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Landslide Inventory Mapping With Bitemporal
Aerial Remote Sensing Images Based on the

Dual-Path Fully Convolutional Network
ZhiYong Lv , TongFei Liu , XiangBing Kong , Cheng Shi , and Jón Atli Benediktsson

Abstract—This article presents a novel dual-path full convo-
lutional network (DP-FCN) model for constructing a landslide
inventory map (LIM) with bitemporal very high-resolution (VHR)
remote sensing images. Unlike traditional methods for drawing
LIM, the proposed DP-FCN directly draws LIMs from the
bitemporal aerial images with VHR through a trained deep neural
network without generating the change magnitude map. Thus, the
proposed approach can effectively reduce the effects of pseudo
changes caused by phenological differences rather than landslide
events. The proposed DP-FCN model contains two modules,
namely, deep feature extraction, and joint feature learning
networks. Deep feature extraction aims to reduce redundancy while
extracting the high-level deep features from bitemporal images.
Joint feature learning establishes the relationship between the deep
features of bitemporal images and the ground reference map. Ex-
periments on the real datasets of the landslide sites in Lantau Island
of Hong Kong, China, demonstrate the feasibility and superiority of
the proposed approach in drawing LIM with VHR remote sensing
images. Moreover, compared with the results obtained by the
state-of-the-art algorithms, the proposed DP-FCN method achieves
the best performance in terms of accuracy for landslide inventory
mapping.

Index Terms—Change detection (CD), landslide inventory map
(LIM), natural disaster, remote sensing images.

I. INTRODUCTION

LANDSLIDES cause serious economic losses and many
casualties annually. For example, at least two billion US

dollars were expended in landslides in the United States each
year [1], [2]. Furthermore, many people were killed from land-
slide occurrences. For example, 73 people died in the landslide
event of Shenzhen City, China [3], and approximately 500
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fatalities have been recorded in the past six decades in the Hong
Kong area of China [4], [5]. To evaluate disaster assessments,
carry out rescues, or analyze the influencing factors, obtain-
ing landslide inventory maps (LIMs), which depict the sizes,
shapes, locations, spatial distributions, and dates of occurrences
of landslides, is essential [6]–[9]. To date, many LIM methods
have been proposed through remote sensing techniques, espe-
cially those that use very high-resolution (VHR) remote sensing
images.

Landslides change the ground surface of the Earth; thus, the
progress of mapping landslides can be considered the land cover
change detection (LCCD) problem [10]–[12]. Recently, land-
slides were captured and depicted in enhanced details with the
convenience of VHR remote sensing images (satellite, airborne,
and UAV platforms) [13], [14]. However, although VHR remote
sensing images have high spatial resolution, they are insufficient
in spectral domain that results in salt-and-pepper noises, which
become a common phenomenon in the detection results when us-
ing VHR images [15]–[17]. To smoothen the noise in the detec-
tion maps, contextual information is usually adopted to reduce
the pseudo change of LIMs. For example, level-set evolution
theory has been developed for LCCD with bitemporal aerial pho-
tographs for LIM. Specifically, two strategies called edge-based
level-set evolution (ELSE) and region-based level-set evolution
(RLSE) were proposed on the basis of the theory in [18]. Zhang
et al. [19] extended the level-set method with local uncertainty
constraints (LSELUC) for landslide mapping. Li et al. [20]
proposed the Markov random field-based LCCD method to
draw LIMs. Although landslides can be detected through LCCD
techniques in theory, these LIM drawing methods still have
following limitations. 1) The differences in bitemporal images
in terms of atmospheric conditions, sun angle, and phenological
variation usually cause pseudo changes in the detection map.
Thus, the process of maintaining real changes while removing
the pseudo ones remains a challenge in LCCD [21]–[24]. 2)
Binary threshold is required to divide the change magnitude
image (CMI) into binary LCCD maps; however, determination
of the optimal binary threshold for a given CMI is usually time
consuming and subjective [25], [26]. Therefore, developing an
automatic LIM method without constructing CMIs and binary
thresholds is important and promising.

