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Abstract—In high-resolution remote sensing image retrieval
(HRRSIR), convolutional neural networks (CNNs) have an
absolute performance advantage over the traditional hand-
crafted features. However, some CNN-based HRRSIR models are
classification-oriented, they pay no attention to similarity, which is
critical to image retrieval; whereas others concentrate on learning
similarity, failing to take full advantage of information about class
labels. To address these issues, we propose a novel model called
classification-similarity network (CSN), which aims for image clas-
sification and similarity prediction at the same time. In order to
further improve performance, we build and train two CSNs, and
two kinds of information from them, i.e., deep features and sim-
ilarity scores, are consolidated to measure the final similarity be-
tween two images. Besides, the optimal fusion theorem in biometric
authentication, which gives a theoretical scheme to make sure that
fusion will definitely lead to a better performance, is used to conduct
score fusion. Extensive experiments are carried out over publicly
available datasets, demonstrating that CSNs are distinctly superior
to usual CNNs and our proposed “two CSNs + feature fusion + score
fusion” method outperforms the state-of-the-art models.

Index Terms—Classification-similarity network (CSN), double
fusion, feature fusion, high-resolution remote sensing image
retrieval (HRRSIR), optimal fusion weights, score fusion.

I. INTRODUCTION

W ITH the rapid advancement in remote sensing (RS)
sensors, the last decade has witnessed an unprecedented

proliferation of high-resolution RS (HRRS) images, which have
highly complex geometrical structures and spatial patterns,
and are of great significance for earth observation. The urgent
need to efficiently organize and manage the huge volume of
HRRS images is self-evident, therefore, HRRS image retrieval
(HRRSIR), which aims to find images having a similar vi-
sual content with respect to a given query from a large-scale
HRRS image archive [1], has attracted more and more research
interest.

In HRRSIR, there are mainly two groups of methods: the
traditional ones, which are based on hand-crafted features, and
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the untraditional ones, i.e., deep learning methods, which can
adaptively learn a hierarchical representation from data [2]. The
former include Bayesian inference [3], Gibbs–Markov random
fields [4], support vector machine based relevance feedback [5],
active learning [6], scene semantic matching [7], local binary
pattern [8], gray-level co-occurrence matrix [8], scale invari-
ant feature transform [8]–[10], morphological texture descrip-
tors [11], [12], bag of visual words (BoVW) [10], [12], [13],
bag of spectral values [10], kernel techniques [14], graph-based
models [15], and so on. And the latter’s most typical example
is convolutional neural network (CNN). In recent years, CNNs
have had an overwhelming performance advantage over the tra-
ditional techniques, and have become the predominant method
for HRRSIR.

However, in our opinion, there are some deficiencies in the
existing CNN-based methods.

A. State-of-the-Art and Motivation

CNN-based HRRSIR approaches broadly fall into three
categories.

1) Directly Extracting Information From Pretrained CNNs:
Frequently, activations of fully connected (FC) layers of pre-
trained CNNs are directly used as features [16]–[19]. Some-
times, information is extracted from the convolutional layers and
is reprocessed to form a holistic feature vector [18], [20]–[22].
Furthermore, multi-CNN feature fusion is carried out some-
times [18].

However, these CNNs were trained over everyday image sets
instead of over HRRS datasets, and, thus, may not discover the
highly intricate structures of HRRS images. What is more, they
were trained for classification purposes, and, thus, similarity
measurement that is of great importance for image retrieval was
not considered at all during training.

2) Retraining Pretrained CNNs: Some pretrained CNNs are
retrained over HRRS image sets [16], [17], [21], [23]–[27],
taking the characteristics of HRRS images into account and,
thus, leading to a more promising performance than the first
group of methods.

However, retraining is also conducted in a multiclass classifi-
cation scenario. Its training objective is different from the testing
procedure of image retrieval, completely ignoring the similarity
between two images. We argue that the features learned for
classification may not best suit retrieval.
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3) Integrating Similarity Learning With CNNs: Some stud-
ies [28]–[32] incorporate similarity learning into CNNs. In this
case, CNNs are optimized under similarity constraints, and, thus,
are more direct and natural for HRRSIR. However, the training
procedure only requires weak labels (i.e., the prior knowledge
whether two images come from the same class), and does not
care about which classes the images belong to. Therefore, these
kinds of models cannot take full advantage of the annotated
information.

In a nutshell, the existing methods for HRRSIR either omit
to explicitly take similarity measurement into consideration, or
only utilize limited information about labels, therefore, they
leave room for performance enhancement. In fact, studies in non-
retrieval fields [33], [34] (see Section I-B for more details) have
shown that class membership prediction and similarity learning
can complement each other, and combining them will produce
more discriminative features and improve CNNs’ performance.
Encouraged by these studies, in this article, we propose CNN
models that aim for both classification prediction and similar-
ity estimation. We call them classification-similarity networks
(CSNs).

Furthermore, because different CNNs carry complementary
information, we build two CSNs, each of which outputs class
probability predictions and similarity scores at the same time. In
order to further enhance performance, we combine information
from the two CSNs.

