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Generalization of Convolutional LSTM Models
for Crop Area Estimation

Maysa Malfiza Garcia de Macedo

Abstract—The population growth and consequent global rise in
food demand require increasingly efficient agricultural solutions,
in what is commonly called digital agriculture. Among promising
initiatives, the use of remotely sensed data combined with machine
learning algorithms enables handling faster agricultural operations
with lower associated cost. One of the most important activities in
digital agriculture is crop identification, which is fundamental for
managing the inventory of a farm by producers and governmental
authorities, and has been addressed by several prior works. In this
article, we explore crop identification from a scalability perspective
using the premise that data trained at a set of labeled geo-referenced
regions in the agricultural pole at central western Brazil may
be used for identifying crops at the entire municipality area. We
propose to use convolutional long-short term memory networks for
identifying crop types using a public labeled training set, and then
apply the trained model for estimating crop area in a larger area
involving the entire municipality unlabeled data. Our results were
evaluated against governmental census data and report evidences
that the tested crop identification network is able to successfully
estimate crop area from much larger unlabeled data for different
crop types.

Index Terms—Agricultural engineering, crops,
classification, machine learning, neural networks, satellites.
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I. INTRODUCTION

ROP identification is the process of determining which
C cultivated areas correspond to each crop type (such as
soybean, maize, cotton, etc.). This process is fundamental for the
agricultural producer, not only because it represents a key step
for crop monitoring, yield forecasting, and risk management, but
also because it may be critical for external authorities in charge
of area-based subsidy controls and loans.

Due to the huge economic impact associated with agricultural
operations and the recent increase in publicly available data,
remote sensing applications have demonstrated large potential
for solving agriculture monitoring tasks, such as crop identi-
fication, yield estimation, and land cover segmentation in an
automated manner [1]-[4]. For crop identification, in particular,
most works employ supervised approaches based on traditional
classifiers, such as support vector machine (SVM) [5], [6] or
neural networks (NNs) [7].

The limitation of such data-driven approaches rely on the
difficulty in applying trained classifiers for one region to differ-
ent ones, as small differences in geography and climate usually
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affect severely the classification results. In this article, we ad-
dress the crop identification problem focusing on generalization
aspects, i.e., by evaluating if a classifier trained on a limited zone
may be successfully used for identifying cultivated regions in
much larger areas. Our results are further validated considering
governmental census data, which are collected with a different
methodology and compiled at a much higher scale than the
annotations in training set.

This article is structured as follows. In Section II, we list previ-
ous works on crop identification and remark the contribution of
this work. In Section III, we describe the employed methodology.
The experiments and data are reported and further discussed
in Section IV, and our concluding remarks are presented in
Section V.

II. RELATED WORK

Several works have previously tackled crop identification and
proposed a wide range of approaches for handling it. Many
authors take as input high-temporal and spatial resolution data,
such as synthetic-aperture radar (SAR) images, as in [8], where
they evaluated the selection of different features for early crop-
type identification and presented the classification results for
eight different classes. In [6], polarimetric SAR imagery was
used for training a set of classifiers, with SVM producing the
best results.

Multisource satellite data, where the authors explore the
combination of images with different resolutions, is widely
used [9], [10] and Sentinel-2, a popular data source, is employed
for crop identification in [11]-[13] with all works exploring
SVM and random forest-based classifiers, and Mira ef al. [14]
exploring K-nearest neighbor (KNN). Although recent works
have shown that Sentinel-2 satellite data can provide accurate
crop identification results for regions with a different climate, the
classifier performance may be deteriorated in some scenarios [8]
affected by cloud cover.

