.e., linear combinations of original bands), rows
of Z have the same characteristic, i.e., self-similarity, as the
original image [5]. Self-similarity of rows of Z is exploited
here for solving problem (12). Instead of investing efforts in
tailoring regularizers promoting self-similar images, we use
directly a state-of-the-art denoiser applied to Z;. This is the
central idea in PnP [40]. We remark that in the framework of
PnP, any off-the-shelf state-of-the-art denoisers conceived to
enforce self-similarity, such as BM3D [11], WNNM [16], and
EPLL [15], can be adopted for solving subproblem (12). We
selected BM3D in this article, as it is the state of the art and its
public implementation version is fast.

We do not have a theoretical converge guarantee for the
implemented ADMM-PnP since there does not exist a convex
regularizer for most state-of-the-art denoisers, such as BM3D
and deep learning denoisers. This fact, however, should not
prevent us from working in a PnP framework, which allows
us to take advantage of state-of-the-art denoisers. The conver-
gence of the PnP iterative procedures is currently an active
area of research [40]. In our case, we have systematically
observed converge of L1HyMixDe with the augmented La-
grangian parameters set = 1 (see numerical convergence in
Section III-D).

The computational complexity of L1HyMixDe is domi-
nated by the iterative update of V,,; and Z;; ;. The update
of V;;1, ie., (14), involves only matrix—matrix or matrix—
vector multiplications, and thus, its complexity can be eas-
ily verified as O(knngy). As for the update of Z;yq, it is
implemented by a plugged denoiser with input arguments
Z/,, whose computational complexity is O(knny). Assuming
the computational complexity of the plugged denoiser is (i,
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Fig. 1. Denoising band 11 of Washington DC Mall with noise in Case 1 (Gaussian noise), Case 2 (Gaussian noise + stripes), Case 3 (Gaussian noise + “Salt &
Pepper” noise), and Case 4 (Gaussian noise + stripes + “Salt & Pepper” noise).
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Fig.2. Denoising band 14 of Pavia University with noise in Case 1 (Gaussian noise), Case 2 (Gaussian noise + stripes), Case 3 (Gaussian noise + “Salt & Pepper”
noise), and Case 4 (Gaussian noise + stripes + “Salt & Pepper” noise).

the complexity of computing Z; 1 is O(knny, + ¢1). Conse- followed by reconverting noise-whitening space to the original

quently, the overall computational complexity of LIHyMixDe image space as

is O((knny + (1)C2), where (5 is the number of iterations set in N N

LiHyMixDe. X =vCGX.
After solution Z is obtained, the denoising image can be

estimated as follows:

(18)

III. EXPERIMENTAL RESULTS FOR SIMULATED IMAGES

R We simulated a noisy hyperspectral dataset (see Fig. 1) as fol-
X =EZ (17)  lows [12]. We remove 16 bands with a very low signal-to-noise
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Fig.3. PSNR (a)—(d), SSIM (e)—(h), and FSIM (i)—(1) values of each band of denoised Washington DC Mall images in Case 1 (Gaussian noise), Case 2 (Gaussian
noise + stripes), Case 3 (Gaussian noise + “Salt & Pepper” noise), and Case 4 (Gaussian noise + stripes + “Salt & Pepper” noise).
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Fig. 4. PSNR (a)—(d), SSIM (e)—(h), and FSIM (i)—(1) values of each band of denoised Pavia University images in Case 1 (Gaussian noise), Case 2 (Gaussian
noise + stripes), Case 3 (Gaussian noise + “Salt & Pepper” noise), and Case 4 (Gaussian noise + stripes + “Salt & Pepper” noise).

ratio (SNR) in original Washington DC Mall data® considering  to water vapor in the atmosphere leading mostly noise. Then we

the signal in these wavelength regions is largely attenuated due  projected spectral vectors onto the signal subspace of dimension

eight learned by implementing SVD on the correlation matrix.

