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Bayesian Pan-Sharpening With Multiorder
Gradient-Based Deep Network Constraints
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Abstract—Pan-sharpening aims at acquiring a multispectral im-
age with a high spatial resolution by fusing a low-resolution mul-
tispectral image and a panchromatic image. In order to improve
spatial details and reduce spectral distortions, we develop a new
pan-sharpening model based on the Bayesian theory, which in-
volves three assumptions: 1) the low-resolution multispectral im-
ages are generally decimated from the high-resolution multispec-
tral images by convolution with a blurring kernel; 2) different from
most pan-sharpening methods that use linear manners to preserve
spatial information, we attempt a nonlinear manner based on a con-
volutional neural network composed of the proposed multiscale re-
cursive blocks, and we train our network parameters in multiorder
gradient domains to preserve more spatial structures; and 3) we in-
troduce an anisotropic total variation prior in multiorder gradient
domains to reconstruct better image edges and details. We establish
the posterior probability model based on the above assumptions
and derive an efficient optimization scheme to address the proposed
objective function. Final experimental results demonstrate that the
proposed model can overcome the restriction of a linear model and
achieve better spectral and spatial fusion, compared with several
traditional and deep-learning-based pan-sharpening approaches.
In addition, our model achieves more promising generalization
across different satellites than other deep-learning-based methods.

Index Terms—Bayesian theory, convolutional neural network
(CNN), multiorder gradient, pan-sharpening.

I. INTRODUCTION

W ITH the development of remote sensing technology,
remote sensing images have been widely applied in

many practical fields, such as physiognomy monitoring, veg-
etation identification, and object classification. Due to tech-
nical constraints, satellite capture systems only acquire two
sorts of images in the same scene at the same time. One is
the high-spatial-resolution panchromatic (PAN) image, which
contains little spectral information. Another is the low-spatial-
resolution multispectral (LRMS) image, which covers a more
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precise spectral range for the spectral resolution. To obtain a
multispectral image with high-spatial resolution multispectral
(HRMS), researchers have made efforts to fuse PAN and LRMS
images, and this fusion is named pan-sharpening.

A variety of pan-sharpening methods have been proposed in
recent decades [1], and most pan-sharpening approaches can
be divided into four main categories [2]: component substi-
tution (CS)-based methods, multiresolution analysis (MRA)-
based methods, variational optimization (VO)-based methods,
and deep learning (DL)-based methods. The CS-based methods
obtain the fused images by injecting high spatial structures
extracted from the PAN image into the upsampled LRMS im-
age. Gram–Schmidt (GS) [3], hyperspherical color sharpening
[47], intensity–hue–saturation [4], [5], and principal component
analysis (PCA) [6], [7] are the most popular CS-based methods.
Their fusion tends to preserve spatial information but introduces
some spectral distortions. Different from the CS-based methods,
the MRA-based methods extract high spatial structures by a
spatial filter or other spatial operators, and decimated or undec-
imated wavelet transform [8], [9], Á Trous wavelet transform
[10], and Laplacian pyramid [11] are similar MRA-based meth-
ods. They can sharpen the LRMS image at the expense of spatial
distortions. The VO-based methods are based on VO models,
which include the spectral fidelity, the spatial enhancement,
and the prior. Ballester et al. [12] proposed the first variational
pan-sharpening model based on a linear combination, which can
well preserve spectral components. However, this method could
produce the blurring effects due to the reason that estimating an
accurate blur kernel is challenging. To improve blurred edges,
Fang et al. [13] introduced a guided filter-based fusion method
to promote spatial structures while minimizing the spectral
distortion. Wang et al. [14] presented a variational model based
on the Bayesian theory assumption that the HRMS image is
coincident with that contained in the PAN image; the HRMS
image and the LRMS image should share the same spectral
information. However, all aforementioned methods conduct the
fusion in linear manners, which cannot achieve a better tradeoff
between spectral and spatial quality. In recent years, DL methods
that belong to nonlinear manners in computer vision have been
promising approaches. A lot of research studies have begun ex-
ploring pan-sharpening methods based on a deep convolutional
neural network (CNN). Masi et al. [15] adapted a three-layer
CNN architecture for superresolution to pan-sharpening. Yuan
et al. [16] introduced a multiscale multidepth CNN for the
pan-sharpening of remote sensing imagery. These methods train
network parameters in the image domain; however, they are
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weak in spatial preservation. To address this problem, Yang et al.
[17] proposed a deep network architecture called PanNet, which
trains their network parameters in the high-pass filtering domain
to preserve spatial structures. Unfortunately, these DL-based
algorithms are limited in their generalization across different
satellites.