Recent works on crop identification include, still, a bat algo-
rithm clustering approach based on K-means [15] and the explo-
ration of stochastic hidden Markov models [16], as alternatives
for preliminary works based on multispectral normalized differ-
ence vegetation index (NDVI) time series [17]. Deep learning
commonly ranks among state-of-the-art approaches, as indicated
in [18]. As examples, Castro et al. [19] and Cue laRosa ez al. [20]
compared different methods for crop identification using SAR
and optical imagery, based on autoencoders, convolutional NNs
(CNNs), random forests, and SVM, reporting a consistent better
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(b)

Fig. 1. Data used in our experiments. (a) Regions of the public dataset used
for crop identification (each color denotes a different labeled field—to which
we refer to as polygon). (b) Overlap of these regions (in green) with the entire
municipality area, used for the generalization evaluation.

performance for deep learning-based models. Zhong et al. [21]
compared the performance of 1-D CNNs and long-short term
memory (LSTM) networks with SVM and random-forests for
crop identification and reported good results with 1-D CNNss.
The work published by Shunping et al. proposed a 3-D CNN with
a spatiotemporal representation. Kussul ef al. [22] compared a
traditional fully connected multilayer perceptron with random
forest and CNN using images from Landsat-8 and Sentinel-1 A
RS satellites. Russwurm and Krner [23] evaluated the use of
sequential recurrent encoders for crop identification from un-
filtered temporal series of top-of-atmosphere reflectance data,
achieving state-of-the-art results and coping with cloud coverage
without explicit filtering. This present work differs from the
literature by evaluating crop identification from a scalability
perspective and investigate whether a state-of-the-art approach
using convolutional LSTM (CLSTM) networks is able to suc-
cessfully generalize crop area estimation from a much larger
unlabeled area. Our experiments use governmental census data
for evaluation, another difference from the literature, and report
consistent results with the expected outcome.

[II. METHODOLOGY

Our methodology consists of two major steps: First, we train a
convolutional LSTM (CLSTM) temporal model using a publicly
available annotated dataset [24] for crop identification; then,
we use the trained model to evaluate its generalization against
census crop data [25] at a much larger region. In Fig. 1, we can
visualize the difference in scale between the regions from the
two experiments described.

The proposed CLSTM model is able to classify four classes:
soybean, maize, cotton, and the remaining crops were grouped in
the class others. The first three classes were chosen because they
represent the majority of crops in the considered municipality
and, thus, play a very important role in the region’s economy.
The dataset was balanced based on the undersampling method,
with all classes having the same number of samples.

To differentiate between these four classes, satellite im-
ages from sensor MODIS-16 were used in both experiments—
MOD13Q1 version 6 product was chosen [26]. The acquired
images derived six different channels: blue, enhanced vegetation
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index (EVI), NDVI, red, middle infra-red (MIR), and near
infra-red (NIR). Red, NIR, Blue, and MIR are 16-b reflectance
bands (units 1, 2, 3, and 7, respectively), and EVI and NDVI are
primary vegetation layers. The satellite images were processed
for every 16th date between the period of October 2015 to July
2016. MOD13Q1 v006 algorithm chooses the best available
pixel value from all the acquisitions from the 16-day period.
The pixel selection criteria considers low clouds, low view
angle, and the highest-NDVI/EVI value. MODIS data, with a
spatial resolution of 250 m, was used for avoiding the cloud
cover problem observed at Sentinel-2 higher resolution data,
mentioned in Section II, and because our approach targets very
large areas. The 16-day composite image did not require any
additional processing for cloud removal.

A. Convolutional LSTM Networks

Crop identification methods usually take into account the
temporal sequence of remotely sensed images to properly char-
acterize the plant growth cycle and consequently identify the
crop type itself. In this context, recurrent NNs (RNNs) have
been widely used to tackle sequential data by employing a
hidden layer output h; that is computed at time ¢ using not only
current input data x, but also the previous output ;1 . This allows
such networks to embed short-memory capabilities and handle
temporal or sequential data, but with a limited memory range.