In recent years, the development of deep learning approaches
allows for effective LCCD and rapid landslide mapping.
The convolutional neural network (CNN) is a classical deep
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Fig. 1. Framework of the proposed DP-FCN approach.

learning model [27], and has been widely used for image
recognition [28]–[30], scene classification [31], and object
detection [32]. Many methods have been proposed for LCCD
by using synthetic aperture radar (SAR) images with deep
neural networks (DNNs) [33], [34] and local restricted CNN
(LRCNN) [35]–[37]. In these methods, abstract and deep
features are learned for generating differing images (DIs) to
measure the change magnitude among the bitemporal SARs. To
avoid the effect of uncertain DI noise on the detection results,
a joint classifier of the bitemporal images was introduced into
a DNN based on the restricted Boltzmann machine to omit the
progress of generating DIs [38]. In the field of LCCD with
optical VHR images, certain networks have been investigated
to concentrate on deep feature exploration and suitable feature
space transformation. For instance, the authors in [39] exploited
the spatiotemporal features of a series of monitoring satellite
images for LCCD using deep CNN. The authors in [40] designed
a general end-to-end two-dimensional (2-D) CNN framework
used for learning discriminative features and detecting land
cover change from hyperspectral images. The authors in [41]
proposed a fully atrous CNN for LCCD through the learning
scale representation feature with VHR remote sensing images.
Recently, a full convolutional network within pyramid pooling
(FCN-PP) was also proposed for LIM by using bitemporal
aerial images [42]. An in-depth literature survey about LCCD
with optical VHR remote sensing images can be found in [43]
and [44]. The advantage of the machine learning-based LCCD
methods lies in detecting the “change” and “unchanged” area
directly without generation of CMI. Compared with traditional
methods, avoiding the generation of CMI can circumvent
the determination of binary threshold which is usually a
time-consuming and experience-dependent progress [45].

As mentioned previously, although many methods based on
deep learning techniques have been developed for detecting
land cover changes with VHR remote sensing images, filters
or other pre-operations in these deep learning techniques are
usually required for processing raw bitemporal images for
these commonly used networks. Furthermore, CMIs are first
generated on the basis of the explored high-level features, and
changes are also indirectly detected from the CMIs. Moreover,
from the viewpoint of application, the majority of existing

methods have focused on LCCD, and only limited methods
with deep learning techniques have been designed specifically
for LIM with VHR remote sensing images. Therefore, obtaining
LIM with VHR remote sensing images remains a challenge
due to the general great differences between the pre- and
postevent images of landslides in spectra, moisture, and
phenomenon.

In this article, we design a dual-path full convolutional
network (DP-FCN) model for rapid LIM with VHR remote
sensing images to address the abovementioned problems. The
motivation of the proposed DP-FCN lies in three aspects. 1)
Reducing the pseudo changes caused by the differences in the
bitemporal images due to the different seasons, sun height, and
soil moisture. 2) Investigating the feasibility and performance of
deep learning techniques for the task of LIM with VHR remote
sensing images, which have a remarkable difference in spectral
reflectance. 3) Learning robust and abstract features from the
bitemporal images for LIM without needing to generate CMIs
and other preprocessing operations.

The rest of this article is organized as follows. Section II
presents the details of the proposed approach. Section III dis-
cusses the experiments on certain landslide site images to verify
the feasibility and performance of the proposed approach. Fi-
nally, Section IV concludes the article.

II. PROPOSED DUAL-PATH FULL CONVOLUTIONAL NETWORK

In this section, we present the proposed DP-FCN model for
drawing LIM with VHR remote sensing images. The main
motivation of the proposed DP-FCN model is to reduce pseudo
changes and improve the detection accuracy of LIM by omitting
the process of CMI generation. The proposed DP-FCN contains
two cooperative modules, namely, the deep feature extraction
(DFE-network) and joint feature learning (JFL-network) net-
works. DFE-network is designed to exploit the robust fea-
tures of bitemporal images without any preprocessing, whereas
JFL-network is used for learning the relationship between the
bitemporal deep features and the ground reference map. The
framework of the proposed model is shown in Fig. 1.
The details of the proposed DP-FCN model will be presented in
the following sections.
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TABLE I
DETAILED ARCHITECTURE OF THE PROPOSED DP-FCN

A. Deep Feature Extraction Network (DFE-Network)

The DFE-network is designed to extract the high-level fea-
tures of bitemporal images and constructed on the basis of the
U-net, which is an efficient deep feature extraction model [46]
that has been proven to be effective in many tasks [30], [47],
[48]. To the best of our knowledge, the U-net is first introduced
for LIM with VHR remote sensing images in this article.