In order to address the above issues, a novel pan-sharpening
model based on the Bayesian theory is established. Our model
is formulated into three probability terms. The first term can
protect spectral information from LRMS images, the second
term preserves the spatial structure of HRMS images, and the
third term is added to ensure structural reconstruction of HRMS
images. To sum up, the contributions of our article are presented
as follows.

1) We develop a Bayesian pan-sharpening model based on
the following assumptions.
a) The LRMS images are universally generated from the

HRMS images by convolution with a blurring kernel.
b) A multiorder gradient CNN, composed of the proposed

multiscale recursive blocks, is designed to preserve
better spatial structures in a nonlinear manner.

c) An anisotropic total variation prior in multiorder gra-
dient domains is used to better reconstruct image edges
and details.

Our model has a better tradeoff between spectral and
spatial fusion.

2) We attempt to use a multiorder gradient-based CNN
(MCNN) to enforce the spatial preservation based on a
nonlinear mapping of PAN and LRMS images. And our
CNN output is incorporated with a variational-based op-
timization framework for pan-sharpening. Experimental
results demonstrate that our method outperforms other
pan-sharpening methods in structural fusion and spectral
preservation. To the best of our knowledge, it is the first
work that combines multiorder gradients with a CNN.
Moreover, we perform the proposed CNN in multiorder
gradient domains, which allows for bypassing the gap
between different satellites by using network parameters
from trained on one satellite dataset, and our model is more
robust when generalized to new satellites.

II. BAYESIAN PAN-SHARPENING MODEL

We assume that yp represents the PAN image, y denotes the
LRMS image, and x denotes the HRMS image. According to
the Bayesian theorem, our pan-sharpening model is established
as a posterior probability

p(x|y, f) ∝ p(y|x)p(f |x)p(x) (1)

wherep(y|x) andp(f |x) are the likelihood of spectral and spatial
preservation, respectively. p(x) denotes the prior of the HRMS
image x. f is a nonlinear manner formulated as

f = fMCNN(y, yp) (2)

where fMCNN is an MCNN to better preserve spatial structures.
Spectral preservation likelihood p(y|x): The HRMS image

and the LRMS image should contain the same spectral informa-
tion. Followed our assumption that the LRMS image is generally

decimated from the HRMS image by convolution with a blurring
kernel. The relationship of y and x is modeled as

y = k ∗ x+ ε1 (3)

where ε1 is the additive noise, which is a Gaussian distribution
with zero mean and variance σ2

1 . We denote k as a blurring
kernel. An averaging kernel [19], [29], [48] is widely used for k,
since its experimental results are comparable with other results
using estimated kernels [20], [21]. The likelihood p(y|x) can be
defined as

p(y|x) = p(ε1) = N(ε1|0, σ2
1) = N(y|x, σ2

1). (4)

Spatial preservation likelihood p(f |x): The PAN image con-
tains more spatial information, and previous pan-sharpening
methods assume that the spatial information of the HRMS image
is acquired from the PAN image. The first P+XS method [12]
assumes that a linear combination of all bands of the HRMS
image should be closed to the PAN image. Different from the
P+XS method that preserves the spatial information in the image
domain, some approaches enforce the structure similarity in the
gradient domain to avoid intensity differences of the HRMS
image and the PAN image. Recently, an effective local linear
regression model [22] has been proposed to constrain the gra-
dient difference of the PAN image and the HRMS image. We
break the linear limitation of these methods, which preserve
the spatial information in linear model; our model enforces the
spatial fusion in the multigradient domains for the PAN image
and the LRMS image in a nonlinear manner. And the spatial
preservation term is based on the following assumption:

∇∗f = ∇∗x+∇∗ε2 (5)

where∇∗f denotes an MCNN, which trains network parameters
in multiorder gradient domains. ∇∗ contains the first-order
gradient ∇1(∇1h = [1,−1],∇1v = [1;−1]) and the second-
order gradient ∇2; meanwhile, we employ a Laplacian oper-
ator [1, 0, 1; 0,−4, 0; 1, 0, 1] [23] to represent the second-order
gradient. The function (5) can be detailed as follows:

∇1f = ∇1x+∇1ε21

∇2f = ∇2x+∇2ε22. (6)

Since ∇∗ε2 is a random sequence following Gaussian distri-
bution, ∇1ε21 and ∇2ε22 follow the Gaussian distributions
N(0, σ2

21) and N(0, σ2
22), respectively.