To handle patterns characterized by longer memory depen-
dencies, such as plant growth cycles, LSTM networks propose to
employ cells with a more complex memory structure controlled
by gates that allow the modeling of long- and short-term mem-
ories. These additional gates control an internal state vector that
enables long-term memory learning, and a cascade of LSTM
layers with various cells per layer is able to learn temporal
patterns from current and all previous n input data observations.
Not surprisingly, such networks quickly became very popular in
crop identification methods.

B. Crop Identification Using CLSTM Networks

In this article, we used convolutional and LSTM layers
(CLSTM) to identify crops, as shown in Fig. 2, and the difference
between LSTM models and CLSTM models is precisely the
presence of a convolutional block of layers before the LSTM
block. This approach follows previous works [27], [28] that
demonstrated good classification results; again, we remark that
the goal of our article is to assess the scaling generalization
aspect, which was not addressed at these works, instead of an
architecture evaluation. Our training set is composed of different
channel temporal sequences for each observed pixel, and our
assumption is that convolutional layers help to identify curve
patterns in the input temporal sequences, and LSTM layers help
to identify the temporal dependence of these patterns for each
crop type.

Each pixel is a training sample represented by the six satellite
channels from MODIS chronologically organized according to
the acquisition date. The network architecture is represented
as a sequence that has 1-D convolutional layers with dropout
and ReL.U activation, followed by a sequence of LSTM layers
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Proposed NN model. A sequence of 1-D convolutional layers with dropout and ReLLU activation, followed by a sequence of LSTM layers with dropout

and ReL U activation, and finally by a sequence of dense layers that ends up in a final activation layer for each class using Softmax.

with dropout and ReLLU activation, and finally by a sequence
of dense layers that ends up in a final activation layer for each
class using Softmax. The exact number of layers per block and
filters per layer was experimentally defined and is detailed later
in Section IV.

C. Crop Area Prediction From Unlabeled Data

While supervised crop identification is widely tackled in the
literature, in this article, we aim at evaluating not only how
CLSTM models generalize at a much larger dataset, but also
to assess how the results correlate with governmental census
data—usually collected using other sources of information [25].
Our goal is to understand if it is possible to use trained models
and large unlabeled remotely sensed images to predict census
data, which would support the use of automatic methods for land
cover census generation using small training sets.

Some adjustments to link these different annotations are nec-
essary, however. Because there are no labels for the municipality
test image displayed in Fig. 1(b) and the training data only
considered plantations, it was necessary to first remove nonagri-
cultural regions from the broader municipality data (e.g., urban
areas, forests, and rivers), so we could have a fair assessment of
the method. A robust way to do so would be to build a supervised
classifier capable of distinguishing between agricultural and
nonagricultural areas. However, due to the lack of annotated data
for this purpose, we needed to employ an alternate approach. We
assumed that, in comparison to the plantation zones, the nonagri-
cultural regions usually present a smaller variation throughout
the considered period of ten months. Therefore, these areas were
removed, as depicted in Fig. 3, by employing two setups: we
discarded pixels with standard deviation of less than 33% and
pixels with a standard deviation less than 45%. More details are
provided in Section IV.

Another important aspect of our experiments is that the
considered census data provides only the proportions of the
cultivated areas per crop type. Therefore, for evaluating our

Pixel frequency
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Fig. 3. Visualization of our approach for removing nonagricultural areas, by
identifying regions with little or no variation during the considered period of
October 2015 and July 2016. The image on the left side represents one of the
channels from MODIS-16. The image on the middle represents pixels in black
color related to agricultural regions candidates, and the image on the right side
shows the distribution of the pixels’ standard deviation. (a) Removal of regions
with standard deviation less than 33%. (b) Removal of regions with standard
deviation less than 45%.

results, instead of considering each individual pixel, we took into
account all the pixels within the entire municipality. Clearly, this
weak evaluation metric allows mistakes to compensate correct
predictions and cannot be used for evaluating individual pixels
or polygons, but we expect that with a very large number of
samples, the proportions would remain unaffected and reflect the
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prediction power of the trained model against the ground-truth
proportions from census data.

