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Abstract—Hyperspectral unmixing (HSU) is an important tech-
nique of remote sensing, which estimates the fractional abundances
and the mixing matrix of endmembers in each mixed pixel from
the hyperspectral image. Over the last years, the linear spectral
unmixing problem has been approached as the sparse regression
by different algorithms. Nevertheless, the huge solution space for
individual pixels makes it difficult to search for the optimal solution
in some HSU algorithms. Besides, the mixing relationship between
adjacent pixels is not fully utilized as well. To better handle the
huge solution space problem and explore the adjacent relation-
ship, this article presents an improved collaborative non-negative
matrix factorization and total variation algorithm (ICoNMF-TV)
for HSU. The main contributions of this article are threefold: 1) a
new framework named ICoNMF-TV based on non-negative matrix
factorization method and TV regularization is developed to im-
prove the performance of HSU algorithms; 2) unmixing efficiency
is apparently improved; and 3) the robustness is enhanced. Exper-
iment results on simulation dataset and real dataset demonstrate
the proposed algorithm outperforms most of the similar sparse
regression algorithms.

Index Terms—Collaborative row sparsity, hyperspectral image
unmixing, total variation.

I. INTRODUCTION

HYPERSPECTRAL unmixing (HSU) is an important tech-
nique for remote sensing hyperspectral data exploitation.

The task of HSU is to estimate the pure spectral signatures,
called endmembers, and their corresponding fractions, called
abundance, for each pixel of the hyperspectral image [1]. Thus,
the spectral of pixels is resolved into a weighted combination of
the endmembers. HSU is widely applied for other hyperspectral
fields [2], [3].

Depending on the fundamental mixing models, the solu-
tions of hyperspectral image unmixing can be separated into
two types: nonlinear and linear models. Linear mixing models
(LMM) assume that mixing occurs on a macroscopic scale and
that the incident light only interacts with a single material.
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In LMM, when a pixel consists of more than one material,
the observed spectral vector of the pixel will be a weighted
sum of the endmembers representing the materials and noise
coming from facilities. This article focuses on the HSU method
with LMM. The main challenges for LMM are summarized as
follows.

1) Huge solution space: The huge solution space is an im-
portant problem to solve for unmixing methods. To be
specific, one mixed pixel consists of many endmembers
with different abundance parameters. There are hundreds
of possible combinations. In general, an image contains
millions of pixels, so that the number of mixing combina-
tions is almost uncountable without constraints.

2) Mixing relationship between adjacent pixels: The mixing
relationship between adjacent pixels is relatively complex
to describe, which is generally ignored by some common
HSU methods. Many methods often focus on the mixed
relationship of endmembers for individual pixel [4]. Nev-
ertheless, the way how the endmembers are mixed between
adjacent pixels has a great influence on the integrity of
the abundance map [5]. Broadly speaking, a sophisticated
unmixing method requires a concise explanation of the
mixed connections between adjacent pixels.

According to the physical characteristics of abundance, we
noticed that the abundance fraction matrix usually has zero-value
rows. The fractional abundance of the same endmember has a
correlation among neighboring pixels. This property gives us
the method to reduce the solution space. In some kinds of sparse
regression unmixing method, the abundance fraction matrix is
often mapped into the whole large spectrum library as a subset
to promote row sparsity. Since the speed and precision of sparse
methods using libraries are not satisfactory, we kept the method
without using the whole spectral libraries. Then, we built a
right-sized and collaborative-row-sparse optimization variable
matrix, which links with the abundance matrix, to complete
the process of unmixing. In some image restoration problems,
the correlation among neighboring pixels is often represented
as the smooth transitions applying regularization methods. We
transferred this method to describe our HSU problem with the
total variation regularization.

After the above analysis, this article first proposed two con-
straints to reduce the solution space: the collaborative row
sparsity constraint and total-variation regularization. With these
constraints, this article developed a new hyperspectral image
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Fig. 1. ICoNMF-TV model. This figure shows the model proposed in this
article, which is combined by collaborative row sparsity (CoNMF) constraint
and total-variation regularization (TV) constraint.

unmixing framework termed improved collaborative non-
negative matrix factorization and total variation algorithm
(ICoNMF-TV), shown in Fig. 1. In this method, the robust non-
negative matrix factorization (NMF) is applied to describe the
row sparsity of the abundance coefficients. The solution space
of the unmixing problem is sharply reduced to solve the huge
solution space problem [6]. Then, the total variation regulariza-
tion term is introduced to limit the smoothness between adjacent
pixels. Adjacent pixels in hyperspectral images often contain the
same substances with similar spectral characteristics [7]. The
accuracy of unmixing can be effectively improved using this
relationship in hyperspectral images. Further analysis shows that
this kind of correlation is usually represented as the smoothness
between neighboring pixels [8]. The main contributions are
summarized as follows.