The likelihood of spatial preservation p(f |x) is formulated as

p(f |x) = p(∇∗f |∇∗x) = p(∇1f |∇1x)p(∇2f |∇2x)

= p(∇1ε21)p(∇2ε22)

= N(∇1f |∇1x, σ
2
21)N(∇2f |∇2x, σ

2
22). (7)

Prior p(x): Natural image gradients contain edge-based struc-
tures and follow a heavy-tailed distribution learnt from generic
image databases [24], [25]. We assume that image gradients are
piecewise continuous, and the first-order gradient distribution
of the HRMS image x is defined by a Laplacian distribution
[21], [26] with location zero and scale s1, and the second-order
gradient distribution of x obeys a Laplacian distribution with
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Fig. 1. Workflow of the proposed method.

Fig. 2. MDRN block of the inference network.

location zero and scale s2. The prior is written as

p(x) = L(∇1x|0, s1)L(∇2x|0, s2). (8)

Taking all likelihood and prior definitions into (1), our proba-
bilistic model can be derived as

p(x|y, f) = N(y|x, σ2
1)N(∇1f |∇1x, σ

2
21)N(∇2f |∇2x, σ

2
22)

× L(∇1x|0, s1)L(∇2x|0, s2). (9)

III. OPTIMIZATION ALGORITHM

To obtain the HRMS image x, we first transform the max-
imum a posteriori problem into an energy minimization prob-
lem, namely,E(x) = −log(p(x|y, f)), and our overall objective
function is established as follows:

E(x) = ‖ y − k ∗ x‖22 + v1‖∇1x−∇1f‖22 + v2‖∇2x

−∇2f‖22 + ξ‖∇1x‖1 + η‖∇2x‖1 (10)

where v1 = σ2
1/σ

2
21, v2 = σ2

1/σ
2
22, ξ = σ2

1/s1, and η = σ2
1/s2.

‖y − k ∗ x‖22 is the spectral preservation term following the
assumption that the HRMS image x and the LRMS im-
age y contain same spectral information. ‖∇1x−∇1f‖22 and
‖∇2x−∇2f‖22 denote the spatial preservation terms, which
impose the l2 norm to enforce the structural consistency between
the PAN image yp and the HRMS image x in multiorder gradient
domains. ‖∇1x‖1 and ‖∇2x‖1 are the prior terms, which use
the l1 norm to enforce the multiorder gradient sparsity of the
HRMS image x. The workflow of our model is shown in Fig. 1,
and we will detail each component in turn.

A. Inference Network

Based on the architecture of pan-sharpening by CNNs (PNN)
[15], we propose an efficient architecture of the inference net-
work, which aims to extract the spatial information for pan-
sharpening. The proposed dilated multilevel residual network
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Fig. 3. Architecture of the proposed inference network.

(MDRN) block consists of dilated convolutional layers [27],
[28], batch normalization (BN) [33] layers, rectified linear units
(ReLU) [34], and residual learning [45]. Fig. 2 shows a block
of the proposed network, and we introduce some components of
DL that are used in our network.

1) Dilated Convolution: To efficiently capture image feature
information, the CNN model should enlarge the receptive field
during the training procedure. In the traditional convolutional
layer, the receptive field can be enlarged by stacking more convo-
lutional layers or increasing the filter size, but these approaches
could generate some adverse effects such as computational
burden and overfitting. To enlarge receptive field and reduce
network complexity, we adopt dilated convolution as a substi-
tute for the traditional convolutional layer. Different from the
traditional convolutional layer, the dilated convolution enlarges
the receptive field without introducing extra computational com-
plexity. And a dilated rate parameter called dilated factor (DF)
is mainly used to indicate the dilatation size. As shown in Fig. 2,
there are three convolutional layers in a recursive block, which
consists of one normal convolutional layer, one two-dilated
convolutional layer, and one three-dilated convolutional layer.
Fig. 2 also provides the visualization of the dilated filter with
the DFs as 1, 2, and 3, respectively.