To alleviate the impossibility of computing commonly used
accuracy metrics in our unlabeled data experiments, we per-
formed a bootstrap in the annotated dataset, which offers an
overall result estimate and not just for an annotated dataset with a
single distribution. We separated the test data from the annotated
dataset into 30 subsets with different distributions, and we could
get a sense of which would perform well using the employed
method. The subsets were randomly formed as an attempt to
represent different regions, which may have different types of
irrigation and soil. This way, we describe numerically how
metrics vary for different subsets inside the same municipality,
and indicate how consistent our results are, as further presented
in Section I'V-B.

IV. EXPERIMENTS AND DISCUSSION

Our experiments were performed from two different perspec-
tives: first, we evaluated the performance of our CLSTM model
in the context of crop classification using a publicly available
dataset and provide trust in the chosen model; then, we evaluated
the generalization of such methodology for estimating crop
areas at a much bigger scale, by bootstrapping the outcome and
evaluating it against crop area census data.

A. Crop-Type Classification

1) Data: The training data used in our experiments for train-
ing the crop identification model was made publicly available
in [24] and consists of 513 labeled geo-referenced polygons in
Campo Verde, a municipality of Mato Grosso state, in central
west Brazil. The labeled dataset used for training consists of
335.880 pixels in total.

Campo Verde is localized in the Cerrado (Brazilian Sa-
vanna) biome, at a latitude of 15°32'48” south and longitude
of 55°10/08” west, and has an area of 4782.118 km?2, with an
altitude of 736 m.

Each region from the dataset was manually classified into
the following land-use classes: soybean, maize, cotton, beans,
sorghum, NCC-millet, NCC-crotalaria, NCC-brachiaria, NCC-
grasses, pasture, turf grass, eucalyptus, Cerrado, and unculti-
vated soil. However, in Brazil and for this region, soybean,
maize, and cotton represents nearly 97% of the cultivated area
and, therefore, were selected to be evaluated in our experiments,
while we grouped the remaining classes in a single so-called
“others” class, comprising four classes in total.

2) Experimental Design: The Campo Verde dataset [see
Fig. 1(a)] was split into training, validation, and testing, using
K-means to geographically separate regions and avoid physical
overlapping between the three sets. Fig. 4 shows an example of
partition into these sets. The networks were trained using 60% of
the samples from the Campo Verde dataset, whereas 20% were
used for validation and 20% for testing. The training scheme
used 100 epochs, batch size of 50, and Adam optimizer with
initial learning rate of 0.001 and momentum of 0.999. The loss
function was the categorical cross-entropy, commonly used for
multiclasses using CNNs.
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The best model was experimentally achieved and we provide
next a few different model results for roughly providing direc-
tions on parameters sensitivity. We varied the number of layers
of CNN and LSTM blocks from 1 to 3, and the size of filters
from 32 to 512. For the dense layer, we tested 1 and 2 layers
with number of nodes varying between 10 and 100. We trained
all models until convergence, adopting the early stop criteria
considering validation accuracy drop.

We tested all the architectures above using 20% of the Campo
Verde dataset (equivalent to 67.176 pixels), in a fivefold cross-
validation schema. The criterion for choosing the best archi-
tecture was the average overall accuracy, which considers the
average of accuracy metric including all dates (October 2015 to
July 2016). Another way of evaluation is to compute the accuracy
for each crop on the harvest peak (one date). This accuracy is
computed from the confusion matrix mounted from each pixel
classification. All experiments were performed using python,
tensorflow, and keras.