Fig. 1 shows the structure of the DFE-network with nine
layers. This network contains the encoder and decoder parts.
The encoder process reduces the spatial dimension with four
convolution layers and four downsampling layers. This process
also restores the detailed information and the spatial dimension
with four convolution and four upsampling layers. In addition,
the corresponding feature maps of encoders and decoders are
concatenated to further preserve the details of landslides. The
output feature map of each remote sensing image has n channels
(n is a per-set parameter). Thus, it can be considered as a 3-D
feature cube. The output features of the DFE-network have the
same spatial size as the inputs.

In the proposed DFE-network, the activation function is re-
quired to learn the nonlinear relationship between every network
layer. Rectified linear unit (ReLU), which has been successfully
used in [49], is adopted as the activation function for each
convolutional layer. ReLU can be defined as follows:

f(x) = max(0, x) (1)

where x is the output feature from each convolution layer.
In addition, to overcome the overfitting issue and achieve the
optimal local minimum, the dropout is exploited after each layer.

Notably, the proposed DFE-network is an extension appli-
cation of the U-net. Thus, it inherits the characteristics of the
U-net. For the task of LIM, the DFE-network learns the high-
level features from the bitemporal VHR remote sensing image.
Concurrently, the low-level features of the bitemporal images
can be captured. The preservation of high- and low-level features
is conducive to accurately mine the relationship between the
landslide and nonlandslide areas.

B. Joint Feature Learning Network (JFL-Network)

Many studies have achieved the LCCD map by generating the
CMIs. However, the bitemporal images of LCCD are usually
different in terms of season, sun height, and even soil moisture.

Moreover, the bitemporal images used for landslide mapping are
typically located in mountain areas covered with various types of
vegetation. These issues will result in pseudo change metrics in
the CMIs and cause pseudo changes in the final detection map.
To address these problems, the JFL-network in the proposed
DP-FCN approach is suggested to directly detect the landslide
areas from the bitemporal deep features without the generation
of CMIs. Details of the proposed JFL-network are given in the
following paragraphs.

The structure of the JFL-network is shown in Fig. 1. We
first concentrate on the two groups of 3-D cube feature maps
obtained by using the DEF-network into a new 3-D feature
cube. The concentrated 3-D feature cube is then considered the
input of the JFL-network. The JFL-network contains two full
convolution layers and a dense convolution layer to further learn
the relationship between the features of the pre- and postevent
images. At the end of the JFL-network, a softmax classifier
is applied to each pixel to obtain the final detection results.
The possibility presents a pixel that can either be “landslide”
or “nonlandslide” and is defined as follows:

Pn
k =

ew
n
k

∑j=1
j=0 e

wn
j

(k = k|0, 1) (2)

wherePn
k indicates the probability that a pixel belongs to the kth

class, and wn
k denotes the weight matrix of the F k feature map.

In this article, the proposed DP-FCN aims to obtain LIM by
dividing an image scene into landslide and nonlandslide areas,
where “k = 1” and “k = 0” represent landslide and nonlandslide
areas, respectively. As mentioned above, the landslide (wn

1 ) and
nonlandslide (wn

0 ) weight matrixes are generated by using the
dense convolution layer in the JFL-network. The label (L) of
each pixel xn can be predicted on the basis of the following
maximal probability Pn

k :

L(xn) = argmaxPn
k , (k = k|0, 1) (3)

From the discussion above, the landslide areas are detected by
determining the relationship between the ground reference and
the bitemporal 3-D feature maps in the proposed JFL-network.
Unlike the traditional methods, the pseudo change caused by
the generation of CMI can be reduced because the calculation
of CMI and the binary threshold is avoided in the proposed
DP-FCN.
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TABLE II
DESCRIPTION OF THE QUANTITATIVE CRITERIA FOR THE EXPERIMENTS

C. Network Training for the Proposed DP-FCN

Two co-registered images, namely, I1 and I2, are assigned as
the pre- and postevent images for LIM. Notably, the proposed
DP-FCN only accepts inputting image blocks with a size of
128× 128 pixels with the three spectral channels. Thus, the raw
image scene should be separated into regular blocks with the
size of 128× 128 pixels. In the proposed DP-FCN approach,
the main goal of two parallel DFE-networks lies in extract-
ing two n-dimension feature map vectors from the inputs I1
and I2 which can be described as F1 = {f1

1 , f
2
1 , . . ., f

n
1 } and

F2 = {f1
2 , f

2
2 , . . ., f

n
2 }, respectively, where n is set to 64 in the

proposed DP-FCN. Subsequently, F1 and F2 are concatenated
as F = {f1

1 , f
2
1 . . .f

n
1 , f

1
2 , f

2
2 , . . ., f

n
2 } and F is placed into the

convolutional layer of the JFL-network for joint learning. Then,
the probability of each pixel is calculated by using the softmax
layer for determining whether each pixel belongs to the landslide
or nonlandslide class. Finally, LIM is predicted by using the
proposed DP-FCN approach. The entire algorithm is depicted
in Algorithm I.