2) Batch Normalization: With the increase of convolutional
layers, the computational burden is added, the network takes
more runtime for converging, and BN aims to reduce conver-
gence time for training. BN can reduce an internal covariate shift
by the fixed means and variances of layer inputs to accelerate
the training. BN not only reduces the training time significantly,
but also improves the generalization ability of the network
by reducing the dependence of gradients on the scale of the
parameters or of their initial values.

3) Rectified Linear Units: The activation function increases
the nonlinearity of the neural network model; ReLU are gen-
erally employed in the neural network model as an activation
function.

4) Residual Learning: With the number of convolutional
layers increased, CNNs can achieve more complicated non-
linear mappings and can result in poor training accuracy. To
overcome this problem, residual learning [45] is proposed to
introduce an equal fast connection to solve the problem of
gradient disappearance. The residual learning has outstanding

Fig. 4. Average ERGAS [39] and Q [42] of the proposed model with different
repeated blocks of the inference network.

performance in image tasks [30]–[32]. Here, we adopt the basic
residual block, which uses a shortcut during two contiguous
convolutional layers as shown in Fig. 2.

5) Network Architecture: We develop an MCNN frame-
work consisting of repeated proposed blocks followed by the
concatenation layer; the architecture of our inference network
is shown in Fig. 3. Our network has three repeated blocks with
11 convolution layers and 32 filters per layer, and the size of
each filter is 3× 3. We show different numbers of repeated
blocks in Fig. 4, where we find that deepening the network with
more blocks does not mean that the extracted features are more
favorable to pan-sharpening performance. And the number of
blocks is set to 3 suitable for our framework.

B. Model-Based Optimization

It is challengeable to directly optimize the energy mini-
mization problem (10), since ∇∗f is a nonlinear operation,
which is generated by the proposed inference network, and
the l1 norm in the last term is hard to solve directly. In our
optimization, two auxiliary variables q and s are introduced for
l1 norm approximations, and thus, our objective function (10)
can be reformulated as follows:

E(x, q, s) = ‖ y − k ∗ x‖22
+ v1‖∇1x− f1‖22 + v2‖∇2x− f2‖22
+ ξ‖∇1x− q‖22 + α‖q‖1 + η‖∇2x− s‖22 + β‖s‖1 (11)

where f1 = fMCNN (∇1y,∇1yp), f2 = fMCNN (∇2y,∇2yp), and
α and β are the parameters to balance each term in this model.
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Fig. 5. Process of generating a training dataset through the Wald protocol.

Fig. 6. Comparisons of reduce scale experiment on a WorldView-2 image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS. (c) BDSD.
(d) Indusion. (e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) Ground truth.

We adopt an alternative iteration optimization scheme for
finding a local optimal solution to (11). The optimization proce-
dure reduces by iterating between two subproblems that can
be optimized individually, and their (t+ 1)th iterations are
formulated as follows:

P1 : qt+1 = ‖∇1x
t − q‖22 + α‖q‖1

st+1 = ‖∇2x
t − s‖22 + β‖s‖1 (12)

P2 : xt+1 = ‖y − k ∗ x‖22 + v1‖∇1x− f1‖22
+ v2‖∇2x− f2‖22 + ξ‖∇1x− qt‖22
+ η‖∇2x− st‖22. (13)

The update algorithms for the above two subproblems are
detailed as follows.

Update for P1: We use a shrinkage operation to solve the
update of the auxiliary variables q and s at the (t+ 1)th iteration:

qt+1 = shrink(∇1x
t, α)

st+1 = shrink(∇2x
t, β) (14)

where shrink(x, λ) = x
|x| · max(|x| − λ, 0).

Update for P2: We reconstruct the ideal HRMS image x by
addressing a least-squares problem P2 in the Fourier domain,
and x has a closed-form solution that satisfies

KT (Kx− y) + v1∇T
1 (∇1x− f1) + v2∇T

2 (∇2x− f2)

+ ξ∇T
1 (∇1x− qt) + η∇T

2 (∇2x− st) = 0 (15)
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Fig. 7. Residuals between the HRMS image reconstructions and the ground truth from Fig. 6. (a) PCA. (b) PRACS. (c) BDSD. (d) Indusion. (e) MTF-GLP.
(f) LGC. (g) GDN. (h) PNN. (i) Our.