3) Results for Campo Verde Dataset: The five best models
for this first test are shown in Table I. The best model, with three
CNN layers (128, 256, and 512 filters, respectively), three LSTM
layers (64, 64, and 64 filters, respectively), and a single dense
layer with 30 nodes, was later used for the test of estimating
crop areas at the entire Campo Verde municipality. This model
achieved 69.72% of overall accuracy, considering the mean
value for all considered dates (between the period of October
2015 to July 2016) and a mean accuracy of 91.95% considering
the dates of the harvest peaks for each crop (December 19th, May
8th, June 9th, and October 16th, for soybean, maize, cotton, and
others, respectively).

Fig. 5 shows the obtained results for each crop type at each
considered date. Notice that the first period (October—February)
corresponds to the warmer period at the south hemisphere (when
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TABLE I
DIFFERENT NN ARCHITECTURES WITH THE BEST RESULTS FOR EACH CROP AND RESULTS FOR HARVEST PEAKS USING THE MODEL
WITH THE HIGHEST OVERALL MEAN ACCURACY
CNN LSTM Dense Overall Mean Accuracy(%) Soybean (%) Maize (%) Cotton(%)  Others(%)
[32] [32] [40] 64.07 81.99% 66.83" 60.4* 47.08%
32] [32,32,32]  [30, 10] 66.95 66.03* 69.21* 57.54% 75.02%
[128, 128, 128]  [128, 128] 30] 67.79 63.89% 62.87* 82.64* 61.79%
32] [64, 128,256 [30] 68.23 65.12% 59.39+ 65.81% 82.61*
(128, 256, 512]  [64, 64, 64] 30] 69.72 67.94% 67.11% 66.87* 76.95%
Results for harvest peak 91.95 92.11 89.96 89.42 96.29
“The results indicate the mean value related to all computed dates.
The boldface values indicate the best architecture performance for each crop.
TABLE II
CampoVerde [683] AREA COMPUTED FROM THE PROPOSED METHOD VERSUS AREA FROM IBGE
1001 —— Soybean DATA CONSIDERING REGIONS WITH DIFFERENT NDVI STANDARD DEVIATION
—— Mayze
90
N glt’r::z NDVI std Soybean Maize Cotton
80 4 DL method  no threshold 276 Kha 134 Kha 98 K ha
DL method <0.33 237 Kha 122 Kha 96 K ha
3 70 DL method <0.45 188 K ha 99 K ha 87 K ha
g IBGE data - 210 K ha 88 Kha 79 K ha
g 60
<
50
2 provides public reports with the crop area estimation for different
301 m L | L agricultural regions in Brazil per year [25]. The method for crop
S8 m3828n823878383838 2R area estimation used by the institute includes interviews and field
5338855885583 555533 isi
QzzoQ eI ILET =TT S VISItS.
AN AAZZ888885288328¢8 . . : .
SS8ISRREIZTLTIRSTSRR]INS 2) Experimental Design: Using the best architecture de-
Dates scribed in Section IV-A2, we tested the entire municipality on
every available date between the years of 2015 and 2016. This
Fig.5. Testresult for Campo Verde dataset showing the performance for each

class along a year.

soybean is cultivated), and the second period (March—July)
corresponds to the colder period (when maize and cotton are
cultivated). Achieving the best results at the harvest peaks is
intuitive, once at the beginning and end of the harvest period, we
have a higher amount of exposed (uncultivated) soil, which poses
achallenge for the classifier. Because the others class comprises
several different crops, no seasonal behavior is evident, and the
best result for this class coincides with the beginning of the
soybean harvest.

Indeed, if we analyze the accuracy for each individual date, the
model can reach much higher accuracy values during the harvest
peak of each crop type—which is quite predictable in Brazil
and could be safely used. Fig. 6 shows the best-achieved results,
which are 92.11% for soybean, 89.96% for maize, 89.42% for
cotton (all values achieved at the harvest peaks), and 96.29% for
others, an average of 91.95% of accuracy.