B. Related Work

1) Contrastive Loss and Metric Similarity Learning: In face
recognition, Sun et al. [33] proposed learning CNN features at
the same time for face identification, which aims to label a face
image according to a set of given identities, and face verification,
which aims to determine whether two face images belong to
the same identity. They achieved a better performance than
when face identification and face verification were dealt with
separately. Moreover, in scene classification, Cheng et al. [34]
incorporated RS scene classification and metric learning into
one CNN model to improve classification performance.

Both face verification in [33] and metric learning in [34] are
handled through contrastive loss. For two given images Ic and
I ′c

′
, which pertain to the cth and c′th classes, respectively, the

contrastive loss is defined as

Lc

(
ω; Ic, I ′c

′)
= τ(c, c′)‖f − f ′‖22 + [1− τ(c, c′)]

× [max (0, T − ‖f − f ′‖2)]2 (1)

where ω denotes the network parameters (including weights and
biases), f and f ′ are the learned deep features of Ic and I ′c

′
,

respectively, T > 0 is a given margin threshold, and

τ(c, c′) =

{
1, if c = c′

0, otherwise.
(2)

The contrastive loss (1) aims to learn a feature space in which
two similar images (throughout this article, “similar” means that
two images come from the same class) have a small Euclidean
distance (i.e., L2 distance), whereas two dissimilar images

(throughout this article, “dissimilar” means that two images
come from different classes) have a large Euclidean distance.

Noticing the relationship between Euclidean distance and
similarity (a larger Euclidean distance means a smaller similar-
ity; in fact, they can be transformed into each other over a given
image set), we can regard face verification in [33] and metric
learning in [34] as a similarity learning problem. More specif-
ically, they both aim to learn metric similarity, since Euclidean
distance is a metric distance. However, metric distance is subject
to the rigid constraint of metric axioms (i.e., self-similarity,
symmetry, and triangle inequality) [35], and several studies [36],
[37] have shown that these metric axioms are epistemologically
invalid for perceptual distance of human beings. As indicated
by Jacobs et al. [38], the changeful face images cannot be
matched into a metric feature space without large distortions
in the distances between them, and metric similarity is less
competent in robust visual recognition than nonmetric similarity.

In the light of these findings, we propose nonmetric similarity
learning in this article, this is the key difference between our
models and those in [33] and [34], which simultaneously take
into consideration classification and metric similarity learning.
Besides, we use Siamese networks and, hence, can carefully con-
trive a much wider variety of image pairs beforehand; whereas
other researchers [33] and [34] harnessed single-branch CNNs to
accomplish similarity learning, and randomly chose image pairs
from among each mini-batch. Finally, our CSNs can predict and
output similarity scores for image pairs and, hence, are more
congenial to image retrieval; whereas the models in [33] and [34]
are classification-oriented, they only predict class membership.

2) Feature Fusion and Score Fusion: Integration of infor-
mation from various CNNs is an effective means of improving
performance, this has been validated by many studies [18],
[39]–[42].

The most common practice for multi-CNN information fu-
sion is to consolidate features extracted from different CNNs.
For example, Penatti et al. [39] concatenated the information
from two pretrained CNNs’ FC layers, Hu et al. [40] and
Ge et al. [18] first encoded the activations of convolutional layers
using BoVW, then combined the encoded representations. They
all reported a distinct performance improvement due to feature
fusion.

Stimulated by these promising results, in this article, we also
propose consolidating deep features learned by individual CSNs.

We can go further than that—bear in mind that our CSNs
can estimate similarity scores for any two images. In the RS
community, there has been little research on score fusion. How-
ever, it has been thoroughly studied in biometric authentica-
tion [43]–[46], in which a model aiming to predict scores is
called an expert, and score fusion is also called expert fusion.
Some researchers [47], [48], from theoretical as well as empirical
perspectives, have proved that score fusion can definitely have a
positive effect on performance as long as fusion is conducted in
a specific way. They found the optimal fusion theorem, which
guarantees that expert fusion will necessarily lead to a better
performance than any individual expert.

To further improve performance, we leverage these theoretical
findings to carry out score fusion.
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Fig. 1. Architecture sketch of CSN (figure adapted from [49]). CSN is com-
posed of two classification branches and a similarity learning network. Two
branches have the same architecture and share the same weights, and they output
the class membership probabilities, with pi indicating the probability that the
corresponding input image belongs to the ith category. The similarity learning
network aims to predict similarity between two input images.

In short, in this article, feature fusion and score fusion are si-
multaneously dealt with. Hereinafter, the phrase “double fusion”
is used to indicate “feature fusion + score fusion.”

C. Contributions

Overall, our contributions are fourfolded.
1) We propose a novel model called CSN, which aims to

classify images and learn nonmetric similarity at the same
time.

2) To make full use of network outputs, we train two CSNs
and perform feature fusion as well as score fusion. As
far as we know, this is the first time that two kinds of
information, i.e., deep features and similarity scores, have
been consolidated.

3) The theoretical discoveries in biometric authentication,
which guarantee a performance improvement resulting
from expert fusion, are borrowed to carry out score fusion.

4) We conduct extensive experiments over publicly available
HRRS datasets, and achieve a state-of-the-art retrieval
performance.