Algorithm 1: Outline of the Proposed Model.
Input: LRMS image y, PAN image yp, blur kernel k,
parameters v1, v2, α, β, η, ξ, multiorder gradient
operations ∇∗, max iteration M .
Initialize: x0 = q0 = s0 = 0
step1:
f1 = fMCNN(∇1y,∇1yp), f2 = fMCNN(∇2y,∇2yp)
step2:
for t = 1 to M
qt+1 = shrink(∇1x, α)
st+1 = shrink(∇2x, β)

xt+1 = F−1
(F(KT y+v1∇T

1 f1+v2∇T
2 f2+ξ∇T

1 qt+η∇T
2 st)∧

1 +
∧

2(v1+ξ)+
∧

3(v2+η)

)

end for
Output: HRMS image x.

where K respects the matrix form of the kernel k. By using the
fast Fourier transform (FFT) to speed up the solving process, the
solution x is derived as follows:

xt+1 =

F−1

(F(KT y + v1∇T
1 f1 + v2∇T

2 f2 + ξ∇T
1 q

t + η∇T
2 s

t)∧
1 +

∧
2(v1 + ξ) +

∧
3(v2 + η)

)

(16)

where F is the FFT operator, F−1 denotes the inverse operator
of F , and

∧
1,
∧

2, and
∧

3 represent the eigenvalues of KTK,
∇T

1 ∇1, and ∇T
2 ∇2, respectively. We summarize the main steps

of the proposed method in Algorithm 1.

IV. EXPERIMENT RESULTS

We will provide numerous experiments to demonstrate the
effectiveness of the proposed method. All experiments are im-
plemented using MATLAB 2018a on a desktop computer with

Intel Core i7-8700, 16-GB RAM, and 64-bit Windows10 operat-
ing system. Simultaneously, the learning phase of our inference
network is carried on GPU that is NVIDIA GTX1080Ti with
CUDA 9.0 through the DL platform Caffe [35]. The datasets of
our experiments are acquired from WorldView-2 and QuickBird.
Our MCNN model cannot be trained directly when lacking the
HRMS images at the original scale. To solve the problem, we
follow the Wald protocol [36] for our network training and
experiment simulation. In Fig. 5, we provide a pictorial workflow
of generating the training datasets based on the Wald protocol.
In the workflow, we smooth the MS and PAN images with
a Gaussian smoothing kernel [46], and we downsample the
smoothed component by a factor of 4; the original MS image is
regarded to be the HRMS image. Then, we extract the multiorder
gradient component by using the multigradient operator from the
downsampled MS and PAN images, respectively. The multiorder
gradient component of the downsampled MS is upsampled with
the bicubic interpolation to obtain the LRMS; accordingly, the
gradient of the HRMS is the corresponding ground truth. The
size of training/validation patches is set to be 32× 32, our infer-
ence network is trained for 2.5× 105 iterations, the momentum
is set to 0.9, and the base learning rate is set to 10−3 and is
divided by 10 at 105 and 2× 105 iterations. The training process
of our network costs roughly 4 h. According to satisfactory pan-
sharpening results, we empirically set the same parameters for
all experiments to prove the stability of the proposed algorithm:
v1 = 0.4, v2 = 0.8, ζ = η = 0.001, and α = β = 100.

We compare our method with several pan-sharpening meth-
ods: three CS-based methods, i.e., PCA [6], band-dependent spa-
tial detail with local parameter estimation (BDSD) [18], partial
replacement adaptive component substitution (PRACS) [37];
three MRA-based methods, i.e., decimated wavelet transform
using an additive injection model (Indusion) [44], comparison
of pan-sharpening algorithms: Outcome of the 2006 GRS-S
Data-Fusion Contest (MIF-GLP) [43]; two OV-based methods,
i.e., variational pan-sharpening with local gradient constraints
(LGC) [22], pan-sharpening via a gradient-based deep network
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Fig. 8. Comparisons of the reduced-scale experiment on a QuickBird image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS.
(c) BDSD. (d) Indusion. (e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) Ground truth.