1) A new framework named ICoNMF-TV based on the NMF
method and total variation (TV) regularization is devel-
oped to improve the performance of HSU algorithms.
Different from the common combinations of TV term
and sparse regression methods in existing algorithms, this
article introduces the TV regularizer into the statistical
methods. A novel optimization function for the NMF
model is proposed to discuss. Experimental data indicate
that the proposed algorithm is effective and yields good
results.

2) Unmixing efficiency is apparently improved. Referring
to [9], R-CoNMF uses sparse regression methods (SUn-
SAL [10] and CLSUnSAL [11]) to solve the objective
function. Although it greatly shortens the unmixing time,
the accuracy is still lower than some TV regularizers on
top of sparse unmixing approaches such as CLSUnSAL-
TV [8]. Based on the NMF model, ICoNMF-TV uses these
TV regularizers for an abundance constraint. The experi-
mental results show that the proposed method has a shorter
unmixing time than the similar TV-based methods, and the
accuracy exceeds the above algorithms. In summary, the
algorithm proposed by this article improves the unmixing
efficiency.

3) The robustness is enhanced. Unlike the sparse regression
method, which is easily affected by the dataset condition
and coefficient settings, the proposed method performs

better on robustness. Meanwhile, it can be seen from
the experiments that the proposed method is more stable
than R-CoNMF under different signal noise ratio (SNR)
settings and datasets.

The rest of this article is organized as follows. Section II
reviews the related work. Section III elaborates the proposed
algorithm. Sections IV and V compares the performances of six
different HSU method on simulation dataset and real dataset.
Finally, we give a conclusion of this article and present our
further work in Section VI.

II. RELATED WORK

In recent years, numerous unmixing methods have been intro-
duced using LMM. Referring to the elaboration of J. Bioucas-
Dias, these methods fall into four categories [12].

A. Geometrical Methods

Each pixel in the HSI can be viewed as a vector in a mul-
tidimensional space, and each band corresponds to an axis in
the space. Thus, HSU has been transformed into a common
geometrical problem [13]. These methods apply some basic
geometric facts to solve HSU, which can be further categorized
as minimum volume methods [14]. Appropriate examples of
methods applying these two kinds are vertex component analysis
(VCA) [15], and minimum volume simplex analysis [16]. Since
it only makes use of the original spectral information, geo-
metrical method is fully automatic and speedy to some extent.
Nonetheless, as a traditional method, it tends to be influenced
by abnormal pixels, and the precision of it still needs to be
improved.

B. Statistical Methods

Hyperspectral images can be regarded as huge data cubes.
Then, HSU is formulated as a statistical inference problem.
In this way, the LMM model is redefined as the combination
of applicable math assumptions [17]. Resorted to the statistic
framework, unmixing can be realized by different update steps.
Dirichlet components mixture uses Dirichlet densities as the
prior abundance fraction basing on Lagrange optimization. Sim-
ilarly, joint Bayesian endmember extraction and linear unmix-
ing [18] use posterior distribution in the hierarchical Bayesian
model. NMF is an important part of this kind of method [6], [19],
which is an unmixing method based on statistical matrix factor-
ization, such as CoNMF [20], �1-NMF [21], �1/2-NMF [22], and
R-CoNMF [9]. The remarkable effect of these algorithms is that
the running speed is usually fast [23]. As another large category
of the traditional unmixing methods, it still acquires the number
of endmembers formerly, and the precision of it is usually not
very satisfactory.

C. Sparse Regression Methods

Under the assumption that the observed spectra can be repre-
sented as linear combinations of spectral signatures, the sparse
regression method is widely used [24], [25]. These methods
mostly use some known spectral libraries as the endmembers
collections [26], [27], such as SUnSAL [10], SUnSAL-TV [7],



1000 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

CLSUnSAL [11], and CLSUnSAL-TV [8]. These algorithms
can get high-precision results but run slower.

D. Deep Learning Methods

Data-driven neural networks are also used for abundance
estimation [28]. By setting custom layers and weight constraints,
several pre-existing neutral networks can be trained to unmix
mixed pixels, such as autoencoder network [29], differential
search neural network [30]. Mature neural networks can unmix a
hyperspectral image pixel by pixel with an appropriate precision.
Nonetheless, the speed of deep learning methods is remained to
be discussed since the time cost by training networks is usually
long and the number of pixels in HSI is often large [31], [32].
These methods still lack sufficient real training datasets.