II. PROPOSED METHOD

This section presents our proposed method in detail. Architec-
ture sketch of CSNs is introduced first; then, training procedure
is elucidated; subsequently, we shed light on double fusion and
investigate how to compute score fusion weights and normal-
ization parameters; finally, we explain the retrieval process.

A. Network Framework

Fig. 1 shows the framework of our proposed CSN model.
CSN is composed of two classification branches, which share
exactly the same architecture as well as the same weights, and
one similarity learning network.

The inputs to CSN must be a pair of images, each classification
branch aims to classify the corresponding image. Suppose there
aren classes, then the last layer of the first (or second) classifica-
tion branch outputs an n-length vector p (or p′), which indicates

the predicted probabilities that the input image pertains to each
class. Moreover, we refer to the activation vector “locating in” a
classification branch’s penultimate layer [colored pink in Fig. 1]
as the feature vector of the input image.

The similarity learning network consists of one integration
layer, one FC layer, and one output layer. Suppose the feature
vectors of two input images are f and f ′, respectively, then we
formulate the activation vector “locating in” the integration layer
as

g = (f − f ′). ∗ (f − f ′) (3)

where “.*” means element-by-element multiplication. In this
way, swapping two input images will not change g, and, hence,
will not change the predicted similarity between them.

Furthermore, the last layer outputs a vector u = (u1, u2)
T

(the superscript T means transpose throughout the article),
whose two entries predict the probabilities that two input images
are similar and dissimilar, respectively. Therefore, u1 + u2 = 1,
and the ground truth probability distribution is (10)T if two input
images belong to the same class, and (0 1)T otherwise.

We use cross-entropy loss to penalize incorrect predictions,
including class membership predictions and “similar-dissimilar”
predictions. Correspondingly, we define two loss functions as
follows:

Lcl

(
ω; Ic, I ′c

′)
= − log pc − log p′c′ (4)

and

Ls

(
ω; Ic, I ′c

′)
= −τ(c, c′) log u1 − [1− τ(c, c′)] log u2. (5)

Ls in (5) tries to “pull”u1 toward 1 (0) if Ic and I ′c
′
are similar

(dissimilar). Since a larger (smaller) value of u1 means that two
input images are more (less) likely to come from the same class,
u1 indicates the extent to which Ic and I ′c

′
are similar, and can

be used to measure the similarity between them. Therefore, we
call u1 the similarity score of Ic and I ′c

′
.

Furthermore, from (5), it can be seen that Ls has nothing to
do with metric distance, in contrast with the contrastive loss (1).
So what the similarity learning network learns is “nonmetric
similarity” (please see the discussion in Section I-B).

Finally, we combine (4) with (5) to define the loss for CSNs
as

LCSN

(
ω; Ic, I ′c

′)
= Lcl

(
ω; Ic, I ′c

′)
+ λLs

(
ω; Ic, I ′c

′)
(6)

where λ ∈ R+ is a tunable parameter, which determines the
tradeoff between classification and similarity learning and, thus,
is called the tradeoff parameter.

B. Training Procedure

1) Converting and Pretraining: We convert GoogLeNet [50]
and ResNet50 [51] to form the classification branches of two
CSNs. The purpose of converting is to reduce the dimensions of
feature vectors and, thus, accelerate retrieval. More specifically,
we insert four FC layers between GoogLeNet’s last pooling layer
and output layer, with the numbers of neurons being 512, 256,
128, and 32, respectively [see Fig. 2(a); in this way, feature
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Fig. 2. Classification branch architecture. Branch networks are “adapted” from
the well-known GoogLeNet and ResNet50. (a) Classification branch architecture
of CSN 1. GoogLeNet is converted into the classification branch of CSN 1 to
reduce feature dimensions. (b) Classification branch architecture of CSN 2.
ResNet50 is converted into the classification branch of CSN 2 to reduce feature
dimensions.

dimension is reduced from 1024 to 32]; and we insert five FC
layers between ResNet50’s last pooling layer and output layer,
with the numbers of neurons being 1024, 512, 256, 128, and
32, respectively [see Fig. 2(b); in this way, feature dimension is
reduced from 2048 to 32].

Hereinafter, the number “1” always relates to the CSN whose
classification branch is adapted from GoogLeNet, whereas “2”
always relates to the other CSN involving ResNet50.

Furthermore, for both CSNs, the FC layer in the similarity
learning network has 256 neurons.

It should be stressed that batch normalization and ReLu,
following each newly inserted layer, are always performed to
regularize and accelerate the learning.

After new layers are added, an HRRS dataset that has suf-
ficient images is used to pretrain our CSNs coupled with the
loss (6), making the network parameters (especially the new
ones) basically fit for HRRS images. Fig. 3 illustrates this
process.

2) Fine-Tuning: After pretraining, two CSNs are fine-tuned.
Then, the classification branches and similarity learning network
are detached from each CSN, the former will be used to extract
features, and the latter will be used to calculate similarity scores.

Moreover, all images in the HRRS image archive pass through
classification branches 1 and 2 [note that classification branch
j (j ∈ {1, 2}) can be either branch of CSN j] to generate
feature archives 1 and 2, which are stored for later use at the
retrieval stage. Besides, in order to speed up the subsequent
online retrieval, we carry out feature fusion (see Section II-C for
more details) to create the final feature vector archive.