The obtained HSI is considered the clean HSI, which was

X ) . normalized to [0, 1] so that the parameters of competitors can
The Washington DC Mall data are downloaded from the Purdue Univer-

sity Research Repository (https://engineering.purdue.edu/\,biehl/MultiSpec/ be tuned easier. Four kinds of additive noises are simulated as
hyperspectral.html). follows.


https://engineering.purdue.edu/LY1	extbackslash ,biehl/MultiSpec/hyperspectral.html
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TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT DENOISERS APPLIED TO SUBIMAGE OF WASHINGTON DC MALL DATA

Noisy Image  FastHyDe NAILRMA  SSTV LRMR AdeHyDe LI1HyMixDe

[5] [19] [22] (18] [30]

MPSNR 31.17 55.50 45.42 38.17  41.54 36.78 46.82

Case 1 MSSIM 0.9762 0.9999 0.9995 0.9966  0.9986  0.9944 0.9997

Gaussian noise MFSIM 0.9705 0.9998 0.9979 09934 09957  0.9964 0.9990
Time (Seconds) - 4 94 164 33 271 120

MPSNR 20.80 40.59 24.09 29.52  28.34 24.64 44.89

Case 2 MSSIM 0.8542 0.8940 0.8559 09739  0.9816  0.9366 0.9994

Gaussian noise + stripes MESIM 0.8896 0.9836 0.9058 09725 09784 09676 0.9990
Time (Seconds) - 4 76 142 20 252 133

MPSNR 7.92 30.23 26.14 3524 40.96 37.70 47.12

Case 3 MSSIM 0.7912 0.9831 0.9694 09938  0.9967  0.9969 0.9997

. Gaussian noise + MFSIM 0.8926 0.9865 09749 09881 09922  0.9978 0.9991
Salt & Pepper’ noise Ty (Seconds) - 3 55 220 21 265 110

] MPSNR 4.28 20.52 15.98 2932 2845 24.42 44.92

Ganssi Cased MSSIM 0.6953 0.8038 07986 09734 09825 09355 0.9994

aussian noise + stripes MFSIM 0.8285 0.8893 08678 09718 09796  0.9675 0.9991
+ “Salt & Pepper” noise  Time (Seconds) - 4 85 159 25 257 113

Note: The bold font indicates the best results.
TABLE Il

QUANTITATIVE ASSESSMENT OF DIFFERENT DENOISERS APPLIED TO SUBIMAGE OF PAVIA UNIVERSITY DATA

Noisy Image  FastHyDe  NAILRMA  SSTV ~ LRMR AdeHyDe LIHyMixDe

[5] [19] [22] [18] [30]

MPSNR 34.29 51.81 47.25 4573 4159 38.88 48.37

Case 1 MSSIM 0.8221 0.9983 0.9949 0.9929  0.9807  0.9881 0.9972

Gaussian noise MFSIM 0.9272 0.9992 0.9977 0.9966  0.9913  0.9951 0.9987
Time (Seconds) - 7 93 184 47 841 267

MPSNR 20.59 30.97 24.24 4077 36.35 30.77 45.12

Case 2 MSSIM 0.6630 0.8107 0.7937 0.9790  0.9725  0.9373 0.9936

Gaussian noise + stripes MFSIM 0.8068 0.9078 0.8664 0.9901  0.9811 0.9608 0.9961
Time (Seconds) - 8 87 176 38 810 271

MPSNR 22.56 39.56 37.03 4456  41.26 38.77 48.37

Case 3 MSSIM 0.6892 0.9780 0.9555 0.9902  0.9795  0.9878 0.9972

. Gaussian noise + MFSIM 0.8780 0.9870 0.9800 0.9957  0.9908  0.9950 0.9986
Salt & Pepper” noise e (Seconds) - 7 56 183 52 854 267
MPSNR 15.97 25.53 2238 39.84 3632 30.70 44.63

o Cased MSSIM 0.5567 0.7003 0.7241 09786 09716  0.9371 0.9927

aussian noise + stripes MFSIM 0.7729 0.8526 0.8357 09900 0.9807  0.9605 0.9953
+ “Salt & Pepper’ noise  Time (Seconds) - 8 97 179 39 811 269

Note: The bold font indicates the best results.
TABLE III

REPRESENTATION ABILITY OF SUBSPACES LEARNED FROM DIFFERENT METHODS

E + SVD(Y) E estimated by E + SVD(Y)
RPCA [46] (Proposed)