The aforementioned four kinds of methods all can be applied
to HSU, but the accuracy and speed may be improved if some
methods are selectively combined. In order to unmix pixels
in HSIs totally, a relatively superior solution for the objective
function of each algorithm in LMM is necessary. However,
research about getting relatively superior solutions in unmix-
ing is challenging and most of them still cannot balance the
running speed and the accuracy of results so far. The NMF
method provides a way to process matrix data in batches,
which makes it possible to achieve a good solution quickly.
NMF-based methods can be roughly divided into two categories:
structure extensions and sparse regression constraints. To reduce
the solution space, extension algorithms based on the NMF
method have been proposed with modified structures, including
semi-NMF [33], symmetric NMF [34], nonsmooth NMF [35],
and multilayer NMF [36]. Researchers have also tried to impose
further sparse regression constraints to improve NMF-based
methods, in �1-NMF [21], �1/2-NMF [22], and R-CoNMF [9].
Besides, most studies about unmixing in LMM are limited to
individual pixel studies and need to be explored into the adjacent
pixels. The SUnSAL-TV method proposed by Iordache et al.
gives an illuminating description for the mixing relationship
of adjacent pixels with a total variation regularization term.
Inspired by these methods, this article attempts to propose a new
algorithm to solve the above problems and take into account the
accuracy and speed simultaneously.

The linear mixture model (LMM) assumes that each pixel
spectrum in any given spectral band can be linearly combined
by the endmember spectrums [12], which means for each pixel,
the LMM can be mathematically expressed as

yj =

q∑

i=1

mijsi + nj (1)

where yj is the measured value of the reflectivity for a mixed
pixel on the spectral band j; mij is the reflectivity of the
endmember i on the band j; si is the abundance values of
endmember i in this mixed pixel; nj is the process noise, and q
is the number of endmembers.

According to the form of NMF mentioned above [6], (1) can
be presented as

Y = MS+N

s.t. S ≥ 0,1T
PS = 1T

n (2)

where Y ≡ [y1, . . ., yn] ∈ Rd×n is the hyperspectral image ma-
trix with n pixels and d spectral bands; M ≡ [m1, . . .,mq] ∈
Rd×q is the mixing matrix with q endmembers; mi is the ith
endmember signature; S ≡ [s1, . . ., sn] ∈ Rq×n is the abun-
dance matrix; si denotes the endmember fractions, for pixels
i = 1, . . ., n; S ≥ 0 is the non-negative abundance constraint
for the component-wise method; 1T

PS = 1T
n is the abundance

sum to one constraint for the physics characteristic of abundance
vector; N is the noise from facilities and the measure process.
This section introduced the NMF equation in LMM, which is
the basic function of our algorithm. Then, we will discuss the
collaborative sparsity constraint further basing on it.

III. METHODOLOGY

A. Improved Collaborative Sparsity Constraint Term

According to the physical characteristics of abundance, we
noticed that the abundance fraction matrix usually has zero-value
rows. This property gives us the method to reduce the solution
space. Considering some kinds of sparse regression unmixing
method, the abundance fraction matrix is often mapped into the
whole large spectrum library as a subset to promote row sparsity.
Since the speed and precision of sparse methods using libraries
are not satisfactory, we keep the method without using the
libraries. Then, a collaborative-row-sparse optimization variable
matrix is built, which links with the abundance matrix, to com-
plete the process of unmixing. The global collaborative sparsity
constraint can be implemented by promoting the row-sparsity
of an abundance matrix [20].

Let A ≡ [a1, . . ., aq] ∈ Rd×q and X ∈ Rq×n be optimization
variable matrixes, which links with the practical mixing matrix
M and the abundance matrix S; q is a number given. Then, we
use the collaborative-row-sparse optimization term in

min
x
‖X‖2,1 (3)

where ‖X‖2,1 ≡
∑q

i=1 ‖xi‖2 is the �2,1 mixed norm of X.
Let Λ denote the row number of the abundance matrix, we

assume

A|Λ ≡ [ai, i ∈ Λ] (4)

X|Λ ≡ [(xi)T , i ∈ Λ]T (5)

moreover, let

rowsupp(X) ≡ {i,xi �= 0} (6)

with above assumptions, we introduce

M̂ ≡ Â|rowsupp(̂X) (7)

Ŝ ≡ X̂|rowsupp(̂X) (8)

where M̂ �M and Ŝ � S; Λ is the row number of abundance
matrix; this model is shown in Fig. 1.

Thus, the volume terms and data fidelity propel the optimiza-
tion matrixes (A,X) to unmixing solutions extremely close
to the practical matrixes (M,S). (A,X) can be accurately
calculated as a common sparsity regression problem. We will
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apply the effective constraint term described in this section to
NMF objective function in the next part.