B. Crop-Type Area Prediction From Unlabeled Data

1) Data: For evaluating the generalization of the trained
models for estimating crop area, we used an unlabeled dataset
containing 2503.762 pixels (nearly seven times larger than train-
ing set), comprising the whole area of Campo Verde municipal-
ity, and the census data describing the proportions of cultivated
area in the entire municipality. This census data were acquired
by the Brazilian Institute of Geography and Statistics (IBGE),
a Brazilian governmental company. This institute’s website

experiment aims to verify our main goal, which is to assess if
CLSTM models trained on a limited annotated region can be
used to classify crops at much larger areas.

The virtual impossibility of annotating the whole test region
(no geo-referenced labels are available for the entire munici-
pality area, which corresponds to 478 K hectares), led us to
use information from a different data source available through
governmental census data for cultivated areas.

For evaluation, after predicting the label for each pixel of the
municipality, we computed the number of pixels for each crop
and estimated the corresponding total cultivated area for each
crop type based on the size of the pixel, for instance, 250 m?.
Then, we compared our results with the census data released by
IBGE for each crop.

3) Results for the Entire Municipality: Using the best model
previously computed, we estimated the cultivated areas for each
crop on their respective harvest peak, as shown in Fig. 7. Initially,
our method computed 276 K hectares of soybean at its harvest
peak (middle of December) without filtering forests, rivers, and
urban areas, against census data estimation of 210 K hectares of
soybean from IBGE, for the same region and period. Considering
our approach for removal of the nonagricultural regions, the soy-
bean planted area was estimated on 188 K hectares (using 45%
deviation), thus reducing the difference of the values from IBGE
and our method in 44 K hectares. Table II shows the estimated
area for the three crop types, with and without data removal,
using 33% and 45% deviation, as explained in Section III-C. The
estimated areas for each crop were calculated on the dates when
the model performed best. Considering the removal of regions
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2015-Dec-19: 'Safra’ (Oct - Fev) -- Soybean
Predicted

Labels (ground-truth) Mean accuracy: 92.11%

- Others - Others
- Correct
- Cotton - Cotton
- Mayze - Mayze
Incorrect
- Soybean - Soybean
2016-May-08: 'Safrinha’ (Mar - Aug) -- Mayze
Labels (ground-truth) Predicted
- Others Others
- Correct
- Cotton - Cotton
- Mayze - Mayze
- Incorrect
- Soybean - Soybean
2016-Jun-09: 'Safrinha’ (Mar - Aug) -- Cotton
Labels (ground-truth) Predicted Mean accuracy: 89.42%
- Others Others
- Correct
- Cotton Cotton
- Mayze - Mayze
- Incorrect
- Soybean - Soybean
2015-Oct-16: 'Safra’ (Oct - Fev) -- Others
Labels (ground-truth) Predicted Mean accuracy: 96.30%
- Others - Others
- Correct
- Cotton - Cotton
- Mayze - Mayze
- Incorrect
- Soybean - Soybean

Fig. 6. CLSTM results of the Campo Verde dataset for the dates that achieved the highest accuracy values (which correspond to the harvest peaks for soybean,
maize, and cotton). The ground-truth (per date) of each class is displayed on the right side; the predicted results from the automated method are shown in the
middle column (different colors correspond to different crop types); and on the left side, we present maps where pixels classified correctly are displayed in green,
and pixels assigned to incorrect classes are displayed in red.

with standard deviation less than 45%, we estimated crop areas the entire municipality, it is not possible to calculate metrics
with errors of 22 K, 11 K, and 8 K hectares for soybean, maize, such as accuracy or false positive rates for this second test.
and cotton, respectively. Thus, to at least evaluate the consistency of our results, we

As we only have access to the estimated area information performed a bootstrap of the Campo Verde dataset, as detailed
provided by IBGE instead of the precise labeled regions of in Section III-C. The dataset was split into 30 sets, and for each
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2015-Dec-19: 'Safra' (Oct - Fev)
Predicted

Others
194792.52

Cotton
3930.24

_ Mayze
2467.08

_ Soybean
276312.96

()

2016-Jun-09: 'Safrinha' (Mar - Aug)
Predicted

Others
254338.86

Cotton
98619.12

_ Mayze
121394.22

_ Soybean
3150.6

(d

Crop area estimation results on dates corresponding to the harvest peaks for each crop, computed for the entire Campo Verde municipality. The left color

bars show the estimated area for each class. (a) Planting time. (b) Soybean harvest peak. (c) Maize harvest peak. (d) Cotton harvest peak.