Case 1 Y1 1.0000 1.0000 1.0000

Gaussian noise Y2 0.0514 0.0520 0.0483

Case 2 71 0.9557 0.9571 0.9993

Gaussian noise + stripes 72 0.3153 0.3138 0.1675

Case 3 71 0.9998 0.9999 1.0000

Gaussian noise + ‘Salt & Pepper’ noise 72 0.0448 0.0440 0.0409

Case 4 Y1 0.9558 0.9570 0.9993

Gaussian noise + stripes + ‘Salt & Pepper’ noise 72 0.2946 0.2934 0.1572

T x| 2
Note: 1 and 7y denote the relative power of the clean pixels and noise, respectively, that are lying in the estimated subspace, i.e., y1 = *Q—HETXHXHF ,and
F
_ IEETN|Z
72T TN

The bold font indicates the best results.
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Fig.5. PSNR values of (a) Washington DC Mall image and (b) Pavia Univer-

sity image denoised by L1HyMixDe as a function of the estimation of p (the
percentage of pixels corrupted by impulse noise and stripes).

TABLE IV
IMPACT OF DENOISERS PLUGGED IN THE L1HYMIXDE ON IMAGE
RESTORATION IN TERMS OF PSNR (dB)

Plugged denoisers BM3D WNNM FFDNet EPLL
[11] [16] [471  [15]

Washington DC Mall data
MPSNR 46.82 4688 4276  46.90
Case I yme (Seconds) 120 10352 931 4377
Case s MPSNR 44.89 4499 4236  44.99
Time (Seconds) 133 9998 891 4333
Case 3 MPSNR 47.12 4716 4422 4720
Time (Seconds) 110 10334 901 4264
MPSNR 4492 4495 4328 45.01
Case 4 Tine (Seconds) 113 10453 912 4319

Pavia University data

MPSNR 4837 4898 4513 48.86
Case I Tyme (Seconds) 267 29177 1754 12197
Case s . MPSNR 4512 4577 4358  46.04
Time (Seconds) 271 27710 1777 12229
Case 3 . MPSNR 4837 49.12 4515 49.00
Time (Seconds) 267 26997 1758 12361
MPSNR 44.63 4527 4324 4546
Case 4 Tyme (Seconds) 269 27345 1807 12283

Note: Case 1 Gaussian noise, Case 2 Gaussian noise + stripes, Case 3 Gaussian
noise + “Salt & Pepper” noise, and Case 4 Gaussian noise + stripes + “Salt
& Pepper” noise.

Case 1 (Gaussian non-i.i.d. noise): n; ~ N'(0,D?) where
D is a diagonal matrix with diagonal elements sampled from a
uniform distribution U (0, 0.01).

Case 2 (Gaussian noise + stripes): Synthetic data with
Gaussian noise (described in Case 1) and oblique stripe noise
randomly affecting 30% of the bands and, for each band, about
random 10% of the pixels.

Case 3 (Gaussian noise + “Salt & Pepper” noise): Synthetic
data with Gaussian noise (described in Case 1) and “Salt &
Pepper” noise with noise density 0.5%, meaning affecting ap-
proximately 0.5% of elements in X.
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Case 4 (Gaussian noise + stripes + “Salt & Pepper” noise):
Synthetic data with Gaussian noise (described in Case 1), ran-
dom oblique stripes (described in Case 2), and “Salt & Pepper”
noise (described in Case 3).

Following the abovementioned procedure, we also generate
noisy HSIs of Pavia University data® (see Fig. 2) subscene.