In the progress of training the DP-FCN model, the weight
matrix of the convolutional layers are initialized by using the
Xavier method [50]. Furthermore, the detailed configuration of
DP-FCN is shown in Table I. To fine-tune the proposed DP-FCN,
we adopt the classical cross-entropy method as the loss function
for training the model. The cross-entropy function can be defined
as follows:

Lossi = −yilog(y,i) (4)

where yi represents the label of the ground reference image, and
y,i denotes the predicted label. Hence, lossi is the loss value of the
ith training block. We minimize the loss simultaneously by using
the AdamOptimizer with backpropagation, and the learning rate
for training the DP-FCN model is set to 10−4. To avoid the
problem of overfitting, we set the parameter keep_prob of the
dropout to 0.6. On the basis of the above parameter setting,

Algorithm 1: The Framework of the Proposed DP-FCN
Approach.

Input: The bitemporal images (I1 and I2) are divided into
m image blocks with the size of 128× 128 pixels. Ii1 and
Ii2 are a pair of blocks for input, where i ∈ [1,m], and m is
the number of training blocks.

1: for i = 1 : m do
2: Extract the feature map vectors f i

1 = {f1
1 , f

2
1 , . . .f

n
1 }

and f i
2 = {f1

2 , f
2
2 , . . .f

n
2 } from the pairwise image

blocks Ii1 and Ii2 by using parallel DFE-networks,
respectively.

3: Concatenate the feature map vectors f i
1 and f i

2 into
f i = {f1

1 , f
2
1 . . .f

n
1 , f

1
2 , f

2
2 , . . ., f

n
2 } in the

JFL-network.
4: Learn the contacted relationship of the feature vector

f i through the convolution layer in JFL-network.
5: Calculate the probability of each pixel by using

formula (2).
6: The label of each pixel is determined by using

equation (3).
7: AdamOptimizer with backpropagation is employed for

fine-tuning the proposed DP-FCN.
8: i← i+ 1;
9: end for

Output: the trained DP-FCN model.

the proposed DP-FCN can be trained and fine-tuned. Finally,
when the bitemporal landslide images are fed into the proposed
DP-FCN, the corresponding LIM can be automatically acquired.

We implement the proposed DP-FCN model on a workstation
with Intel CPU W-2123, 3.6 GHz, four cores, 64 GB RAM, and
NVIDIA GTX 2080Ti GPU. We have deployed the entire project
in PyCharm-2019, which configures Python 3.6 and TensorFlow
1.12.0.
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III. EXPERIMENTS

In this section, the experiments based on real landslide sites
in Hong Kong are investigated to validate the effectiveness
and performance of the proposed network for LIM with VHR
remote sensing images. First, the general information of the
experiments, including the quantitative evaluating criteria and
parameter setting of the comparison methods, are detailed. Sec-
ond, the bitemporal images for investigating landslide sites are
described. Finally, the visual and quantitative performance of
the LIMs are shown for comparison. Each part will be detailed
as follows.

A. General Information

First, to quantitatively evaluate the proposed DP-FCN and
demonstrate its superiority for acquiring LIM with VHR remote
sensing images, five widely used criteria are adopted for the
experimental comparison. The details of these adopted criteria
are listed in Table II.

Table II presents that the true positives (TP), true negatives
(TN), false negatives (FN), and false positives (FP) that were
calculated in all cases. Specifically, TP and TN are the total num-
ber of correctly detected pixels for “changed” and “unchanged”
pixels, respectively; FN is the number of changes that have not
been detected by the method; and FP is the number of false
alarms.