The process of fine-tuning as well as feature archive genera-
tion is shown in Fig. 4.

C. Double Fusion

As mentioned above, CSNs not only learn feature representa-
tions, but also predict similarity scores. We conduct both feature
fusion and score fusion, i.e., double fusion.

For a given image I (when no class labels are involved, we
drop the superscript “c” to simplify notation), feature fusion
involves two steps: 1) L2-normalizing I’s two feature vectors
learned by both CSNs; and 2) concatenating the normalized
feature vectors. We call the resulting vector the final feature
vector of I , and denote it as f̈(I).

In fact, feature fusion is quite simple. In this section, we
concentrate on describing how score fusion can be performed.

Naturally, the similarity scores of similar images are unlike
those of dissimilar images. We call the former S-type scores
(“S” means “similar”), and the latter D-type scores (“D” means
“dissimilar”).

We regard the jth expert’s each type of scores as the real-
izations of a random variable Xt

j (j = 1, 2; t ∈ {S,D}), with
μt
j and σt

j as the expected value and standard deviation of Xt
j ,

respectively.
We denote by ρt the correlation coefficient between Xt

1 and
Xt

2. Let δ = (δ1 δ2)
T, where

δj = μS
j − μD

j , j = 1, 2. (7)

Let

ξt = (Xt
1 X

t
2)

T, t ∈ {S,D} (8)

be a two-dimensional random vector, and denote by Σt the
covariance matrix of ξt.

Suppose that

ρD = ρS (9)

and

σD
j = KσS

j , j = 1, 2 (10)

where K ∈ R+ is a constant, then

w = L(ΣS)−1δ, 0 �= L ∈ R (11)

gives the optimal weights of score fusion [48].
Liu et al. [48] showed that only if fusion coefficients are

chosen according to (11), will score fusion lead to a better
performance than both the experts. This theoretical finding is
important because it guarantees performance improvement.

When the condition (9) or (10) is not satisfied, we can employ
the following fusion scheme instead:

w̃ = L(ΣS +ΣD)−1δ, 0 �= L ∈ R. (12)

Liu et al. [48] demonstrated that w̃ in (12) is an effective
substitute for w in (11), yielding near-optimal fusion results.

In practice, we can estimatew and w̃ using validation samples.
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Fig. 3. Process of converting and pretraining. After converting, two CSNs are pretrained to make the network parameters (especially the new ones) basically fit
for HRRS images.

Fig. 4. Process of fine-tuning CSNs and generating feature archives. CSNs 1 and 2 are fine-tuned over the HRRS image set; then the classification branches and
similarity learning network are detached from CSN j (j = 1, 2); subsequently, either branch of CSN j is used to extract features for the HRRS image archive,
creating feature archive j. After that, feature fusion is conducted over feature archives 1 and 2, yielding the final feature vector archive. Finally, these three feature
sets are stored for later use.

D. Computing Score Fusion Weights
and Normalization Parameters

After fine-tuning has been finished, we can estimate fusion
weights and calculate normalization parameters, preparing for
double fusion.

For a given validation set V, let

A = max
I,J∈V

‖f̈(I)− f̈(J)‖2. (13)

Obviously, for any I, J ∈ V, 1− ‖f̈(I)−f̈(J)‖2
A ∈ [0, 1]. In this

way, the distance between I andJ is transformed into a similarity
measure ranging from 0 to 1. We refer to A as the normalization
parameter based on feature fusion (NPBoFF).

Moreover, suppose the similarity score observations over V
are xt

j = (xt
1j , x

t
2j , . . . , x

t
mtj)

T (j = 1, 2; t ∈ {S,D}), where

mt ∈ N is the number of similar (if t = S) or dissimilar (if
t = D) image pairs over V, then we can estimate μt

j as follows:

μ̂t
j =

1

mt

mt∑
i=1

xt
ij , j = 1, 2; t ∈ {S,D}. (14)

Correspondingly, we have

δ̂ = (δ̂1 δ̂2)
T (15)

where

δ̂j = μ̂S
j − μ̂D

j , j = 1, 2. (16)

Let

Φt = (φt
ij)2×2, t ∈ {S,D} (17)
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Fig. 5. Process of computing score fusion weights and normalization parameters. Classification branch j is used to extract features for the HRRS validation set,
producing validation feature set j (j = 1, 2); then, over validation feature sets 1 and 2, feature fusion is conducted to compute the normalization parameter A.
In addition, feature vector pairs from validation feature set j are fed to similarity learning network j, generating S-type score set j and D-type score set j; then,
score fusion weights are computed using these four score sets. Finally, over S-type score sets 1 and 2 and D-type score sets 1 and 2, score fusion is performed to
calculate the normalization parameters B and C.

where

φt
ij =

mt∑
k=1

(xt
ki − μ̂t

i)(x
t
kj − μ̂t

j), i, j = 1, 2; t ∈ {S,D}.
(18)

Then, an unbiased estimate of Σt is given by [52]