A. Mixed Noise Removal

We compare the proposed L1HyMixDe with FastHyDe [5],
NAILRMA [19], SSTV [22], LRMR [18], and AdeHyDe* [30].
All competitors, except for FastHyDe, are conceived to address
additive mixed noise in hyperspectral images. FastHyDe is
conceived to address pure Gaussian noise and is considered
as a benchmark here. FastHyDe, AdeHyDe, and the proposed
L1HyMixDe are based on subspace representation. We set the
dimension of subspace input to these methods to 8, the true
value. For NAILRMA, we set the block size to 20 and step
size to 8 because this setting balances the computation and
denoising performance. In the paper of NAILRMA [19], the
authors use this setting for all testing images. We remark that for
methods FastHyDe, NAILRMA, AdeHyDe, and the proposed
L1HyMixDe, all of them have a parameter related to Gaussian
noise intensity, which is estimated by HySime [38] automatically
as their papers do. For SSTV and LRMR, we fine-tuned their
parameters of regularizations for all simulated and real images.
To save space, we have placed the parameters used at a GitHub
link.>

The peak signal-to-noise (PSNR) index, the structural sim-
ilarity (SSIM) index, and the feature similarity (FSIM) index
of each band are calculated and depicted in Figs. 3 and 4 for
quantitative assessment. Tables I and II give the mean PSNRs
(MPSNR), mean SSIMs (MSSIM), and mean FSIM (MFSIM)
in Washington DC Mall data and in Pavia Centre, respectively,
where we can see for Gaussian noise (in Case 1), the most
suitable denoiser is FastHyDe, which, however, is not robust
to the mixed noise in Cases 2—4. It is caused by the /5 data
fidelity used in FastHyDe, which squares the error of (Y — EZ)
and is sensitive to outliers (i.e., image elements corrupted by
stripes and impulse noise) in the data. To alleviate this, the
proposed L1HyMixDe uses ¢; data fidelity in (9) minimizing
the sum of the absolute difference between the observations
and the estimated image. In Tables I and II, L1HyMixDe yields
uniformly the best performance in Cases 2—4 with mixed noise.

As an alternative way to address mixed noise, NAILRMA,
SSTV, and LRMR represent mixed noise as an additive sparse
matrix (denoted as S) in observation models and use /5 data
fidelity ||Y — X — S||%.. When using /5 data fidelity, a critical
issue for this kind of model is that whether the mixture of
signal X and noise S can be split into two components suc-
cessfully via proper regularizers on matrix X and S. Regarding

3The Pavia scene is available from the Telecommunications and Remote Sens-
ing Laboratory, Pavia university (Italy) (http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes).

#We compare with the conference version of AdeHyDe.

Shttps://github.com/LinaZhuang/L1HyMixDe


http://www.ehu.eus/ccwintco/index.php{?}title$=$Hyperspectral_Remote_Sensing_Scenes
https://github.com/LinaZhuang/L1HyMixDe
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(d) FFDNet when denoising Washington DC Mall datasets.
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Relative change of Z versus the iteration number of L1HyMixDe plugged with different denoisers, namely, (a) BM3D, (b) WNNM, (c) EPLL, and

TABLE V
QUANTITATIVE ASSESSMENT OF DIFFERENT DENOISERS APPLIED TO THE TERRAIN IMAGE AND UNMIXING PERFORMANCE MEASUREMENTS
(NMSEA AND NMSEg) OF “VCA+FCLS” APPLIED TO THE DENOISED IMAGES

Noisy Image  FastHyDe NAILRMA  SSTV ~ LRMR AdeHyDe LI1HyMixDe
(5] [19] (22] (18] [30]
MPSNR 26.87 46.13 35.65 43.18 39.38 42.06 51.53
MSSIM 0.7120 0.9859 0.9540 0.9840  0.9822 0.9925 0.9980
MFSIM 0.8581 0.9919 0.9642 0.9900  0.9848 0.9954 0.9986
NMSE\ 0.05 0.07 0.06 0.08 0.06 0.59 0.03
NMSEg 0.21 0.27 0.17 0.49 0.18 1.03 0.15

Note: The bold font indicates the best results.

Fig. 7. HYDICE data TERRAIN image (R:50, G:36, and B:19).

the regularizer on matrix X, SSTV applies one-dimensional
(1-D) total variation on the spectral domain, NAILRMR and
LRMR impose spectral low-rankness in spatial patches. These
regularizers are not strong enough to preclude severe noise (such
as wide stripes) from matrix X. As shown in Figs. 1 and 2,
SSTV,LRMR, and AdeHyDe are able to remove light stripes, but
leaving some wide stripes. The results of NAILRMA remains
heavy noise. On the other hand, L1HyMixDe uses a nonlocal
patch-based regularizer on matrix X, promoting self-similar
images, which does inject strong prior information.