B. Optimization Function of ICoNMF

Based on the above assumptions, we undertake the estimation
of M and S by searching a robust solution for this ICoNMF
optimization function [9], as in

min
A,X

(
1

2

)
‖Y −AX‖2F + α‖X‖2,1 + β

2
‖A−P‖2F

s.t. X ∈ Sq−1,A ∈ Aq−1 (9)

where ‖ · ‖2 is the Euclidean norm; ‖ · ‖F is the Frobe-
nius norm;A ≡ [a1, . . ., aq] ∈ Rd×q andX ∈ Rq×n; ‖X‖2,1 ≡∑q

i=1 ‖xi‖2 denotes the collaborative-row-sparse optimization
term explained in the last section; P ≡ [yi1, . . ., yiq] is a collec-
tion of q observed spectrum vectors deduced by the pure-pixel
algorithm, that is, it is very close to the extreme simplex; α
and β are empirical regularization parameters we set; Sq−1 is
a set of q × n matrices the columns of which belong to the
probability simplex with dimension q − 1; and Aq−1 is a set of
d× q matrices, the columns of which belong to an affine set. The
dimension of this set is q − 1. This dimension describes Y best
according to the mean square error. This optimization function
avoids the inferiority of violating the sum-to-one constraint,
which usually occurs in real datasets.

In detail, the optimization function shown in (9) has three
terms: the data fidelity term ‖ Y −AX ‖2F , which guarantees
solutions of unmixing with low reconstruction error; the l2,1
mixed norm ‖ X ‖2,1, which guarantees the row-sparsity of X,
that is, it guarantees solution matrices with setting whole rows
xi to zero; and the term ‖ A−P ‖2F , which pushes columns
of A to the given pure-pixel-based solution P. This article uses
VCA algorithm as pure-pixel algorithm to estimate P, which is
used by most unmixing methods to obtain the initial value.

C. Total Variation Regularity Term

According to the physical characteristics of abundance, we
noticed that the fractional abundance of the same endmember
correlates neighboring pixels. This property gives us the method
to reduce the solution space. This kind of correlation among
neighboring pixels is often represented as the smoothness using
regularization methods. We transferred this method to describe
our HSU problem with the total variation regularization [7], as
in

min
X

TV (X) (10)

where

TV (X) = ‖HhX‖1 + ‖HvX‖1 (11)

with
{

HhX = xi,j − xi−1,j
HvX = xi,j − xi,j−1.

(12)

TV portrays the smoothness constraint for the abundance
fraction of the same endmember among adjacent pixels; i is the

collection of horizontal position and j is the vertical adjacent
pixels in the HSI; according to the alternating direction method
of multipliers [8], Hh : Rm×n → Rm×n describes a linear op-
erator calculating the horizontal differences between the pixels
in X and its adjacent pixels; Hv : Rm×n → Rm×n describes a
linear operator calculating the vertical differences between the
pixels in X and its adjacent pixels.

D. ICoNMF-TV Model

After providing the above definitions, we can now implement
the sparse unmixing by seeking a solution for the following NMF
optimization problem, as in

min
A,X

(
1

2

)
‖Y−AX‖2F +α‖X‖2,1+ β

2
‖A−P‖2F +λTVTV (X)

s.t. X ∈ Sq−1,A ∈ Aq−1 (13)

where ‖X‖2,1 ≡
∑q

i=1 ‖xi‖2 and ICoNMF optimization func-
tion (9) are mentioned in Sections III-A and III-B; TV(X) ≡∑
{i,j}∈ε ‖xi − xj‖1 is mentioned in Section III-C; λTV ≥ 0 is

regularization parameters.
With these definitions in the above sections, we rewrite the

optimization (13) as in

min
A∈Rd×q,X∈Rq×n

L(A,X) (14)

where

L(A,X) ≡
(
1

2

)
‖Y −AX‖2F + α‖X‖2,1 + β

2
‖A−P‖2F

+ λTV‖ HX ‖1,1 + �Sq−1(X) + �Aq−1(A) (15)

where �Sq−1 : Rq×n → R ∪ {+∞} and �Aq−1 : Rd×q → R ∪
{+∞} describe the indicator function of collections Sq−1 and
Aq−1; i.e.,

�Sq−1(X) =

{
+∞ X /∈ Sq−1
0 otherwise

(16)

and

�Aq−1(A) =

{
+∞ A /∈ Aq−1
0 otherwise.