Σ̂t =
1

mt − 1
Φt, t ∈ {S,D}. (19)

Besides, the correlation coefficients and standard deviations
are estimated, respectively, as

ρ̂t =
φt
12√

φt
11φ

t
22

, t ∈ {S,D} (20)

and

σ̂t
j =

√
φt
jj

mt − 1
, j = 1, 2; t ∈ {S,D}. (21)

We chooseL = 1 in (11) and (12), then an estimate of optimal
(or near-optimal) fusion weights can be expressed as

ŵ = (Σ̂S)−1δ̂ (22)

or

ˆ̃w = (Σ̂S + Σ̂D)−1δ̂. (23)

In other words, if the two requirements

ρ̂D = ρ̂S (24)

and

σ̂D
j = Kσ̂S

j , j = 1, 2 (25)

are met, ŵ in (22) is used as the fusion weight vector; if not, ˆ̃w
in (23) is chosen instead. We refer to ŵ and ˆ̃w as score fusion
weights.

For convenience, we assume that ŵ is used for score fusion.
Let

xj = xS
j ⊕ xD

j , j = 1, 2 (26)

where ⊕ means vector concatenation, then score fusion over V
can be formulated as

y = (x1 x2)ŵ. (27)

Let

B =
1

max
i

yi −min
i

yi
(28)

C =
min
i

yi

min
i

yi −max
i

yi
(29)

where yi is y’s ith entry, which represents the combined sim-
ilarity score of the ith image pair over V. Obviously, for any
i ∈ {1, 2, . . . ,mS +mD}, Byi + C ∈ [0, 1]. We refer to B and
C as the normalization parameters based on score fusion (NP-
BoSF).

The process of weight estimation and parameter computation
is illustrated in Fig. 5. It should be stressed that this is an offline
process.

E. Retrieval

Denote by A the HRRS image archive, and by |A| the size
of A; denote the ith image in A as Ii (since many images are
involved now, we add a subscript “i” to differentiate them).
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Fig. 6. Retrieval process. When a user provides a query q, classification branch j is used to extract features for q, yielding query feature vector j (j = 1, 2).
Then, these two feature vectors are combined to generate f̈(q). After that, f̈(q) is compared in sequence with each vector in the final feature vector archive to
calculate αi (i = 1, 2, . . . , |A|; |A| is the number of HRRS images against which q queries). On the other hand, query feature vector j is paired in sequence with
each vector in feature archive j and fed to similarity learning network j to calculate similarity scores sij . Then, si1 and si2 are combined to yield βi. Subsequently,
αi and βi are summed to give γi, which is the final score. Finally, images in the HRRS image archive are sorted according to γi, and several top-ranking images
are presented to the user.

A query q is first fed to two classification branches to extract
corresponding feature vectors f1 and f2 (as multiple feature
vectors are involved, we also differentiate between them by
adding subscripts). Then, f1 and f2 are consolidated to yield
the final feature vector f̈(q).

Let

αi = 1− ‖f̈(q)− f̈(Ii)‖2
A

, i = 1, 2, . . . , |A|. (30)

Note that all f̈(Ii) have been created beforehand and saved in the
final feature vector archive. By means of deep features learned
by two CSNs, αi measures the similarity between q and Ii.

Besides, fj is paired with each feature vector in the jth feature
archive to pass through the jth similarity learning network,
generating similarity scores sij (i = 1, 2, . . . , |A|; j = 1, 2). Let

βi = B(si1 si2)ŵ + C, i = 1, 2, . . . , |A|. (31)

βi measures the similarity between q and Ii by combining
similarity scores output by two CSNs.

From the definitions of normalization parameters A, B, and
C, it follows that bothαi and βi roughly range from 0 to 1. Then,
we define the final score of image pair 〈q, Ii〉 as

γi = αi + βi, i = 1, 2, . . . , |A|. (32)

Integrating two feature representations with two similarity pre-
dictions,γi gives a more reliable estimate of similarity than when
only one CSN is employed and/or only one kind of “product”
made by CSNs is utilized.

Finally, all images in the HRRS image archive are sorted in
descending order according to their final scores, and those with
a higher rank will be presented to users.

The aforementioned steps are summarized in Fig. 6.

III. EXPERIMENTAL RESULTS

In this section, we present experimental setup first, then
analyze experimental results and discuss our findings at length.

A. Experimental Setup

1) Dataset: We use three HRRS datasets: NWPU-
RESISC45 (N-R) [53], PatternNet [19], and UC-Merced
(UCM) [54]. N-R has 31 500 images covering 45 classes;
the image size is 256 × 256, and the spatial resolution varies
from about 30–0.2 m per pixel. The newly released PatternNet
is the first publicly available image set created exclusively
for HRRSIR, it has 38 classes and 30 400 images, with 800
images per class; these images are of 256× 256 pixels, and
have a resolution as high as 0.062–4.693 m per pixel. In
UCM, there are 21 categories, each containing 100 images; the
images are with the size of 256× 256 pixels and 0.3 m spatial
resolution. Some images from these three datasets are shown in
Figs. 7–9.