Fig. 9. Residuals between the HRMS image reconstructions and the ground truth from Fig. 8. (a) PCA. (b) PRACS. (c) BDSD. (d) Indusion. (e) MTF-GLP.
(f) LGC. (g) GDN. (h) PNN. (i) Our.

prior (GDN) [29]; and PNN [15]. We introduce both qualitative
results and quantitative metrics to assess the pan-sharpened
images using different methods. For reduced-scale experiments,
the quantitative metrics include spectral angle mapper (SAM)
[38], universal image quality index averaged over the bands
(QAVE) [40], Q8 for eight-band image, Q4 for four-band image,
relative dimensionless global error in synthesis (ERGAS) [39],
and spatial correlation coefficient (SCC) [41]. And we use the
quality without reference (QNR) [42], which is composed of the
spectral distortion indexDλ and the spatial distortion indexDs to
assess the pan-sharpened images in original-scale experiments.
In particular, the ideal values for ERGAS, SAM, Dλ, and Ds

are 0, whereas the ideal values for QAVE, SCC, Q4, Q8, and
QNR are 1. The results of our all experiments are listed in
Tables I–V, and in each comparison group, the best performance
is marked in bold; the second best is labeled as underline. For

TABLE I
QUALITY METRICS OF DIFFERENT METHODS ON A WorldView-2 DATASET

(BOLD: THE BEST; UNDERLINE: THE SECOND BEST)

visualization, we show the RGB bands of the pan-sharpened
images but conduct experiments in all spectral bands.
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Fig. 10. Comparisons of the original-scale experiment on a WorldView-2 image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS.
(c) BDSD. (d) Indusion. (e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) LRMS. (k) PAN.

TABLE II
QUALITY METRICS OF DIFFERENT METHODS ON A QuickBird DATASET (BOLD:

THE BEST; UNDERLINE: THE SECOND BEST)

A. Reduced-Scale Experiment

The Wald protocol is used in the simulated experiments due
to the lack of HRMS images. On the basis of this protocol, we
degrade the original MS images to yield the input images, and the
original MS image is regarded to be a ground truth, which will

TABLE III
QUALITY METRICS OF DIFFERENT METHODS ON A WorldView-2 DATASET AT

THE ORIGINAL SCALE (BOLD: THE BEST; UNDERLINE: THE SECOND BEST)

be used to compare with the pan-sharpened images. We simulate
our pan-sharpening scheme on 100 images from WorldView-2
and QuickBird, respectively.

1) WorldView-2 Data: We take a dataset acquired from the
WorldView-2 sensor, which has eight bands. We first crop
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Fig. 11. Original-scale experiment on a QuickBird image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS. (c) BDSD. (d) Indusion.
(e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) LRMS. (k) PAN.

TABLE IV
QUALITY METRICS OF DIFFERENT METHODS ON A QuickBird DATASET AT THE

ORIGINAL SCALE (BOLD: THE BEST; UNDERLINE: THE SECOND BEST)

200× 200× 8 part of the multispectral images to be the ground
truth; then, we generate the LRMS images with size of 50×
50× 8 by using the Wald protocol and simulate the PAN images
with size of 200× 200. Fig. 6 shows the pan-sharpened results
using different methods, and their corresponding residuals are

TABLE V
QUALITY METRICS OF DIFFERENT VARIANTS OF THE PROPOSED METHOD ON A

WORLDVIEW-2 DATASET (BOLD: THE BEST; UNDERLINE: THE SECOND BEST)

shown in Fig. 7. From Figs. 6 and 7, it is clear that LGC and
PCA suffer from different blurring artifacts. GDN, PNN, and
BDSD preserve spatial information well, but they fail in pro-
tecting spectral information and lead to distinct color distortions.
PRACS and Indusion have different levels of spatial distortions.
MIF-GLP is relatively well balanced in spatial and spectral
details, but its residual image is less competitive to that of our
method. The proposed method performs outstanding spectral
and spatial fusion. For the quantitative evaluation, we present
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Fig. 12. Original-scale experiment on a WorldView-3 image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS. (c) BDSD. (d) Indusion.
(e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) LRMS. (k) PAN.

the mean of 100 images using different methods in Table I, and
it is observed that our method yields better results of all metrics
compared with other methods.

2) QuickBird Data: We test a dataset acquired from the
QuickBird sensor with four bands. The dataset is cropped by
200× 200× 4 part of the multispectral images as the ground
truths, and we generate the LRMS images with the size of
50× 50× 4 by using the same way as the WorldView-2 dataset
and generate the PAN images with the size of 200× 200. Fig. 8
illustrates the pan-sharpened results of different approaches,
and their corresponding residuals are shown in Fig. 9. We
find that PCA, PNN, and PRACS produce serious color distor-
tions, although image spatial information is well preserved, and
LGC introduces some blurring artifacts. Indusion can protect
image spectral information well and fail to preserve image
spatial information. GDN, MIF-GLP, and BDSD show a good
ability to preserve spatial and spectral information, but our
method holds better spectral information than these competi-
tive methods. In Table II, we report the mean of 100 images
from the QuickBird sensor by using different methods. It is
noticeable that our method yields more promising results of all
metrics.