There are two parameters input to L1HyMixDe: first, the
dimension of subspace k, which can be estimated by the
HySime [38] method or by any other subspace identification
method [45], and second, Parameter of regularization A, which
exists in subproblem (12) and relates to the intensity of Gaussian
noise. For example, this article selects BM3D denoiser; thus, A
is corresponding to the variance of Gaussian noise [5], which

can be estimated by applying HySime [38] or [39] to the coarse
image Y.

B. Subspace Representation Ability

Subspace representation enables the proposed L1HyMixDe
to remove the bulk of Gaussian noise by simply projecting
observations onto a subspace. A key issue is whether we can
find a proper subspace representing the clean image as much
as possible. We compare the representation ability of subspace
estimated by three methods, namely SVD of observations, robust
principal component analysis (RPCA), and SVD of prepro-
cessed image. Representation ability is measured in terms of the
relative power of clean pixels lying in the estimated subspace
(denoted as y; = %);H—%) and relative power of noise lying

. . TN|2
in the estimated subspace (denoted as yo = HEFNH IFa ). We can
F

see from Table III, for Case 1 with only Gaussian noise, that
all estimated subspaces can represent the clean image fully
(i.e., v1 = 1.0000). The proposed subspace estimation method
performs slightly better in Case 3 with Gaussian noise and
“Salt & Pepper” noise. The advantage of the proposed method
is significant in the cases with stripes (Cases 2 and 4), where
maximum 7; and minimum -, mean more information of the
image and less noise remaining in the subspace.

C. Impact of Parameter p

The percentage of pixels corrupted by impulse noise and
stripesp is utilized as a threshold value in median filtering
residual error (Y — Ymeq) to detect pixels/elements corrupted
by impulse noise and stripes. A spectral subspace is learned
from observations, where detected pixels/elements are dropped.
Therefore, as long as all pixels/elements corrupted by impulse
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noise and stripes are dropped (implying that p can be over-
estimated), our goal, learning a subspace representing more
information of the image and less impulse noise, can be achieved.
L1HyMixDe robustness to overestimation of p is illustrated in
Fig. 5. Take as example the simulated Washington DC Mall
images generated in Cases 2 and 4. The curves in green and black
represents the PSNR yielded by L1HyMixDe for different values

AdeHyDe  L1HyMixDe

Estimated endmembers and abundance maps of the TERRAIN images denoised by FastHyDe, NAILRMA, SSTV, LRMR, AdeHyDe, and L1HyMixDe.

of p. When p is overestimated (i.e., p > 1.31%, where 1.31%
is true value), the corresponding PSNRs are practically constant
indicating that LIHyMixDe is very robust to the overestimation
of outlier intensity. The identical conclusion can also be drawn
from other PSNR curves in Fig. 5. Because of the LIHyMixDe
robustness to overestimation of p, we simply fix p = 5% for all
experiments in this article.
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D. Impact of Plugged Denoiser

The proposed L1HyMixDe is flexible in the sense that any
off-the-shelf denoisers can be adopted to solve the subproblem
(12). We take four state-of-the-art denoisers for instance to
discuss the impact of plugged denoiser. Table IV gives PSNRs of
images restored by L1HyMixDe plugged with three traditional
machine learning-based methods (BM3D [11], WNNM [16],
and EPLL [15]), and one deep learning method FFDNet [47]).
The first three methods show comparable results, better than
those of FFDNet. The main reason leading to the difference
might be the patch size used. The available network of FFDNet
was trained using image patches of size 70 x 70, whereas other
methods all set patch size to 8 x 8. Considering hyperspectral
remote sensing images have a relatively low spatial resolu-
tion, the patch size (70 x 70) may be too large. Furthermore,
comparing the results in Tables I and II, the counterparts of
L1HyMixDe plugged with different denoisers (WNNM, EPLL,
and FFDNet) in Table IV are competitive. From the view point
of PSNR, denoisers BM3D, WNNM, EPLL, and FFDNet are
equally good for addressing pure Gaussian noise. But if we
plug the denoiser in an iterative procedure, we concern with its
computation complexity. BM3D may be preferred as its public
implementation version is fast (see running times in Table IV).