The largest dataset N-R is used for pretraining, since many
new network parameters are added. Both PatternNet and UCM
are randomly split into subsets for fine-tuning, validation (i.e.,
estimating score fusion weights and normalization parameters),
and test (test sets serve as HRRS image archives). Over Pat-
ternNet, the ratios of fine-tuning, validation, and test are 10%,
10%, and 80%, respectively. Over UCM, the division strategy is
40%/10%/50%. Besides, we use random horizontal and vertical
image flip to expand both fine-tuning sets.

It should be stressed that some evaluation measures, such
as P@k (see below), depend on the size of test set. Most
empirical studies [1], [18], [19], [28], [31] use 20% of the dataset
PatternNet for test, therefore, for purpose of a fair comparison,
we randomly divide our PatternNet test set into four equal parts,
compute evaluation measures over each part separately, and
report the average values.
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Fig. 7. Example images from the N-R dataset: (1) airplane; (2) airport; (3) baseball diamond; (4) basketball court; (5) beach; (6) bridge; (7) chaparral;
(8) church; (9) circular farmland; (10) cloud; (11) commercial area; (12) dense residential; (13) desert; (14) forest; (15) freeway; (16) golf course;
(17) ground track field; (18) harbor; (19) industrial area; (20) intersection; (21) island; (22) lake; (23) meadow; (24) medium residential; (25) mobile home park;
(26) mountain; (27) overpass; (28) palace; (29) parking lot; (30) railway; (31) railway station; (32) rectangular farmland; (33) river; (34) roundabout; (35) runway;
(36) sea ice; (37) ship; (38) snowberg; (39) sparse residential; (40) stadium; (41) storage tank; (42) tennis court; (43) terrace; (44) thermal power station; and
(45) wetland.

Fig. 8. Example images from the PatternNet dataset: (1) airplane; (2) baseball
field; (3) basketball court; (4) beach; (5) bridge; (6) cemetery; (7) chaparral;
(8) Christmas tree farm; (9) closed road; (10) coastal mansion; (11) crosswalk;
(12) dense residential; (13) ferry terminal; (14) football field; (15) forest;
(16) freeway; (17) golf course; (18) harbor; (19) intersection; (20) mobile
home park; (21) nursing home; (22) oil gas field; (23) oil well; (24) overpass;
(25) parking lot; (26) parking space; (27) railway; (28) river; (29) runway;
(30) runway marking; (31) shipping yard; (32) solar panel; (33) sparse residen-
tial; (34) storage tank; (35) swimming pool; (36) tennis court; (37) transformer
station; and (38) waste water treatment plant.

Fig. 9. Example images from the UCM dataset: (1) agricultural; (2) airplane;
(3) baseball diamond; (4) beach; (5) building; (6) chaparral; (7) dense residen-
tial; (8) forest; (9) freeway; (10) golf course; (11) harbor; (12) intersection;
(13) medium residential; (14) mobile home park; (15) overpass; (16) parking
lot; (17) river; (18) runway; (19) sparse residential; (20) storage tank; and
(21) tennis court.

Furthermore, we create image pairs in such a way that each
class provides the same number of similar image pairs and each
class combination provides the same number of dissimilar image
pairs. Similar (dissimilar) image pairs are randomly selected
within each class (class combination). Since there are a large
variety of class combinations, especially when a dataset has
many classes, we create much more dissimilar image pairs than
similar ones. Besides, we set the ratio between similar and
dissimilar image pairs to 1 : [1 + 0.25(i− 1)] in the ith epoch.

The details of datasets are summarized in Table I.
2) Development Environment: All the numerical experi-

ments are performed on an AMAX workstation, which has two
Intel Xeon E5-2640Wv4 CPUs with ten cores, two NVIDIA
Titan X GPUs, and a 128-GB memory. MatConvNet [55] acts
as our development platform.

We pretrain/fine-tune CSNs using stochastic gradient de-
scent [56], with a batch size of 64, a weight decay of 0.0005, and
a momentum of 0.9. During pretraining, learning rates for new
layers and “old” ones are set to 0.01 and 0.001, respectively;
during fine-tuning, learning rate for all layers is 0.0001.

3) Evaluation Measures: Four measures are used to evaluate
retrieval performance: average normalized modified retrieval
rank (ANMRR), mean average precision (mAP), precision at
cutoff k (P@k), and the interpolated precision-recall (P-R)
curve. Their definitions can be found in [1].

Moreover, evaluation is performed by using each test image
to query against the rest of the test images and reporting the
average.

B. Effect of Tradeoff Parameter on Performance

Different values of the tradeoff parameter λ are tried, and
the corresponding results are shown in Tables II and III. The
relationship between λ and mAP is also presented in Fig. 10 for
a more intuitive understanding. It can been seen that a too large or
small value of λ will weaken CSNs, indicating that classification
prediction and similarity learning jointly contribute to perfor-
mance enhancement and there is a proper tradeoff between them.
From another perspective, this demonstrates the rationality of
taking classification and similarity learning into account at the
same time.
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TABLE I
DETAILS OF DATASETS

1The number of similar image pairs.
2The number of dissimilar image pairs.

TABLE II
VALUES OF λ VERSUS PERFORMANCE (OVER PATTERNNET)

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP.