(17)

E. Solution for ICoNMF-TV Model

Since the F-norm function is convex and the feasible region
is nonconvex, the data fidelity term 1

2‖Y −AX‖2F in (14) is a
nonconvex optimization. Thus, we apply the proximal alternat-
ing optimization (PAO) [37], which can converge to the critical
point of nonconvex optimization functions under some condi-
tions. Provided (A(0),X(0)) by VCA, PAO build the solution
sequence [9]

(At,Xt)→ (At+1,Xt)→ (At+1,Xt+1) (18)

where

At+1 = argmin
A

L(A,X(t)) +
λt

2
‖A−A(t)‖2F (19)

Xt+1 = argmin
X

L(At+1,X) +
μt

2
‖X−X(t)‖2F (20)
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where λt, μt, for t = 0, 1, . . ., are sets of positive numbers. We
notice that the above sequences can be represented as the 2-block
nonlinear Gauss–Seidel solution in the regularized view.

Based on this Gauss–Seidel solution, we introduce

(Aq−1 ≡ {z ∈ Rd : z = y +Vα,α ∈ Rq−1} (21)

where ȳ is the sample average observation vector; V ∈
Rd×(q−1) is a matrix consisting of the first (q − 1) principal
components of Y; the columns of V are orthogonal, that is,
VTV = Iq−1, where Iq−1 is the identity matrix with (q − 1)
dimension.

Define Y ≡ [y1, . . ., yq−1], (21) can be represented as in

A = Y +VΔ (22)

then, we can conclude that any A ∈ Aq−1 holds a unique rep-
resentation of the form (22), with

Δ = VT (A−Y). (23)

The procedure (18)–(20) can be interpreted as a regularized
version of the two-block nonlinear Gauss–Seidel method [38].
Formula (22)–(24) is an instance of the class considered in [37],
where optimization (24) is considered as a small size quadratic
problem. According to [37], formula (25) is obtained by ap-
plying formula (22)–(24) into (19). Thus, the solution to the
optimization (19) is

A(t+1) = Y +VΔ(t+1) (24)

where

Δ(t+1) = VT ((Y −Y)XT
(t) + β(P−Y) + λtΔ(t))

· (X(t)X
T
(t) + (β + λt)I)

−1 (25)

where I is an identity matrix with suitable size; (·)T is the
transpose operator.

Provided Y′(t) ≡ [YT√μtX
T
(t)]

T and A′(t+1) ≡ [AT
(t+1)√

μtI]
T , the optimization (20) is rewritten as

min
X

1

2
‖Y′t −A(t+1)X‖2F + α‖X‖2,1

+ λTV ‖HX‖1,1 + �Sq−1(X) (26)

which is opportunely the constrained �2 − �2,1 and TV optimiza-
tion computed by CLSUnSAL-TV [8], which is the generation
of sparse regression unmixing by SUnSAL-TV [7] algorithm.

Now, we have completed the solution of our model. The pseu-
docode for the ICoNMF-TV algorithm is shown in Algorithm 1.
The implementation process of the ICoNMF-TV framework
proposed in this article can be decomposed into two parts: in the
calculation of mixing matrix part, the computational complexity
is dominated by calculations of A(t+1) in lines 13 and 14,
which is in NMF method. The core term in the calculations are
YXT

(t) andX(t)X
T
(t), from which the computation complexity of

A(t+1) isO(2q2n); in the calculation of abundance matrix part,
the computational complexity is dominated by calculations of
Xt+1, which is in CLSUnSAL-TV method. The computation
complexity of CLSUnSAL-TV is O(Nnq ·max (q, log n)),
where N is the iterations number [8]. It should be noticed that q

Algorithm 1: Improved Collaborative Nonnegative Matrix
Factorization and Total Variation (ICoNMF-TV).

Input: Hyperspectral image matrix Y; Iterations N ;
Regularity parameters α, β, λt, μt; Number of the
endmembers q; Stopping threshold δ; A quite small
number θ

1: U ∈ Rd×q ← HySime(Y, q) //orthogonal basis
2: Y ← UTY; Ȳ ← ȳ1T

q

3: V̄ = orth(Y ∗YT /n− yyT , q − 1)
4: A(0) ← V CA(Y, q)
5: �(0) = VT (A(0) −Y)
6: P← A(0)

7: X(0) ← SUnSAL− TV (A(0),Y)
8: ε0 =∞; t = −1
9: repeat

10: t← t+ 1 //optimize with respect to A
11: update Δ(t+1) using Eq.(25)
12: update A(t+1) using Eq.(24)
13: Y′(t) ← [YT√μtX

T
(t)]

T

14: A′(t+1) ← [AT
(t+1)

√
μtI]

T

15: X(t+1) ←CLSUnSAL-TV(A(t+2),Y
′
(t), α)

16: ε(t) ←‖ Y −A(t)X(t) ‖
17: until ‖ εt − ε(t−1) ‖ / ‖ F ‖F> δ and t ≤ N
18: Λ = ∅
19: for i = 1 to q do
20: if ‖ xi

(t) ‖≤ θ then
21: Λ← Λ ∪ {i}
22: end if
23: end for
24: Â← UA(t)|Λ;X̂← X(t)|Λ

Output: Estimated spectral signatures Â and abundance
fractions X̂

is higher than log n in our algorithm. Thus, the computation
complexity of this part is O(Nnq2). Therefore, we can get
the conclusion that ICoNMF-TV complexity per iteration is
controlled by the X(t+1) term and is approximately given by
O(Nnq2).