TABLE III
BOOTSTRAP RESULTS FOR HARVEST PEAK DATE

Metric Soybean Maize Cotton Others
2015-12-19 2016-05-08 2016-06-09 2015-10-16
[min(%),max(%)]  [min(%),max(%)]  [min(%),max(%)]  [min(%),max(%)]
Sensitivity [86.1,94.2] [63.7,80.9] [74.3,86.5) [07.8, 100]
Specificity 67.5,83.3] [89.4, 97.0] [87.5,95.0] [50.0, 66.7]
False discovery rate [2.6,11.0] [4.6,16.4] [4.2,14.4] [1.4,6.4]

For each metric is shown the maximum variation.

set, some metrics were computed and depicted in Fig. 8, where
we can also observe their maximum variation. This allows one
to have an idea of the maximum variation of area estimation
metrics considering unlabeled pixelwise crop-type annotation.
For instance, we can report that soybean identification at its
harvest peak can achieve a false discovery rate of 11.0% and for
maize, cotton, and others, the same metric can achieve 16.4%,

14.4%, and 6.4%, respectively. Table III shows maximum and
minimum values computed from the bootstrap for sensitivity,
specificity, and false discovery rate.

Our results indicate that CLSTM models can be safely used
for estimating crop area in very large regions using relatively
small training sets, supporting their use for automatic census
data estimation for digital agriculture.
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Bootstrap separating 30 sets of Campo Verde dataset to compute false discovery rate for each crop in their respective harvest peak. (a) Graphic of false

discovery rate for soybean crop on the harvest peak, December 19th. (b) Graphic of false discovery rate for mayze crop on the harvest peak, May 8th. (c¢) Graphic
of false discovery rate for cotton crop on the harvest peak, June 9th. (d) Graphic of false discovery rate for other crops on the first day of satellite image capture

for the harvest, October 16th.

V. CONCLUSION

In this article, we evaluated the use of CLSTM networks for
crop identification, considering four different classes (soybean,
maize, cotton, and others), as well as its further capability for
generalizing crop area estimation in areas that are much larger
than the ones used for training. We also evaluated how this
outcome relates to government census data for agriculture in
Brazil and reported consistent results with the expected behav-
ior. Our methodology has two phases: training and testing a
CLSTM model using a public-labeled dataset; and evaluating its
generalization capabilities at the unlabeled entire municipality
area with the support of census data for evaluation.

Training and tests of crop identification were performed in two
sets with 335 880 pixels for the labeled dataset and 2503.762 pix-
els for the unlabeled Campo Verde municipality covering 476 K
hectares from the MODIS-16 sensor, with the best result reach-
ing an average of 91.95% of accuracy per class considering the
harvest peaks of each crop (92%, 89.96%, 89.42%, and 96.29%
accuracy for soybean, maize, cotton, and others, respectively).

After estimating and removing regions of forests, rivers, and
urban areas, we computed crop area estimation using the best

trained model and reported errors of 22 K, 11 K, and 8 K
hectares for soybean, maize, and cotton, respectively. These
results suggest that CLSTM models can be used for estimating
crop area in very large regions, with very satisfactory results at
harvest peak dates.

While this article focused on evaluating generalization capa-
bilities from a scaling perspective, we recognize that a multiyear
study would be fundamental to evaluate additional generaliza-
tion aspects, such as climate fluctuation. In future work, we
would like to assess how the CLSTM behaves when training
and testing sets are acquired at different time series.
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