TABLE III
VALUES OF λ VERSUS PERFORMANCE (OVER UCM)

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP.

Fig. 10. Tradeoff parameter λversus performance. If a proper tradeoff between
image classification and similarity learning can be found, we will achieve the
best performance from CSNs. It turns out that the optimal values of λ are 1.0
and 1.2 over PatternNet and UCM, respectively.

It turns out that when λ = 1.0 and λ = 1.2, retrieval per-
formance reaches its optimum over PatternNet and UCM,
respectively. In the next several sections, the results reported
are all based on the best choices of λ.

C. Comparison Among Models

We compare the following nine models.
1) fine-tuning GoogLeNet and extracting features from the

last pooling layer to compute similarity (we denote this
model as “Fine-tuned GoogLeNet”);

2) extracting feature vectors from CSN 1 to compute simi-
larity (we denote this model as “1: FV,” with “1” meaning
the first CSN and “FV” meaning “feature vectors”);

3) using the similarity scores output by CSN 1 as a similarity
measure (we denote this model as “1: SS,” with “SS”
meaning “similarity scores”);

4) fine-tuning ResNet50 and extracting features from the last
pooling layer to compute similarity (we denote this model
as “Fine-tuned ResNet50”);

5) extracting feature vectors from CSN 2 to compute simi-
larity (we denote this model as “2: FV,” with “2” meaning
the second CSN);

6) using the similarity scores output by CSN 2 as a similarity
measure (we denote this model as “2: SS”);

7) conducting feature fusion over two CSNs and, then, using
the combined features to compute similarity (we denote
this model as “1&2: FF,” with “FF” meaning “feature
fusion”);

8) conducting score fusion over two CSNs and, then, using
the combined scores as a similarity measure (we denote
this model as “1&2: SF,” with “SF” meaning “score
fusion”);

9) conducting double fusion over two CSNs and, then, using
the combined features and scores to compute similarity
(we denote this model as “1&2: DF,” with “DF” meaning
“double fusion”).

The retrieval performance in terms of ANMMR, mAP, and
P@k (k = 5, 10, 50, 100, 1000) is shown in Tables IV and V.
Besides, Fig. 11 presents the interpolated P-R curves. Based
on these results, our observations and analyses are listed as
follows.

1) Our proposed method, i.e., model 9, apparently outper-
forms the other eight models over both HRRS datasets,
regardless of which evaluation measure is used. This
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TABLE IV
PERFORMANCE COMPARISON AMONG MODELS OVER PATTERNNET

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP and P@k.

TABLE V
PERFORMANCE COMPARISON AMONG MODELS OVER UCM

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP and P@k.

Fig. 11. Interpolated P-R curves. A curve farther away from the origin indicates a better performance. (a) Over PatternNet. (b) Over UCM.

demonstrates that our “CSNs + double fusion” approach
is effective.

2) Whichever evaluation measure we choose, model 7 (i.e.,
conducting feature fusion over two CSNs) and model 8
(i.e., conducting score fusion over two CSNs) invariably
rank second and third, respectively, falling behind our
proposed method but staying ahead of nonfusion models
1 to 6. This indicates that multi-CNN information fusion
is indeed advantageous and double fusion is superior to
single fusion.

3) Specially, in terms of performance, model 8 (i.e., con-
ducting score fusion over two CSNs) is always better

than models 3 and 6, which use the similarity scores
predicted by only one CSN. This validates the claim that
the optimal score fusion scheme guarantees performance
improvement.

4) Model 2 whose classification branches are “adapted”
from GoogLeNet surpasses model 1, the fine-tuned
GoogLeNet; similarly, model 5 whose classification
branches are “adapted” from ResNet50 surpasses model 4,
the fine-tuned ResNet50. Noting that these four mod-
els are all stand-alone and they concern deep features
rather than similarity scores, we reach the conclusion
that our proposed CSNs can learn stronger and more
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Fig. 12. ANMRR per class. From a class-level perspective, we also find that CSNs are frequently superior to usual CNNs and our proposed “two CSNs + double
fusion” model performs best. Note that only class numbers are given here due to limited space, the class names can be found in Figs. 8 and 9. (a) Over PatternNet.
(b) Over UCM.

discriminative features than usual CNNs. In other words,
giving simultaneous consideration to classification and
similarity learning makes CSNs powerful.

5) Model 2 outperforms model 3; similarly, model 5 out-
performs model 6. These results show that deep features
learned by a CSN provide more essential and useful infor-
mation for image retrieval than similarity scores predicted
by the CSN. A possible explanation may be that only two
neurons are used in the output layer of CSNs, lacking
fine-grained ranges of similarity and, thus, making a too
rough prediction.

6) The fine-tuned ResNet50 is superior to the fine-tuned
GoogLeNet, correspondingly, the models based on
ResNet50 are also better than their counterparts based
on GoogLeNet (model 5 versus model 2, model 6 versus
model 3). Therefore, a well-performed branch will make
a positive contribution to CSNs.