IV. EXPERIMENTS WITH SIMULATED DATA

In this section, we illustrate the unmixing performance
achieved by including the TV regularizer on top of the collabo-
rative non-negative matrix method for spectral unmixing using
the simulated hyperspectral dataset.

The goal is to analyze the influence of the TV regularizer and
CoNMF term in the unmixing results. This section is organized
as follows. Section IV-A describes how the simulated dataset is
generated. Since the noiseless case is trivial, we only consider
scenes affected by noise. Section IV-B describes the considered
performance discriminators. Section IV-C concludes with a sum-
mary of the most relevant aspects observed in our simulated data
experiments.
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Fig. 2. Simulated image and five true fractional abundances of endmembers in the simulated dataset.

Fig. 3. SRE(dB) with different parameters µ and λTV obtained by ICoNMF-TV in different noise levels.

A. Simulated Dataset

The spectral library used in our simulated experiment is
A ∈ R224×240. This spectral library is made by selecting 240
materials randomly in the USGS spectral library, which was
open to the public in 2007. The spectrum interval is 0.4−2.5μm,
the spectral signatures of which is provided in 224 spectral
bands. Select five spectral signatures as the endmembers to
generate linearly a simulation dataset. This simulation dataset
has pixels and each pixel has spectral bands. Fig. 4 shows
the spectral characteristic curves of these five endmembers.
Fig. 2 represents the simulated image and the real abundance
images of the five endmembers. There are both pure pixels and
mixed pixels consist of 2–5 endmembers in the simulated data.
These pixels are evenly distributed in the fixed square area.
The background pixels of the simulated data consist of five
identical endmember mixtures, and their respective abundance
coefficients are fixed at 0.1149, 0.0742, 0.2003, 0.2055, and
0.4051. At the same time, to test the antinoise performance

Fig. 4. Spectral characteristic curves of five endmembers.

of our algorithm, the experiment is carried out in the case of
Gauss white noise pollution with three different SNR: 20, 30,
and 40 dB.
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TABLE I
SRE, RMSE (10E-2) AND RUNNING TIME (SECONDS) OF EIGHT ALGORITHMS FOR SYNTHETIC DATASET UNMIXING WITH OPTIMAL PARAMETERS

TABLE II
RMSE (10E-2) OF THREE ALGORITHMS FOR SIMILAR ENDMEMBERS

UNMIXING WITH OPTIMAL PARAMETERS

B. Performance Discriminators

The performance discriminators adopted in our experiment
to measure the quality of the reconstruction of spectral mixtures
are the signal to reconstruction error (SRE) and the root mean
square error (RMSE). We use these two measures instead of only
the classical RMSE as SRE gives more information regarding
the power of the error in relation to the power of the signal.
The higher the SRE(dB), the lower the RMSE, the better the
unmixing performance. The definitions are as in

SRE(dB) ≡ 10 lg
E[‖Y‖22]

E[‖Y −AX‖22]
(27)

RMSE(dB) ≡
√

1

p× n

∑p

i=1

∑n

j=1
(Xij − Sij)2 (28)

where Y is the real image data; A and X are the rebuild
mixing and abundance data by unmixing algorithms; S is the
real abundance data; p is the number of estimate endmembers;
and n is the number of pixels.

C. Results and Analysis

In this section, we test the performance of the proposed
TV regularizer combined with CoNMF formulation using the
simulated data cubes. In all the tests using the TV regularizer on
top of sparse unmixing approaches (NCLS-TV, SUnSAL-TV,
and CLSUnSAL-TV), we considered the first-order pixel
neighborhood system. We also include the original NCLS,
SUnSAL, CLSUnSAL, and R-CoNMF formulations. The
test environment for this section is Intel Core i5 CPU
3.20 GHz, RAM 4.0 GB, MATLAB R2016a. The algorithms
are tested using different values of the parameters λ and λTV ∈
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, and μ ∈
0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.
All possible combinations of these parameters are considered
shown in Fig. 3. Table I shows the SRE(dB) and RMSE results
achieved by the different tested methods with the simulated
dataset, using all considered SNR levels. In this table, we only
report the best scores obtained across the considered parameter
range.