B. Original-Scale Experiment

We evaluate different pan-sharpening methods at the original-
scale images acquired from WorldView-2 and QuickBird satel-
lites, respectively. Since our inference network is trained in
reduced scale, for the sake of assessing the ability of transferring
to the original scale, the raw MS and PAN images are input into
our method to yield full-resolution results.

We show the pan-sharpened results using different methods
on the eight-band satellite image in Fig. 10. From Fig. 10, we
can see that PCA and PNN have spectral distortions similar
to their performance in reduced-scale experiments. BDSD and
MIF-GLP lose the spectral information compared with other
methods. On the contrary, LGC, Indusion, and PRACS gener-
ate different blurring artifacts. GDN performs a good tradeoff
between spectral and spatial preservations. Furthermore, our
method has better spectral and spatial fusion than GDN. In
Table III, we show the mean values of 50 images from the
WorldView-2 satellite by using different methods. It is combined
with Table III that our method is well balanced in spectral and
spatial preservations, and our fusion results have more promising
performance.
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Fig. 13. Original-scale experiment on an IKONOS image (visualized using the color composite of RGB bands). (a) PCA. (b) PRACS. (c) BDSD. (d) Indusion.
(e) MTF-GLP. (f) LGC. (g) GDN. (h) PNN. (i) Our. (j) LRMS. (k) PAN.

Meanwhile, we show the fused results of different methods on
a four-band satellite image in Fig. 11. By comparing the visual
results in Fig. 11, PCA, PRACS, and BDSD produce some spec-
tral distortions. LGC, Indusion, MIF-GLP, and PNN generate
blurring edges. GDN has the competitive visual results of sharp
edges and spectral information, but it cannot outperform our
method. We evaluate the average values of 50 images acquired
from the QuickBird satellite for different methods in Table IV,
and it is observed that the proposed method yields results of
better spectral and spatial fusion compared with other methods
in four-band satellite images.

C. Extension

To demonstrate the generalization of our model across dif-
ferent satellites, we perform on the WorldView-3 and IKONOS
images by using our network parameters trained on WorldView-
2 and QuickBird datasets. We present the visual results at the
original scale in Figs. 12 and 13. As can be seen from Figs. 12
and 13, the proposed method consistently yields better spectral
and spatial fusion. PCA and PNN suffer from obvious color

distortions. BDSD, Indusion, and MTF-GLP exhibit distinct
degradations in the spectral domain. LGC introduces clear blur-
ring artifacts. Although GDN and PRACS perform a stabiliza-
tion in spectral and spatial domains, they cannot outperform
our method. Experimental results prove that our model obtains
superior robustness across different satellites.

D. Ablation Study

To demonstrate the effect of each component of our inference
network, we compare variants of the proposed network and the
following statements hold: 1) the MCNN removes residual learn-
ing operation (-RL); 2) the MCNN removes dilated convolution
operation (-DF); and 3) the MCNN removes batch normalization
operation (-BN). We carry out the test on the above WorldView-2
dataset in reduced scale. In Table V, one can see that residual
learning operation, dilated convolution operation, and BN op-
eration can improve quantitative pan-sharpened performance,
and our inference network composed of these three components
outperforms the three variants (-RL, -DF, and -BN) in all quality
metrics.
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V. CONCLUSION

In this article, we have proposed a Bayesian pan-sharpening
model, which contains the spectral preservation term, the spatial
preservation term, and the prior term. We attempt to design an
MCNN to enforce the spatial fusion of PAN and LRMS images
in a nonlinear manner, and our inference network is composed
of efficient multiscale recursive blocks. And our CNN output
is integrated into a variational-based optimization framework
for pan-sharpening. In addition, a multiorder gradient prior is
introduced to reconstruct better edges and details. Compared
with several leading pan-sharpening methods at reduced and
original resolutions, our method yields better results of both
structural fusion and spectral preservation. And our model is
more generalization to different satellites, since the proposed
CNN is performed in multiorder gradient domains.
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