Second, to demonstrate the superiority of the proposed DP-
FCN, it was compared with three traditional but relatively
new landslide detection approaches (e.g., ELSE, RLSE, and
LSELUC [19]) and three classical deep learning methods (e.g.,
FCN, U-net, and FCN-PP [42]). The parameters of the three
traditional methods used in the following experiments are given
as follows: 1) α = 1.5, C0 = 1.0, σ1 = σ2 = 1.0 are set for
ELSE, the parameters of RLSE are α = 1.0 the template size
of the Gaussian filter is fixed at 9× 9, and time step Δt = 8.
2) The parameters of the three classical deep learning methods
are presented as follows: the learning rate and keep_prob for the
FCN are set to 10−4 and 0.5, respectively; 10−4 and 0.6 are set
for the learning rate and keep_prob of the U-net; and the filter
size in the FCN-PP is 1× 1; concurrently, the learning rate and
keep_prob are fixed at 10−4 and 0.6, respectively, in the FCN-PP
network.

B. Data Description

In this article, 13 landslide sites in Lantau Island of Hong
Kong, China are investigated to test the effectiveness of the
proposed network. The pre- and postevent images were acquired
by using a Zeiss RMK TOP 15 Aerial Survey Camera at a flying
height of approximately 2400 m on December 2007 and Novem-
ber 2014, respectively. The spatial resolution of the bitemporal
aerial photos is 0.5 m/pixel. Then, the preprocessing, such as
coregistration and radiometric corrections, was conducted by the
Civil Engineering and Development Department of Hong Kong.
In this article, the image pairs from “A” to “E” are assigned as
the dataset for training the deep learning model, and the image
pairs from “F” to “M” are utilized for testing the effectiveness
and performance of each selected approach.

Fig. 2. Test dataset for landslide sites and their reference maps. The column
from left to right are the dataset-ID, pre-event images, post-event images, and
ground reference maps.

The details of each bitemporal image are shown in Fig. 2,
and the visual performance of the testing data is presented in
Fig. 2. Notably, the original blocks for training the learning
model are extended through “rotation” to obtain a robust model.
In addition, the following aspects can be found by observing the
visual performance of these bitemporal images of the landslide
sites.

1) The spectral differences of the bitemporal images caused
by the difference of seasonal phenology are serious, as
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Fig. 3. Landslide inventory mapping obtained for data-F. (a) ELSE. (b) RLSE. (c) LSELUC. (d) FCN. (e) U-net. (f) FCN-PP. (g) Proposed DP-FCN. (h) Ground
reference map.

shown in the pre- and postevent images in Fig. 2(I)
and (J).

2) Given that certain areas are covered by tall trees, the
landslides in these areas are heterogenous, as shown in
Fig. 2(F).

3) Bare rocks are easily confused with landslides because
the incident locations of landslides are usually located
in mountainous areas. From these observations, acquiring
accurate LIM by using VHR remote sensing images is still
challenging. Details of the testing datasets are presented
in Table III.

TABLE III
DESCRIPTION OF THE DATASETS IN THE EXPERIMENTS
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Fig. 4. Landslide inventory mapping obtained for data-J. (a) ELSE. (b) RLSE. (c) LSELUC. (d) FCN. (e) U-net. (f) FCN-PP. (g) Proposed DP-FCN. (h) Ground
reference map.

C. Experimental Results and Analysis

For the comparison of visual performance of LIMs, the cor-
rectly changed (CC), unchanged (UC), missing detected (MD),
and false detected (FD) pixels are assigned as white, black, red,
and aqua colors in the figures, respectively. To demonstrate the
visual performance of different methods, Figs. 3 and 4 were
selected to show the LIM visual performance of seven different
methods on the landslide sites F and J in Lantau Island, Hong
Kong, China. These figures demonstrate that FD and MD pixels
emerged in all the achieved LIMs because despite these aerial
images with VHR perform the better visual performance, they
are insufficient in spectral bands. This phenomenon results in
large intraclass variance and brings considerable noises in a
group of pixels that consist a ground target. Compared with
the LIMs from the traditional methods and the classical deep
learning approaches, the proposed DP-FCN achieves the best
performance with the fewest FD pixels. Furthermore, although
the spectral reflection of the land cover types in the bitemporal
images is very different [Fig. 2(I) and (K)], the traditional
methods ELSE and RLSE missed detecting most of the parts
of landslide areas, and the LIMs acquired by other methods
emerged with many FD pixels. Compared with these visual
observations and quantitative comparisons in Table IV, the
proposed DP-FCN achieves the best LIMs for most sites of the
landslide sites. The best LIMs for the landslide sites I and K
can be obtained by the proposed DP-FCN, the reason is that
CMI is omitted in the proposed network, and the error in the
corresponding pixels of the bitemporal images can be avoided,
and the error between the corresponding pixels of the bitemporal

images can be avoided. Thus, the proposed DP-FCN can directly
learn the deep feature and relationship between the bitemporal
images and the ground reference map. Therefore, the proposed
DP-FCN can avoid the antipseudo change brought about by
differences in seasonal phenology spectra.