From Table I, we can conclude that the inclusion of the TV
regularizer and CoNMF term offer the potential to improve
unmixing performance. For high SNR values, the improvements
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Fig. 5. Extracted abundance maps of eight methods for the simulated dataset when SNR = 40 dB. The parameter settings are reported in Table I. (a) Spectral
curve of Endmember 1. (b) Spectral curve of Endmember 2. (c) Spectral curve of Endmember 3. (d) NCLS. (e) SUnSAL. (f) CLSUnSAL. (g) R-CoNMF.
(h) NCLS-TV. (i) SUnSAL-TV. (m) CLSUnSAL-TV. (n) ICoNMF-TV.

of TV terms about the standard sparse unmixing formulations
(NCLS, SUnSAL, and CLSUnSAL) and R-CoNMF are not
significant. This is due to the fact that these methods are able
to recover the fractional abundances with good accuracy, with
low noise conditions. However, as the noise increases, the TV
term becomes more important and improves significantly the
quality of unmixing results as it can be observed in the results
of NCLS-TV, SUnSAL-TV, and CLSUnSAL-TV for SNR =
20 dB in Table I. Note also that the NCLS-TV, SUnSAL-TV,

CLSUnSAL-TV, and ICoNMF-TV provide results which are
not very different, which means that the TV regularizer im-
poses essentially a kind of sparsity in these solutions. As we
expected to happen, the TV term is still important dominated
by high noise, in which ICoNMF-TV performs clearly better
than CLSUnSAL-TV. And for all SNR values, the optimization
effect of the non-negative matrix factorization method (CoNMF)
compared to three standard sparse formulations (NCLS, SUn-
SAL, and CLSUnSAL) is distinct. Since the NMF algorithm
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itself can process the matrix data as a whole, it is more likely to
obtain a relatively superior solution than the standard methods.
Although it is expected to happen, the TV term is still important,
since ICoNMF-TV performs better than R-CoNMF. R-CoNMF
uses the sparse regression methods (SUnSAL and CLSUnSAL)
to solve the objective function. In Table I, although it greatly
shortens the unmixing time, the accuracy is still lower than
some TV regularizers on top of sparse unmixing approaches such
as CLSUnSAL-TV. Table II shows the unmixing efficiency of
three algorithms for the two similar endmembers with optimal
parameters in 40 dB. We can conclude that ICoNMF-TV still
has better efficiency than other TV-based methods for similar
endmembers. Based on the NMF model, ICoNMF-TV uses these
TV regularizers for iteration. We have to admit that ICoNMF-TV
takes a little longer time than R-CoNMF. However, the accuracy
exceeds all the above algorithms.

For visual purposes, Fig. 5 displays the abundance maps esti-
mated at SNR= 40 dB for three randomly selected endmembers
in the simulated dataset. Since the abundance maps for other end-
members behaved similarly, we only report the results observed
for Endmembers 1, 3, and 5. The abundance maps showed in
Fig. 5 were estimated with optimal values for parameters λ and
λTV. The first row are the spectrums of the three endmembers in
the spectral library, which are Jarosite GDS99, Anorthite, and
Alunite. The other rows, respectively, show the abundance maps
estimated by eight methods at SNR = 40 dB. From Fig. 5, it
can be seen that the TV regularizer improves both the sparse
regression methods (NCLS, SUnSAL, and CLSUnSAL) and
NMF solution (R-CoNMF), which almost have no noise points.
Besides, NMF solutions (R-CoNMF and ICoNMF-TV) exhibit
more abundance information of the little squares regions with
clearer boundaries than other methods. Qualitatively, we can see
that the areas with a high fractional abundance of the selected
endmembers are better depicted, while mixed areas with low
abundance of the selected endmembers are more homogenized
in nature. As reported in Table I, our method achieves both
spatial consistency and the materials’ spatial distribution with
good accuracy.

V. EXPERIMENT WITH REAL DATASET

In this section, we test the unmixing performance of ICoNMF-
TV ulteriorly in the actual application using real datasets to
unmix. The goal is to illustrate visually the influence of the
TV regularizer and CoNMF term in the real unmixing results.
The section is organized as follows. Section V-A describes how
the real dataset is developed. Section V-B concludes the visual
interpretation reported in the real unmixing results.

A. Real Dataset

Jasper Ridge is a popular hyperspectral data used in unmixing
methods with 512 × 614 pixels. Each pixel is recorded by
224 channels ranging from 0.38 to 2.5 μm. Considering this
hyperspectral image is too complex to get the ground truth, we
only use a subimage of 100 × 100 pixels. After removing the
channels 1−3, 108−112, 154−166, and 220−224 for the dense

Fig. 6. Jasper Bridge dataset. This dataset is available online1.