Furthermore, the retrieval time our proposed method (i.e.,
model 9) needs is acceptable, although it involves two CSNs and

carries out not only feature fusion but also score fusion. In fact,
our model’s final feature vectors are of lower dimension (64-D)
compared to the original GoogLeNet (1024-D) and ResNet50
(2048-D). Besides, feature vector pairs can be fed in batch
to a similarly learning network, which is quite shallow, and
GPUs can be used to accelerate computation. So predicting
similarity scores does not cost much time. As for score fusion and
computation of final scores, the time they consume is negligible.

The average retrieval time of our proposed model is 0.24
and 0.05 s per query over PatternNet and UCM, respectively,
in contrast to 0.20 and 0.04 s for the fine-tuned ResNet50.
Certainly, feature indexing techniques such as hashing [14], [29],
[30], [57] and vocabulary trees [58], [59] can be used to speed
up online retrieval. This, however, lies beyond the scope of this
article.

Finally, the pretraining time for CSNs 1 and 2 is about 7
and 9 h, respectively; over PatternNet, the fine-tuning time for
CSNs 1 and 2 is about 4 and 6 h, respectively; and over UCM, the
fine-tuning time for CSNs 1 and 2 is about 2 and 3 h, respectively.
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TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS OVER PATTERNNET

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP.

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS OVER UCM

A smaller value of ANMRR indicates a better performance, and the opposite is true for mAP.

D. ANMRR Per Class

Fig. 12 presents ANMRR per class. Our observations and
analyses are given as follows.

1) Broadly speaking, class-level ANMRR conforms to our
findings discussed in Section III-C, such as that our pro-
posed model performs best, and double fusion prevails
over single fusion, whereas single fusion prevails over
nonfusion.

2) Values of ANMRR vary greatly across classes, indicat-
ing that images from different categories may be “close
together” (i.e., highly similar), at the same time, some
classes are far away from others.

3) Generally, natural scenes have a better retrieval perfor-
mance than man-made ones. For example, all the five
natural scene classes over PatternNet (beach, chaparral,
Christmas tree farm, forest, and river) have small AN-
MRR values; the five groups of lowest ANMRR over
UCM are all yielded by natural scene classes (agricultural,
beach, chaparral, forest, and river). This is consistent with
the previous finding that natural scene images are easily

distinguishable and, hence, have a high classification ac-
curacy [34], [41], [60].

E. Comparison With State-of-the-Art Methods

In this section, we make a comparative study. Since deep
features frequently have a huge performance advantage over the
traditional hand-crafted features, we only make a comparison
with CNN-based methods. Moreover, besides ANMRR and
mAP, feature dimension and the size of training set are also
listed for the sake of fairness and objectivity.

The numerical results in Table VI reveal that over PatternNet,
our proposed method outperforms all existing models in terms
of retrieval performance, even in the case where CSNs use a
much smaller training set (note that the size of our training set
is only 10%, whereas many sizes in Table VI are bigger than
70%). Generally, our features are more compact, requiring less
storage space and feature comparison time.

The numerical results about UCM are summarized in Ta-
ble VII. It turns out that in terms of retrieval performance, our
model is superior to all existing methods with the exception
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of DHNN [29]—our mAP is lower than DHNN’s by 0.91%.
However, our training set is much smaller (40% versus 88%),
and our feature vectors are much shorter (64-D versus 4096-D).

To sum up, our proposed “CSNs + double fusion” model is
more competitive than the state-of-the-art approaches.

IV. SUMMARY AND FUTURE WORK

Most of the existing CNN-based HRRSIR models are
classification-oriented, and give little consideration to similarity
learning, which is very important for image retrieval. In contrast,
others only “concern” themselves with similarity learning, fail-
ing to make full use of information about class labels. To address
these issue, we propose a novel CNN model called CSN, which
aims to classify images and learn similarity simultaneously.
Moreover, two kinds of information from multiple CSNs, i.e.,
deep features and similarity scores, are combined. Besides, the
optimal fusion theorem in biometric authentication, which will
definitely lead to a better performance, is used to conduct score
fusion.

To validate our models, we have conducted extensive experi-
ments, and the experimental results reveal that 1) our proposed
CSNs, which take into consideration both image classification
and similarity learning, can learn more powerful and discrim-
inative features than usual CNNs; 2) multi-CNN information
fusion boosts retrieval performance, double fusion outperforms
single fusion, and single fusion outperforms nonfusion; 3) the
optimal score fusion scheme indeed guarantees performance
improvement; and 4) our “multiple CSNs + feature fusion +
score fusion” approach has achieved a better performance than
the existing models, and, generally, the resulting features are
much more compact.

However, our present strategies leave room for further im-
provement. For example, it is of interest to incorporate hard
example mining [63] into the training process to leverage hard
image pairs. Besides, the tradeoff parameter λ has been ten-
tatively selected, consuming much time; it might be automat-
ically learned instead. Furthermore, because the classification
branches of CSNs are based on GoogLeNet and ResNet50,
which were both pretrained on everyday RGB images, our pro-
posed methods are validated on optical HRRS images that have
three channels, just like everyday images. We will extend our
methods to other types of RS data, such as hyperspectral images,
SAR images, and time series. Finally, hashing techniques can
be integrated with CSNs to expedite the retrieval process. These
form the focus of our future research.
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