The quantitative comparative bars for each dataset are shown
in Table IV. From the viewpoint of quantitative evaluation, the
proposed DP-FCN achieves the best accuracies in terms of five
evaluation measurements (CP, CR, QA, OA, and AA) which
are defined in Table II. Hence, the quantitative comparisons
have clearly demonstrated and supported the superiority of the
proposed DP-FCN method.

D. Discussion

To promote the potential application of the proposed DP-FCN
approach, we discussed the advantages and the limitation of the
proposed approach as follows.

1) Advanced landslide area detection maps are obtained with
the proposed DP-FCN. As shown in the Table IV, it clearly
demonstrated that the proposed DP-FCN outperforms the
widely used traditional LCCD methods and the basic deep
learning approaches, in terms of visual performance and
five quantitative evaluation criteria.

2) The simple and no-parameter approach will be more ac-
ceptable and easier to promote in a piratical application.
Despite the proposed DP-FCN requires training samples
for learning parameters and optimizing the model, a land-
slide inventory map can be achieved by the proposed
approach without any parameters.
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TABLE IV
QUANTITATIVE COMPARISONS FOR DIFFERENT METHODS ON THE DIFFERENT DATASETS

The bold entity indicate the best accuracy in terms of the corresponding measurement and datasets.

3) One limitation of the proposed DP-FCN lies in that it
requires training samples for training the network. How-
ever, labeling training samples is time-consuming and
labor-intensive.

IV. CONCLUSION

This article presents a novel deep learning approach called
DP-FCN for landslide inventory mapping through VHR remote
sensing images. This method consists of the following main
modules: 1) deep feature extraction network with the aims of
learning abstract and robust features from the pre- and postevent
images, respectively, and 2) joint feature learning network used
for concatenating the bitemporal deep features and learning
the relationship between these deep features and the landslide
reference map. Then, the two modules are constructed as the
DP-FCN, and the entire network is trained and fine-tuned by
training the datasets with the classical cross-entropy loss func-
tion and a specific learning ratio. The experimental results on
13 landslide sites of VHR aerial photos and their comparison
with RLSE, ELSE, LSELUC, FCN, U-net, and FCN_PP shows
that the proposed DP-FCN is effective and superior for drawing
LIM with VHR aerial images. To the best of our knowledge, this
article is the first attempt at developing a deep learning network
for LIM through VHR remote sensing images without measuring
the change magnitude. The major advantages and contributions
of the proposed DP-FCN are briefly summarized as follows:

1) Better performance and higher accuracies of LIMs are ob-
tained by the proposed DP-FCN. For eight of thirteen landslide
sites with VHR aerial photos, the LIMs clearly demonstrate
that the proposed DP-FCN outperforms six widely used LCCD
methods, namely, RLSE, ELSE, LSELUC, FCN, U-net, and
FCN_PP, in terms of visual performance and five quantitative
evaluation criteria.

2) No parameters are needed for tuning in the proposed
DP-FCN. Moreover, the parameters of the learning ratio and
keep_prob in the proposed DP-FCN must only be initialized in
the training stage. The parameters need not be tuned when they
are implemented on real applications. The experimental results
also show that the proposed DP-FCN can obtain satisfactory
LIM results without hard turning the parameters.

3) The removal of the calculation of CMIs in the proposed DP-
FCN successfully reduces the pseudo change and improves the
performance of the detected result. The spectral differences in
the bitemporal images are general and inevitable, especially for
the VHR remote sensing images of landslides that usually occur
in mountainous areas. Furthermore, the spectral differences of
a ground target will cause the pseudomagnitude in the CMIs,
and these pseudomagnitude errors may be transformed into the
subsequent steps. Thus, the proposed DP-FCN obtains the LIM
by directly learning the relationship between deep features of
the bitemporal images and the ground reference map without
calculating the CMI, thereby reducing the pseudo change in the
results.

Although the advantages of the proposed DP-FCN have been
investigated well, the widespread application of this proposed
model should be further verified. In our future research, when
other sourcing sensors’ bitemporal images for a landslide event
are available, the applicability of the proposed DP-FCN will be
further tested. Even the bitemporal images with different spatial
resolutions for a landslide event will also be considered in the
further investigation of the proposed DP-FCN method.
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