Fig. 7. Cuprite dataset. This dataset is available online2.

water vapor and atmospheric effects, we remain 198 channels.
Fig. 6 shows the color image of this dataset.

Cuprite Dataset is one of the most well-known hyperspectral
datasets used in the HSU study, available online in reflectance
units. The portion used to validate the performance of our
algorithm corresponds to a 250× 190-pixel subset. The dataset
consists of 224 spectral bands from 0.4 to 2.5μm, with a spectral
resolution of 10 nm. Due to the water absorption and high noise
in some bands, bands 1−2, 105−115, 150−170, and 223−224
are removed, with 188 bands remained. For illustrative purposes,
Fig. 7 displays a mineral map drawn in 1995 by USGS.

B. Results and Analysis

There are four endmembers in the Jasper Bridge dataset and
ten endmembers in the Cuprite dataset. We select the number

1Online. [Available]: https://goo.gl/images/2edgZU
2Online. [Available]: http://speclab.cr.usgs.gov

https://goo.gl/images/2edgZU
http://speclab.cr.usgs.gov
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Fig. 8. Reconstracted abundance maps and spectral signature comparisons of ICoNMF-TV method for the Jasper Bridge dataset.

Fig. 9. Reconstracted abundance maps and spectral signature comparisons of ICoNMF-TV method for the Cuprite dataset. The comparison is between groundtruth
(blue lines) and ICoNMF-TV (red lines).
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TABLE III
SRE, RMSE (10E-2) AND RUNNING TIME (SECONDS) OF EIGHT ALGORITHMS FOR JASPER BRIDGE DATASET UNMIXING

TABLE IV
SRE, RMSE (10E-2), AND RUNNING TIME (SECONDS) OF EIGHT ALGORITHMS FOR CUPRITE DATASET UNMIXING

of endmembers commonly used in past research. The reported
results are the average result of 20 times shown in Table III
and Table IV. We analyze the performance of TV regularizer
and the CoNMF term to estimate the abundance of fractions
and spectral signatures. Figs. 8 and 9 displays, for every end-
member extracted by the ICoNMF-TV algorithm, a plot of the
estimated endmember and its corresponding USGS library spec-
tral signature and the extracted fractional abundance map. The
coincidences between every endmember and its corresponding
library spectral signature are established by using visual inter-
pretation of the extracted abundance regarding to the reference
map in Figs. 6 and 7. To show the unmixing efficiency for the
different number of endmembers, we tested on distinct datasets.
This article tested on synthetic datasets (q = 5), Jasper Ridge
dataset (q = 4), and Cuprite dataset (q = 10). The results show
the proposed method still performs well with the number of
endmembers increasing.

For real-world dataset, the corresponding spectral signatures
are picked from the spectral library in the software ENVI. The
spectral ground truth of Cuprite has not been published. Thus,
the selected spectral signatures are generally used to compare
with the results as the ground truth. In this process, we notice
that the same material has different signatures saved in the
library of software ENVI, and there is changeability for even
the same kind of material. At this point, we compare extracted
endmembers with library signatures in perfect conditions. With
above considerations, the results displayed in Figs. 8 and 9
report that the extracted endmembers generally match well with
the corresponding library signatures. It is worth noting that the
number of endmembers and the mixing degree of these two
datasets are quite different. We can conclude that ICoNMF-TV
performances stably and efficiently under distinct conditions of
real datasets.

VI. CONCLUSION

In this article, a general method named ICoNMF-TV is pro-
posed for hyperspectral image unmixing. First, a TV regularizer
is introduced. It not only is an efficient way for improving

the accuracy of unmixing in the spatial dimension, but also
provides a concise description of the spatial correlation between
the image features in the adjacent pixels. Next, based on the
NMF method, the CoNMF method is developed to complete
batch data processing for the relatively superior solution, with
good robustness and accuracy. In the end, the proposed method
is evaluated on simulated and real datasets, comparing with the
standard sparse formulations (NCLS, SUnSAL, and CLSUn-
SAL), the sparse-TV formulations (NCLS-TV, SUnSAL-TV,
and CLSUnSAL-TV), and the NMF method (R-CoNMF), and
shows its effectiveness through intensive comparisons and anal-
yses. However, it should be noticed that this method still runs
quite slower than the NMF method, which should be solved
by optimizing the calculation process in the future. Since in
this issue, we only consider first-order neighborhood systems in
the definition, another relevant topic deserving research is the
applicability for second-order conditions.
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