E. Numerical Convergence of the LIHyMixDe

If the plugged denoiser does not have a convex regularizer (as
it is for most state-of-the-art denoisers), then the L1IHyMixDe
is a nonconvex optimization problem, which is hard to prove
the convergence of the algorithm. Here, we give an empirical
analysis for the convergence of the solver ADMM-PnP with
different denoisers. We set the augmented Lagrangian parame-
ters as ;1 = 1. Curves of the relative change % values
versus the iteration number are given in Fig. 6, where we
can observe that the relative change converges to zero after
40 iterations, implying the convergence of the L1HyMixDe
plugged with these four denoisers can be numerically
guaranteed.

F. Application in Hyperspectral Unmixing

Asimage denoising is usually a preprocessing step for succes-
sive applications, we take hyperspectral unmixing as an example
and conduct experiments to show the impact of denoising on
hyperspectral unmixing. We simulate a clean semireal HSI based
on the public available TERRAIN image (see Fig. 7) following
the generation steps in [48].% The original TERRAIN image
has size 500 (rows) x 307 (columns) x 166 (bands), and is
mainly composed of soil, tree, grass, and shadows. The number
of endmembers is empirically set to 5 like [48]-[50]. Briefly,
a clean TERRAIN image is synthesized based on the linear
mixing model, i.e., X = AS, where A and S are the matrices
of endmember and abundance, respectively, estimated from the
original TERRAIN image. Next, we generate a noisy TERRAIN

®A MATLAB demo describing image simulation can be found in https:/
github.com/LinaZhuang/NMF-QMYV_demo.
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Fig. 9. Real HSI used in the experiments. (a) Subimage of Hyperion Cuprite
image (Band: 30). (b) Subimage of Tiangong-1 sensor (Band: 3).

HSI by adding the Gaussian noise and oblique stripe noise (as
described in Case 2), i.e., Y = AS 4+ N, yielding MPSNR =
26.87 dB.

Denoisers are applied to the noisy TERRAIN image. A quan-
titative assessment of denoised images is given in Table V.
We implement spectral unmixing of the noisy and denoised
images with vertex component analysis (VCA) estimating end-
members and fully constrained least-squares (FCLS) estimating
abundances. Unmixing performance is measured via normalized
mean square error (NMSE) of endmembers A and abundances
S, denoted as NMSE, and NMSEg, respectively. We can see
from Table V the image denoising, implemented by NAIL-
RMA, LRMR, and the propose LIHyMixDe, does improve the
performance of spectral unmixing. Other denoisers (namely,
FastHyDe, SSTV, AdeHyDe) may give good denoising results
in terms of global measurement indices (namely, MPSNR,
MSSIM, and MFSIM); however, very few stripe noise still
remains in the denoising results and affects the estimation of
Grass endmember and its abundance map (see the final row of
Fig. 8). If we only focus on the endmember of Grass, the one
estimated from the denoised image of L1HyMixDe is closest to
the true one (see the first row of Fig. 8), also leading to the best
abundance estimation of Grass.

IV. EXPERIMENTAL RESULTS FOR REAL IMAGES
A. Hyperion Cuprite Dataset

In this section, we apply denoisers to a Hyperion HSI dataset
[in Fig. 9(a)]. It was captured at Cuprite, NV, USA, by Hyperion
sensor, which has 242 channels with a spectral resolution of
10 nm, covering from 355 to 2577 nm. It has a spatial resolution
of 30 m/pixel. The subimage used in this article has 240 x 178
pixels with 177 spectral channels (after removing very low SNR
channels). Fig. 10 shows four noisy bands in the first columns.

For FastHyDe, AdeHyDe, and L1HyMixDe methods, we
empirically set the dimension of subspace to 7. The parameter
setting of all competitors can be found at a Github link.

The denoising results and computational times are shown in
Fig. 10 and the figure caption, respectively. The noisy image


https://github.com/LinaZhuang/NMF-QMV_demo
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Fig. 10.
Hyperion Cuprite dataset.

has obvious stripes directing from the upper right to the lower
left. The stripes appear to be spatially random, meaning they
do not exist in specific locations over all bands. For this kind
of stripes and noise, subspace representation is a powerful
tool. For example, if we focus on the lower-right corner of
34th band in Fig. 10, an obvious wide stripe is removed by
FastHyDe, AdeHyDe, and L1HyMixDe, which are all based
on subspace representation. This wide stripe exists in only few
bands, implying it lies outside the signal subspace. Therefore,
the high correlation between bands can be exploited to remove
it. The rationale of proposed L1HyMixDe is similar to that of
AdeHyDe, both taking advantage of spectral low-rankness and
spatial self-similarity. AdeHyDe models Gaussian noise and
sparse noise as a MoG mixture, where stripes and impulse noise
is assumed to be a zero-mean Gaussian distribution with a very
large variance. Whether the MoG model works depends on the
distribution of real sparse noise. LIHyMixDe avoids modeling
the complicated noise, and it still works well in the Hyperion
Cuprite dataset.
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Denoising results of FastHyDe (4 s), NAILRMA (108 s), SSTV (201 s), LRMR (26 s), AdeHyDe (41 s), and the proposed L1HyMixDe (37 s) in

B. Tiangong-1 Dataset

A HSI data acquired by one of the sensors in Tiangong-1
(TG-1) imager are used in this section. The sensor is a 75-band
push broom scanner with nominal bandwidths of 23 nm short
wave infrared, covering from 800 to 2500 nm. The test subimage,
recorded over an area of Qinghai Province, China in May 2013,
has 351 x 253 pixels [in Fig. 9(b)]. Four noisy bands (1, 8, 31,
and 59) are shown in the first column of Fig. 11.

For FastHyDe, AdeHyDe, and L1HyMixDe methods, we
empirically set the dimension of subspace to 3, because we
visually found that its fourth band of the projected image has
very low SNR. The parameter setting of all competitors can be
found at a Github link.>

Fig. 11 shows the denoising results of four bands. Instead of
being spatially random in Hyperion Cuprite data, stripes in this
Tiangong-1 data exist in specific locations over bands, which
is a more challenging case. Pixels affected by stripes are noisy
over bands, implying spatial information rather than spectral
information is critical for destriping. Spatial self-similarity, used
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Tiangong-1 dataset.

in FastHyDe, AdeHyDe, and L1HyMixDe, is a stronger prior
than total variation used in SSTV and patchwise low-rankness
used in NAILRMA and LRMR. In Fig. 11, LIHyMixDe visually
yields better results, while FastHyDe and AdeHyDe still remain
slight stripes in 31st band.

V. CONCLUSION

This article proposes a new HSI denoising method, termed
L1HyMixDe, addressing the MoG noise, impulse noise, and
stripes. The results demonstrate it is possible to sidestep the
model of mixed noise. Instead of investing efforts in conceiving a
universal regularization for various additive noise, we replace ¢
data fidelity by ¢; data fidelity, which is robust to impulse noise
and stripes. It works since we impose strong prios/regularizers
on the clean image, namely, low-rankness in the spectral domain
and self-similarity in the spatial domain. Considering stripe
noise is also low-rank, a subspace directly learned from obser-
vations can represent both image components and stripes well.
The new subspace estimation method we proposed is able to
represent the clean image well and include less stripe noise,
leading to a better denoising performance. Some state-of-the-art
single-band denoisers (namely, BM3D, WNNM, EPLL, and
FFDNet) promoting self-similar image have been used in a PnP
manner. Their promising denoising results in the experiments
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AdeHyDe

L1HyMixDe

Denoising results of FastHyDe (4 s), NAILRMA (67 s), SSTV (134 s), LRMR (31 s), AdeHyDe (347 s), and the proposed LIHyMixDe (46 s) in

show that any advanced priors of nature image can be plugged
and played in our framework. A comparison of L1HyMixDe
with the state-of-the-art algorithms is conducted, leading to
the conclusion that LIHyMixDe yields better performance for
mixed noise.
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